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ABSTRACT 
 
We investigate the use of sparse principal components for 
representing hyperspectral imagery when performing feature 
selection. For conventional multispectral data with low 
dimensionality, dimension reduction can be achieved by 
using traditional feature selection techniques for producing a 
subset of features that provide the highest class separability, 
or by feature extraction techniques via linear transformation. 
When dealing with hyperspectral data, feature selection is a 
time consuming task, often requiring exhaustive search of 
all the feature subset combinations. Instead, feature 
extraction technique such as PCA is commonly used. 
Unfortunately, PCA usually involves non-zero linear 
combinations or `loadings` of all of the data. Sparse 
principal components are the sets of sparse vectors spanning 
a low-dimensional space that explain most of the variance 
present in the data. Our experiments show that sparse 
principal components having low-dimensionality still 
characterize the variance in the data. Sparse data 
representations are generally desirable for hyperspectral 
images because sparse representations help in human 
understanding and in classification. 
 
Index Terms— Hyperspectral data, PCA, SPCA, DSPCA, 
Sparse representation  

 
 

1. INTRODUCTION 
 
Collection and processing of data of all kinds are on scales 
unimaginable until recently due to exceptional processing 
power available. Recent advances in high throughput data 
acquisition, digital storage, computer processing and 
communication technologies have made it possible to 
gather, store, and transmit large volumes of data. 
Hyperspectral imaging is a powerful tool for many real 
world applications such as agriculture, mining, defense and 
environmental monitoring. However, hyperspectral imagery 
tends to be more difficult to process due to high 
dimensionality [16]. To address this problem, feature 
extraction techniques such as Principal Component Analysis 
(PCA) are most often applied. However, in PCA each 
resulting principal component (PC) is a linear combination 
of all the original hyperspectral bands. This makes the 

derived PCs difficult to interpret and the transformed 
hyperspectral data expensive to classify. To mitigate the 
problem, rotation techniques and segmented PCA are 
commonly used. Each has their own drawbacks. Informal 
thresholding approach used in rotational techniques can be 
potentially misleading [5], while segmented PCA may not 
be the most efficient way to segment spectral bands if the 
goal is to detect a specific target type [6]. 

There are obvious problems caused by the rapid increase in 
volume associated with adding extra dimensions to a 
mathematical space, which is often referred as “Curse of 
Dimensionality”. The high dimensional data is always 
difficult to work with for several reasons. Adding more 
feature means more noise and hence more error. The 
complexity grows exponentially with the number of 
dimensions, rapidly outstripping the computational and 
memory storage capabilities of computers. The curse of 
dimensionality complicates machine learning problems that 
involve learning from a finite number of data samples in a 
high-dimensional feature space.  

In most of the cases reducing the number of dimensions 
improves efficiency. Also, the cost associated with 
measurement, storage, computation decreases with 
reduction in dimension. It improves classification 
performance, helps in interpretation/modeling and also 
enhances generalization capability.  It speed learning 
process by many folds. Most often, dimension reduction is 
applied to the high dimensional data. Feature extraction is to 
apply a map of the multidimensional space into a space of 
fewer dimensions. This means that the original feature space 
is transformed by applying e.g. a linear transformation via a 
principal components analysis. Feature extraction is a 
method of constructing combinations of the features to get 
around these problems while still describing the data with 
sufficient accuracy. 

Conventional sparse PCA typically applies simple 
transforms such as axis rotations and component 
thresholding [7]. In Zou, Hastie and Tibshirani’s [10] 
approach called sparse PCA (SPCA), it finds modified 
components with zero loading in very large problems, by 
writing PCA as a regression-type optimization problem. 
This allows the application of Lasso [14], a penalization 
technique based on the 1 norm. All these methods are 
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either significantly suboptimal (thresholding) or nonconvex. 
Direct sparse PCA (DSPCA) improves the sparsity of the 
principal components by directly incorporating a sparsity 
criterion in the PCA problem formulation, then forming a 
convex relaxation of the problem that is a semidefinite 
program. On the other hand, Segmented PCA [17], a 
hyperspectral image cube is divided into several non-
overlapping blocks in accordance with band-to-band cross-
correlations, followed by PCA performed in each block. 

2. PRINCIPAL COMPONENT ANALYSIS (PCA) 
 

PCA transforms the data into a new co-ordinate system such 
that the first co-ordinate have maximum variance, second 
have the second largest and so on. There are two very 
important optimal properties of PCA [10] which mainly 
contribute towards its success. First, PCA guarantees 
minimal information loss by sequentially capturing the 
maximum variability among variables. Second, PCs are not 
correlated. 

PCA also has an obvious drawback, i.e., each PC is a linear 
combination of all n variables and the loadings are typically 
nonzero. This makes it often difficult to interpret the derived 
PCs.  

Principal Component Analysis is usually done by Singular 
Value Decomposition (SVD). In detail, let the data Z be an 
(m, n) matrix where m is number of samples and n is 
number of features. Then we have the SVD of Z as  

TUDVZ U               (1) 

Where T stands for transpose, U are the principal 
components (PC’s) of unit length and the columns of V are 
the corresponding loadings of the principal components. The 
eigenvalue decomposition of the covariance matrix can be 
written as           
                              TT VVDZZA 2VZ                   (2) 
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where Vi are the eigenvector and iii D ,Di  are the 
corresponding eigenvalues. We can also note that PCA is 
orthogonal transformation of the data.  

3. SPARSE PCA 

In this paper we experiment with SPCA and DSPCA 
technique on the hyperspectral and sonar data. We will also 
analyze the sparse representation of the datasets and its 
effect on classification. The following are short descriptions 
of the two techniques. 

3.1 SPCA 
 
SPCA is built on the fact that PCA can be written as a 
regression-type optimization problem. Thus they have 
integrated Lasso (elastic net) directly into the regression 
criterion such that the resulting modified PCA produces 
sparse loadings. In general it does not replace regular PCA 
but SPCA modifies it to produce sparse principal 
components. SPCA is a regression optimization framework 
in which PCA is done exactly, unlike linear regression and 
least square solution. The modified regression framework 
allows a direct modification by using the Lasso (elastic net) 
penalty such that the derived loadings are sparse. The 
advantage of using Lasso is that it continuously shrinks the 
coefficients to zero. It produces a sparse model using a 
variable selection method. The numbers of selected features 
are limited by the number of samples. It selects only one of 
the highly correlated features and does not care which one is 
in the final model. On the other hand, elastic nets [12] 
incorporate ridge penalties as well as lasso penalty. 
Limitation of Lasso [14] is removed by adding a ridge 
constraint with the Lasso constraint so that all variables are 
included in the model. In the SPCA framework, Equation 
(1) is extended as follows. For all i, denote 

iiii DUY ,U    (4) 

where Yi is the ith principal component of Z. Then, solve: 

||||||minargˆ
1

22 ||1|2||2ˆ
1a ZiY    (5) 

where β is a regression coefficient, the second term 2|| ||  

is the ridge penalty and the third term ||1 |1  in Equation 
(5) is the lasso penalty. SPCA is a reconstruction of PCA in 
the regression framework. 
 
3.2 DSPCA 
 
A direct formulation of SPCA analysis (DSPCA) [3] 
produces dominant principal components and factors ranked 
according to their variance for a given covariance matrix of 
the input data. Numerically, the eigenvalue decomposition 
of the covariance matrix is given by equation (3), for 
sparsity it can be written as   

                             Axx Tmax                            (6) 

                        1subject to 2 1x  

                                                  k(x) kCard  

where Card(x) denotes the cardinality (number of non-zero 
elements) of x. Equation (6) is non-convex and numerically 
hard to solve in polynomial time. To solve the above 
equation more efficiently, d’ Aspremont et. al. have 
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reformulated the optimization problem into the following 
optimization problem.  

        )(Tr max AX         (7)   
                      1)(Tr subject to 1X  

                                              kXT k11  

                                             0X                 

where X = xx T.  

Note that Card(x) ≤ k is replaced by the weaker but convex 
constraint i.e. 1T |X|1 ≤ k ( 1 norm of x), where |X| takes the 
absolute values of X. The rank constraint was also dropped. 
For small problems, DSPCA uses the interior point method. 
But for large problems with high dimensionality, a first 
order minimization technique is applied to the semidefinite 
program arising in the semidefinite relaxation of sparse 
PCA. 

4. EXPERIMENTAL RESULTS 
 

In order to understand how sparse representation affects 
feature extraction, we have applied both algorithms (SPCA 
and DSPCA) to two datasets. The first (Figure 1a) is an 
AVIRIS hyperspectral image [11] of 220 bands (from 400 to 
2500nm) and 145 by 145 pixels. The image is accompanied 
by ground truth that identifies 17 classes corresponding to 
various crops, roads, and man-made structures (see Figure 
1b). The second is a sonar dataset used by Gorman and 
Sejnowski [9] in their study of classification of sonar signals 
using a neural network. The classification accuracy of Sonar 
data set [1] using all 60 features was 82.7%. We have used 
only 25% of the total features and sparsity was set to 50%. 
Figures 2 and 3, show the amplitude of loadings for the 
PCA, SPCA and DSPCA. Here, the vertical axis 
corresponds to the magnitude of each principal component 
produced by PCA, SPCA and DSPCA, and the horizontal 
axis corresponds to the resulting components. We note that 
some of the features produced by PCA were selected as it is 
by SPCA. The reason for that is SPCA uses the same 
principal components produced by regular PCA and applies 
Lasso and elastic nets [12] for sparse loading. 

Next we used the resulting components to classify the data 
using k nearest neighbor classification. Figures 4 and 5 show 
the classification accuracy versus the number of components 
used to classify. The accuracy is on average the same as 
sparse PCA in which only 50 % non-zero loadings are 
present. We note that the accuracy with only half of the 
features used for classification is approximately the same as 
with full features. Due to the computational constraint of 
DSPCA we are using only a quarter of the hyperspectral 
features. During analysis with PCA, we cannot determine 
which features are contributing, but with Figure 2 and 
Figure 3, SPCA and DSPCA shows which features are 
actually contributing.  

The results suggest that the accuracy values for SPCA and 
DSPCA are at least equal to the regular PCA. Also Figures 2 
and 3 clearly indicate which features actually contribute in 
classification. We can also note that with each additional 
feature the accuracy improves but after certain number the 
accuracy does not change or even deteriorates.  
 
 

     
a)   b) 

Figure 1:  AVIRIS data scene a) color composite image, b) ground 
data for the scene and description of the classes 

 
 

 
Figure 2:  Magnitude of Principal Components used for 

classification on Hyperspectral data 

 

Figure 3: Magnitude of Principal Components used for 
classification on Sonar data 
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Figure 4: Comparison of Accuracy obtained with PCA, SPCA and 
DSPCA on Hyperspectral data 

Figure 4: Comparison of Accuracy obtained with PCA, SPCA and 
DSPCA on Sonar data 

Compared to PCA SPCA and DSPCA require a lot of 
processing, but where the transaction cost is high and 
analyzing datasets is of primary importance. It applies the 
Lasso and elastic net technique to obtain sparse loading 
from the regular principal components from PCA. Without 
any sparsity constraint, SPCA reduces to the regular PCA. It 
also avoids misidentification of important variables. On the 
other hand DSPCA with Sedumi [13], the interior point 
method is less computationally efficient and cannot be used 
for high dimensional datasets. 

5. CONCLUSIONS 
 
After experimenting with Hyperspectral and Sonar data, we 
can conclude that sparse data representations are generally 
desirable because a sparse representation helps in human 
understanding and helps in classification. For very high 
dimensional data SPCA outperforms DSPCA. It is also 
computationally efficient for both small and large dataset. 
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