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Abstract—K-best Schnorr–Euchner (KSE) decoding algorithm
is proposed in this paper to approach near-maximum-likelihood
(ML) performance for multiple-input–multiple-output (MIMO)
detection. As a low complexity MIMO decoding algorithm, the
KSE is shown to be suitable for very large scale integration (VLSI)
implementations and be capable of supporting soft outputs.
Modified KSE (MKSE) decoding algorithm is further proposed
to improve the performance of the soft-output KSE with minor
modifications. Moreover, a VLSI architecture is proposed for
both algorithms. There are several low complexity and low-power
features incorporated in the proposed algorithms and the VLSI
architecture. The proposed hard-output KSE decoder and the
soft-output MKSE decoder is implemented for 4 4 16-quadra-
ture amplitude modulation (QAM) MIMO detection in a 0.35- m
and a 0.13- m CMOS technology, respectively. The implemented
hard-output KSE chip core is 5.76 mm2 with 91 K gates. The
KSE decoding throughput is up to 53.3 Mb/s with a core power
consumption of 626 mW at 100 MHz clock frequency and 2.8 V
supply. The implemented soft-output MKSE chip can achieve a
decoding throughput of more than 100 Mb/s with a 0.56 mm2

core area and 97 K gates. The implementation results show that
it is feasible to achieve near-ML performance and high detection
throughput for a 4 4 16-QAM MIMO system using the proposed
algorithms and the VLSI architecture with reasonable complexity.

Index Terms—Multiple-input–multiple-output (MIMO),
Schnorr–Euchner algorithm, sphere decoder, very large scale
integration (VLSI).

I. INTRODUCTION

I T IS KNOWN that an extraordinary spectral efficiency near
Shannon bound is able to be achieved in multiple-input–

multiple-output (MIMO) systems [1]. MIMO is one of the hot
technologies for fourth-generation (4G) because it can increase
the capacity (coverage or link quality in other sense) at no cost
in frequency spectrum. MIMO is becoming a key part in almost
every new wireless standard, such as HSDPA, 802.11n, 802.16e
and 802.20. To exploit the potentials of MIMO, one of the chal-
lenges is the very high computing power that is required at the
receiver end. This exceeds the capabilities of the typical chips
that are currently being employed in the wireless communica-
tion community.

The optimal maximum-likelihood (ML) decoders, using ex-
haustive search, have been shown to be feasible for 4 4 MIMO
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systems with quadrature phase-shift keying (QPSK) modulation
[2], [3]. To simplify the exponentially complex search problem
in ML decoders for MIMO systems with higher modulation
constellations, lattice (sphere) decoders are shown in [4] and
[5] to be capable of achieving near-ML performance with rea-
sonable complexity. Moreover, the lattice decoders can be ex-
tended to support soft decision outputs and, hence, be used in
an iterative MIMO receiver [6]. The lattice decoding algorithms
have two kinds of implementation strategies, i.e., Fincke–Pohst
strategy [4], [7], [8] and Schnorr–Euchner strategy [9]–[11].
To avoid confusion in this paper, the lattice decoder using the
Fincke–Pohst strategy is called SD (sphere decoder), and the lat-
tice decoder using the Schnorr–Euchner strategy is called SE.

In this paper, we mainly focus on very large scale integration
(VLSI) implementation aspects of lattice decoding algorithms
for MIMO detection. An early VLSI implementation of the SD
algorithm is presented in [12] for a 4 4 16-quadrature ampli-
tude modulation (QAM) MIMO system, in which a breadth-first
search method is employed and coined as K-best SD algorithm.
The drawback with the VLSI architecture of [12] is that the de-
coding throughput is limited to 10 Mb/s at a 100 MHz clock fre-
quency. Inspired by [12], the K-best SE (KSE) algorithm, pro-
posed in this paper, is shown to be more suitable for VLSI imple-
mentations. Furthermore, a modified KSE (MKSE) algorithm is
proposed to support soft outputs with only minor modifications
to the KSE.

Sections II and III of this paper briefly describe the lattice
model and the lattice decoding algorithms for MIMO systems.
Section IV proposes the KSE algorithm supporting hard out-
puts. Section V further extends the KSE algorithm to support
soft outputs and proposes the MKSE algorithm to improve its
performance. Section VI provides simulation results of both al-
gorithms. Section VII proposes a VLSI architecture for both al-
gorithms. Section VIII presents VLSI implementation results of
both algorithms. The conclusion is given in Section IX.

II. LATTICE MODEL OF MIMO SYSTEMS

Consider a symbol synchronized MIMO system with
transmit antennas and receive antennas. The baseband
equivalent model for the MIMO channel is

(1)

where is the transmitted symbol vector, in
which each component is independently drawn from a complex
constellation such as QAM, is the re-
ceived symbol vector, and is an indepen-
dent identically distributed (i.i.d.) complex zero-mean Gaussian
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Fig. 1. Block diagram of a typical lattice decoder for MIMO detection.

noise vector with variance per dimension. Moreover, de-
notes the channel matrix, whose elements represent
the complex transfer functions from the th transmit antenna
to the th receive antenna, and are all i.i.d. complex zero-mean
Gaussian with variance 0.5 per dimension. The channel matrix
is assumed to be perfectly known to the receiver, and
is assumed in the sequel.

The complex matrix (1) can be transformed to its real matrix
representation , i.e.,

(2)

where and denote the real and imaginary part of ,
respectively. The elements of are assumed to be i.i.d. complex
Gaussian. The set can be considered as the lattice
generated by [10]. The columns of are called basis vectors
for , while the transmitted vector acts as the coordinates
of a lattice point. If the received vector is considered as a
perturbed lattice point due to the Gaussian noise , the objective
of the MIMO detection is to find its closest lattice point for a
given lattice , i.e.,

(3)

where is the set of real entries in the constellation, e.g.,
in the case of 16-QAM. Exploiting the lattice

properties of the MIMO system model, the optimal ML decoder
for MIMO systems can be simplified to a lower complexity lat-
tice decoder with near-ML performance.

III. LATTICE DECODERS FOR MIMO DETECTION

A typical lattice decoder for MIMO detection consists of a
preprocessing unit, a predecoding unit and a decoding unit, as
shown in Fig. 1. The preprocessing unit takes the estimated
channel matrix , and generates its inverse , a triangular
matrix , and a correspondingly optimal ordering if needed.
The task of the predecoding unit is simply to generate a zero-
forcing (ZF) point as an initial estimate for
the decoding unit. The computational complexity of the prede-
coding unit is omitted in the following complexity analysis for
all the lattice decoders. The differences among various lattice
decoders for MIMO detection depend largely on the design of
the decoding unit.

In a lattice decoder, an -dimensional lattice is de-
composed into sublattices. Let be the dimension of the sub-
lattice that is currently being investigated, and the orthog-
onal distance between two points in the adjacent sublattices.
The objective of the decoder is to search for the lowest possible
squared distance between -dimensional and

-dimensional sublattice [10].

In theory, the BER performance of the SE and the SD algo-
rithms should be the same for MIMO detection, since the dif-
ference between the SE and the SD lies in the searching order
among the sublattices [10]. According to the searching direction
instead, the lattice decoders can be divided into two types, the
depth-first type with variable throughput and the breadth-first
type with fixed throughput.

A. Depth-First Algorithms

The depth-first algorithm searches for the in both
forward and backward directions among the sublattices. The
currently lowest distance is first searched in the for-
ward direction of , compared with an ini-
tially lowest distance criterion of infinity (or sphere
radius ). Each time the -dimensional sublattice is
reached, the is replaced with the . Then, the
algorithm moves backward in the direction of .
As soon as the is smaller than the current criterion of

, the algorithm moves forward to again. From a
sequential decoding point of view [13], the depth-first lattice de-
coding algorithm actually uses depth-first and metric-first mixed
searching scheme to find the closest lattice point to the received
symbol. Consequently, this type of lattice decoding algorithms
for MIMO detection can also be called sequential algorithms,
e.g., sequential SD [4], [6], [14] and sequential SE [11], [15].

B. Breadth-First Algorithms

Instead of the metric-first and depth-first mixed searching
scheme, the breadth-first searching scheme can also be em-
ployed for MIMO detection. The breadth-first algorithm
searches for the in the forward direction only, but
the best candidate are kept at each level of the
sublattice. Hence, the breadth-first algorithms can result in a
constant decoding throughput. A strict breadth-first algorithm
should keep as large as possible without compromising
on the optimality, compared with the exhaustive-search ML
algorithm. However, limiting can reduce the complexity of
the breadth-first algorithm [12], [16]–[18], that is called K-best
algorithm in this paper. The bit-error rate (BER) performance
of the K-best algorithm is expected to be close to that of the
ML algorithm if is sufficiently large, as in the well-known
M-algorithm for sequential decoding [13].

The principle of the K-best type of algorithm is outlined as
below.

Step 1) At the root sublattice, initialize one path with metric
zero.

Step 2) Extend each survivor path, retained from the pre-
vious sublattice, to contender paths, and update
the accumulated metric for each path.

Step 3) Sort the contender paths according to their accumu-
lated metrics, and select the K-best paths.

Step 4) Update the path history for each retained path, and
discard the other paths.

Step 5) If the iteration arrives at the end sublattice, stop the
algorithm. Otherwise, go to Step 2).

The best path at the last iteration is, thus, the hard decision
output of the decoder. The advantage of the K-best algorithm
over the sequential algorithm is its fixed throughput, since it is
easily implemented in a parallel and a pipelined fashion.
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IV. PROPOSED K-BEST SE ALGORITHM

The proposed K-best SE algorithm is a modification to the
K-best SD using the Schnorr–Euchner searching strategy, which
is formulated as the following. The matrix with positive di-
agonal elements is the inverse and transpose of the matrix ,
i.e., , where is the upper triangular matrix in the
QR-decomposition of the channel matrix . The other
notations used below are in conformity with those in [10].

1) Input , , , , and , and initialize

2) For , where the function
returns the number of elements in , calculate

(4)

(5)

(6)

3) Let , sort
in ascending order, and

choose the best (smallest) candidate paths
with . Discard the other paths. Adjust
and accordingly, and replace with .

4) For , calculate

(7)

5) If , then go to step 2) with , else return the
first row of as which has the smallest and is
to be sorted by if needed.

Moreover, it is straightforward to show ,
where is the th diagonal element of the matrix . The di-
vision in (5) can, thus, be replaced by a multiplication, which
is more simple and more numerically stable than the division in
hardware implementations. Furthermore, note that the second
item on the right-hand side of (5) is irrelevant to the
loop, which is instead needed for the first item . Con-
sequently, (4) and (5) can be replaced by (8), in which

(8)

The advantage of using (8) is that can be calculated in the
preprocessing unit, which results in lower complexity in the de-
coding unit. The additional overhead to the preprocessing unit
is trivial due to the symmetry of for the modulation schemes
considered. This property is not available in the K-best SD al-
gorithm. The total complexity of the MIMO detector using the
KSE is, thus, lower than that using the K-best SD.

The complexity of the KSE algorithm depends on the number
of candidates and the chosen sphere radius . A smaller

represents lower complexity in the K-best algorithms. It is
straightforward to show that a preprocessing scheme, taking
into account both postdetection signal-to-noise ratio (SNR) and

Fig. 2. MIMO transmission and iterative receiver model.

channel noise level [19], can reduce the complexity of the de-
coding unit significantly. On the other hand, the in KSE is
similar to the threshold value in the T-algorithm for sequential
decoding [20]. When the value of is sufficiently large, e.g.,
2 , the algorithm achieves its maximal complexity which is a
constant provided and . When is smaller, however, the
complexity is reduced with the degradation in performance due
to the lost lattice points outside the radius. A possible choice
of the radius is , where is chosen to guar-
antee that the true lattice point can be captured [6]. In our ex-
perimental evaluations, the coefficient is empirically set to 5
when dB, and 10 when dB.

V. SOFT-OUTPUT EXTENSION OF K-BEST SE ALGORITHM

As for the soft-output MIMO detection, Fig. 2 shows a stan-
dard flowchart of an iterative MIMO receiver [6]. The informa-
tion bits is encoded and interleaved to become the coded bits

, which is the input to the constellation mapper. The soft-output
MIMO detector takes channel observations as well as a priori
information on the inner coded bits, and calculates ex-
trinsic information for each of the coded bits per symbol
vector. Then, is deinterleaved to become the a priori input

to the outer soft-input/soft-output decoder, which calcu-
lates extrinsic information on the outer coded bits. Then,

is reinterleaved and fed back as a priori information
to the inner detector, thus completing an iteration. After

some iterations, the outer decoder makes decisions about the
information bits by a posteriori information .

A. APP Detection of MIMO Signals

In the iterative MIMO receiver, the MIMO detector needs to
generate a posteriori probability (APP) about the inner coded
bits . The APP is usually expressed as a log-likelihood ratio
value ( -value). The -value of the bit

, where represents the number of bits per constellation
symbol, conditioned on the received symbol vector , is defined
as

(9)
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Fig. 3. Block diagram of the soft-output MIMO detector.

Equation (9) can further be simplified [6], [14]

(10)

where and

(11)

The first item of (11) can be calculated by a lattice decoder
[6]. Furthermore, to avoid the overwhelming complexity of (10)
in searching the set exhaustively, [6] proposed to search
a subset of

(12)

The candidate list can, thus, be calculated only
once by the lattice decoder. The a priori list and the APP
value must be updated every iteration. Specifically, the
MIMO detector in Fig. 2 can be replaced with a candidates list
generation block and a soft values generation block, as shown
in Fig. 3. The mostly well-known list type of MIMO decoding
algorithms are list sphere decoding (LSD) algorithm [6] and list
sequential sphere decoding (LISS) algorithm [14].

B. K-Best SE Decoder With Soft Outputs

As implied in Fig. 3, a detector with the capability of gener-
ating a candidates list is simply a soft MIMO detector. Hence,
the proposed KSE supports soft outputs, as well as hard out-
puts. In the KSE algorithm, the best paths retained at the
last iteration is the candidates list, in which the best path is the
hard output. Similar to the M-algorithm, the candidates list ob-
tained in the KSE does not necessarily include the closest (ML)
point from the received point. Consequently, the expected per-
formance of the KSE is lower than that of the optimal LSD and
LISS.

However, the KSE has advantages in hardware implemen-
tations compared with the LSD and the LISS. The KSE is a
single-direction searching algorithm, i.e., the iteration pro-
ceeds in the forward direction only. Consequently, the KSE is
easily implemented in a parallel fashion and achieves a fixed
throughput. Both the LSD and the LISS are two-direction
searching algorithms, i.e., the iteration proceeds forward and
backward. Their detection throughput is variable, since it de-
pends on the maximally possible searching time. The variable
detection throughput would demand I/O buffers, which may be
an extra overhead in a practical system.

Moreover, due to the single-direction property, the KSE is
easily implemented in a pipelined hardware architecture [21].
Each pipeline stage corresponds to one iteration in the KSE al-
gorithm. The high detection throughput is, thus, possible in the
KSE decoder. In contrast, both the LSD and the LISS have to
maintain a long list or stack for all the iterations, which could
limit the detection throughput due to the nonpipelined fashion.

In the iterative MIMO system, the KSE detector can be used
at every iteration to suppress the number of survivor paths, when
(11) is used as the metric. Though the algorithm performance
could be improved by this scheme [16], [17], the computational
complexity is also significantly increased compared with the
case in which the detector is used only at the first iteration. The
objective of this paper is to investigate a low complexity imple-
mentation of the soft-output MIMO detector. The discussion on
the soft-output KSE is, thus, limited to the usage at the first iter-
ation, where only is taken into account in the metric
calculation.

Similar to other list type of MIMO decoding algorithms, the
number of survivor paths is a key to the KSE algorithm. A
larger would increase the candidates list size and, thus, im-
prove the performance. The penalty is that the complexity is
also increased, since a large number of paths has to be extended,
sorted and retained. Another disadvantage of larger is about
the detection throughput, since the iteration period of the KSE
is proportional to according to the implementation results
of [21].

In summary, the soft-output KSE with a smaller has lower
complexity and higher detection throughput, but has lower per-
formance compared with that with a larger . A modification
to the soft-output KSE is, thus, proposed to improve its perfor-
mance without increasing K.

C. Modified K-Best SE Decoder With Soft Outputs

Inspired by [14], the MKSE tries to use the information con-
tained in the discarded paths that are not extended to the end
sublattice. In other words, The MKSE generates the soft out-
puts by using the discarded paths, as well as the survivor
paths during some iterations of the algorithm. The MKSE mod-
ifies step 3) of the KSE as below.

• Let , sort
in ascending order,

and choose the best (smallest) candidate
. From the th iteration, move the dis-

carded paths to the candidates list.…
The modification to the KSE is done with a minor increase in

complexity. Only some paths moving should be taken into ac-
count in hardware implementations. Since the candidates list is
required in all the soft-output MIMO detectors to generate the
soft values, it should not be counted in the hardware overhead
due to the modification. Consequently, the VLSI architecture
proposed in [21] for the KSE can also be applied to the MKSE
with minor modifications. The MKSE would have the same de-
tection throughput as the KSE with the same , since both re-
tain the equal number of survivor paths until the end sublattice.
The idea of the MKSE algorithm was partly originated from our
previous KSE implementation [21]. Hence, it could be helpful
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to understand the MKSE algorithm with its VLSI architecture
considered together (cf. Fig. 12).

Note that the paths retained from the th iteration could be
more reliable, since they are more close to the end sublattice. For
a 4 4 16-QAM MIMO system, the MKSE ( , )
retains paths as the candidates list,
while the original KSE retains at most
fully extended paths. The soft outputs by the MKSE would be
more reliable than those by the KSE, since the MKSE has more
candidate paths than the KSE with the same K. The performance
of the MKSE is, thus, expected to be better than that of the KSE
with the same .

On the other hand, most of paths retained in the MKSE are not
fully extended to the end sublattice. These paths have to be vir-
tually augmented to full length based on the assumptions about
the remaining undetected symbols, then they can contribute to
the soft value generation. Several possibilities are proposed in
[14] as assumptions about the undetected symbols. The ZF es-
timation, also called the Babai point [10], is the most simple
method to implement. The ZF estimation can be obtained simply
by rounding the received point to the nearest lattice point, which
adds little overhead to the hardware implementation.

It should be noted that the path augmenting by ZF estimation
is easier to implement in the MKSE than in the LISS. The LISS
has to maintain a large stack for the candidate paths. To enable
the path augmenting, the LISS has to know whether each path
achieves the full length or at which iteration it stops. This may
add an extra overhead to the hardware implementation. How-
ever, the MKSE inherently knows where each path arrives due
to its single-direction property as in the KSE. Consequently, the
path augmenting is not an overhead in the MKSE compared with
the LISS.

VI. SIMULATION RESULTS

A 4 4 16-QAM MIMO system is considered in our simu-
lations. Based on BER and numerical complexity in real-value
multiplication, the simulation results of the MIMO decoding al-
gorithms mentioned above are presented in this section. To ease
the comparison, a division or a square-rooting is considered to
be as complex as a multiplication, while a squaring is consid-
ered to be half as complex as a multiplication [22].

In our simulations, the SNR per transmitted information bit
is defined as

(13)

where is the code rate, and is assumed when the un-
coded MIMO system is considered. The average symbol energy

for the -QAM modulation
when .

In the case of hard-output detection, 100 k independent
channel realizations (packets) of 40 uncoded 16-QAM symbols
are transmitted with ten symbols from each antenna. In the case
of soft-output detection, to enable comparisons with the results
from [6], the frame length is chosen to be 9216 information
bits. To get an insight into the average behavior of an iterative
MIMO receiver, all simulations for the soft-output detection

Fig. 4. Four preprocessing modes, where � represents the channel noise level.

are performed until at least 10 frame errors are incurred or
at most 200 frames are transmitted. Four receiver iterations
are performed for each frame. As discussed in [6], an ergodic
channel model is used in the sense that the statistical nature of

is observed as the channel is used.

A. Effects of Preprocessing

In the lattice detector, as shown in Fig. 1, the complexity of
the predecoding unit is fixed to be regardless of the algorithm
used in the decoding unit. The complexity of the predecoding
unit is, thus, ignored in the sequel. The effects of the prepro-
cessing unit on the decoding unit using the KSE algorithm are
analyzed in this section.

To reduce the computational complexity of the decoding unit,
is commonly preprocessed in various practical MIMO detec-

tors [23], [24]. The preprocessing can be partitioned into four
modes, as shown in Fig. 4, according to the ordering by the
postdetection SNR and the consideration of the channel noise
level . No operation on is done in . The

only takes account of the ordering by the postdetection
SNR [25], which represents the effects of interferences from all
other received signals. The does no ordering and is es-
sentially a solution based on the minimum mean-square error
(MMSE) criterion, in which is included. The takes ac-
count of the postdetection SNR, as well as the MMSE criterion,
that is simply the method used in the square root algorithm [19].

For a given BER performance, the value of correlates
strongly with the decoding complexity of the KSE, that can be
determined by simple trial and error. Based on the simulations,
the minimum value of is determined to be 16, 14, 5, and 12
for the KSE with , 2, 3, and 4 preprocessing, respec-
tively. The BER performance of the KSE is shown in Fig. 5(a).
Clearly, the BER performances of the KSE are almost the same
for all the preprocessing modes at low and middle SNR, with
only minor differences at very high SNR.

The decoding complexity of the KSE with various prepro-
cessing modes is shown in Fig. 5(b) as the function of SNR. It
is clear from Fig. 5(b) that the KSE with preprocessing
has always the lowest decoding complexity, since the value of

of is much smaller than those of the other modes.
At high SNR, however, it is interesting to observe that the com-
plexity differences among the four preprocessing modes are not
as significant as that the values of indicate. The reason is
that the decoding complexity becomes more dependent on the
radius regardless of , since the number of survived paths
tends to be less than the chosen at high SNR. Unfortunately,
this property cannot be exploited in hardware implementations,
although the complexity of , 2, and 4 is lower than that
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Fig. 5. Effects of preprocessing on KSE, 4� 4 16-QAM. The radius C is set
as in Section IV.

of . One reason is that the memory use and the frequency
of memory accesses have been omitted in the complexity anal-
ysis. Since the KSE is a sorting-based algorithm, the value of
also correlates strongly with the used memory size. The other
reason is that the range of medium SNR is more interesting in
practical implementations, especially in the case of soft-output
detection as shown later. Consequently, the KSE with
preprocessing, due to the much smaller value of , would be
more promising in hardware implementations than those with
the other preprocessing modes. The preprocessing is
assumed for all the MIMO decoding algorithms in the sequel.

Furthermore, as shown in Fig. 1, the preprocessing unit is op-
erated on packet level, while the decoding unit is operated on
symbol level. A common case in current wireless communica-
tions is that the packet rate is much less than the symbol rate.
This motivates us to reduce the complexity of the decoding unit
by moving as many calculations as possible to the preprocessing
unit. The derivation of (8) is such an example. The complexity of
preprocessing is only critical in wideband MIMO-OFDM sys-

Fig. 6. BER performance comparison of exhaustive-search ML, KSE with
various K , sequential SE and MMSE-OSIC, 4� 4 16-QAM. The radius C is
set to infinity. The sequential SE is adopted from [15] without using Fano-like
metric bias and early termination. The MMSE-OSIC (square-root algorithm) is
adopted from [19].

tems, where it needs to be performed on a tone-by-tone basis.
A partial solution to this problem has recently been presented
in [26].

B. Hard-Output Case

The K-best algorithm does not necessarily catch the ML point
in theory. However, the BER performance of the K-best algo-
rithm can approach to that of the sequential algorithm, if the
value of is chosen suitably. Fig. 6 shows comparative simu-
lation results of KSE with various . The performances of ex-
haustive-search ML, sequential SE and MMSE-ordered succes-
sive interference cancellation (OSIC) are also shown in Fig. 6
as references. Clearly, both the KSE and the adopted
sequential SE can achieve the same performance as the exhaus-
tive-search ML within the investigated range of SNR. As ex-
pected, the performance of KSE deteriorates as the value of

decreases. The KSE actually performs like the
MMSE-OSIC, since the preprocessing is assumed for
the KSE in our simulations.

Fig. 7 shows floating-point complexity comparison of KSE,
K-best SD, and sequential SE. Due to the adoption of (8), both
maximum and average complexity of the KSE are lower than
that of the K-best SD by multiplications
per symbol vector.

Fig. 7 also shows the floating-point complexity of the sequen-
tial SE adopted from [15]. Clearly, the average complexity of the
sequential SE is much lower than that of the KSE , es-
pecially within the range of low and medium SNR. Moreover,
it is observed that the minimum complexity of the sequential
SE corresponds to about 50 multiplications per symbol vector.
Exploiting the observations above, the sequential SE decoders
can achieve a much higher peak decoding throughput compared
with the KSE decoders, as proved in [27].

On the other hand, it is clear from Fig. 7 that the maximum
complexity of the sequential SE is higher than that of the KSE
regardless of the range of SNR. Fig. 7 only shows a snapshot
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Fig. 7. Floating-point complexity comparison of KSE, K-best SD, and
sequential SE, 4� 4 16-QAM. The maximum and average complexity of the
K-best algorithms are obtained when the radius C is set to infinity and as in
Section IV, respectively. The sequential SE is adopted from [15] without using
Fano-like metric bias and early termination.

Fig. 8. Snapshots of number of searched sublattices in sequential SE, 4� 4
16-QAM. The sequential SE is adopted from [15] without using Fano-like
metric bias and early termination.

plot for the maximum complexity of the sequential SE, since
it is variable with different simulation runs. Fig. 8 shows snap-
shots of number of searched sublattices in the sequential SE.
Clearly, the maximum number of searched sublattices in the se-
quential SE is irrelevant to SNR. In summary, the sequential
SE can achieve a high peak decoding throughput, which corre-
sponds to searching 15 real-value sublattices (cf. Fig. 8). How-
ever, the decoding throughput of the sequential SE is variable
due to the variable number of searched sublattices. To alleviate
the possible loss in both the instantaneous throughput and BER
performance, the sequential SE decoders have to use I/O buffers.
A systematic solution is still an open problem.

As shown in Fig. 7, the maximum complexity of the KSE
is fixed. Consequently, the I/O buffers can be avoided in the

Fig. 9. Comparative simulation results, outer rate 1/2 convolutional code with
memory 2, 4� 4 16-QAM. The channel capacity is at 3.7 dB.

KSE decoder, when the KSE decoder is designed based on the
maximum complexity corresponding to K. At the same time,
the KSE decoder can exploit the sphere radius to reduce op-
erations in the implemented circuits, as implied with the av-
erage complexity in Fig. 7. This operation reduction would be
beneficial to low-power design without affecting the decoding
throughput, as shown later in Section VII-B. How to exploit
to tradeoff BER performance and computational complexity is
to be left to a MIMO system designer [cf. Figs. 5(a)–7].

C. Soft-Output Case

Fig. 9 shows comparative simulation results with an outer
convolutional code with memory 2. It is clear that the

coded MIMO system outperforms the uncoded system by 5 dB
at 10 even with a very simple convolutional code
and a hard-output MIMO detection. As expected, the KSE is
shown to be a soft-output MIMO detector. At the first iteration,
the LSD with a list of 512 candidates [6] outperforms the KSE

by about 1 dB. However, the KSE only
uses four iterations to outperform the LSD using eight iterations.
Even the KSE shows a little capability in the soft
values generation, taking into account that it has only
paths as the candidates list.

The parameters of the MKSE simulated are and
and, hence, the MKSE has 80 candidate paths for the soft values
generation. It is clear from Fig. 9 that the performance of the
MKSE is close to that of the KSE at the first it-
eration, and outperforms the KSE by about 1 dB at

10 . This shows that the performance of the KSE with
larger at the first iteration can be achieved by the MKSE with
much smaller . Both the decoding throughput and the imple-
mentation complexity can, thus, be improved significantly in the
MKSE due to smaller . Furthermore, note that the MKSE has
the same performance as the LSD with a list of 80 candidates at
the first iteration. This shows that the path augmenting used in
the MKSE performs well, although the complexity of the MKSE
is much lower than that of the LSD with the same size of candi-
date paths, as shown in Fig. 10.
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Fig. 10. Complexity comparison between MKSE and LSD, 4� 4 16-QAM.

Fig. 11. Comparative simulation results, outer rate 1/2 turbo code with
memory 2, 4� 4 16-QAM. The channel capacity is at 3.7 dB.

On the other hand, no performance improvement is observed
for the MKSE after the second iteration, neither for the KSE

. The MKSE can gain about 0.7 dB with the second iter-
ation compared with the first iteration. Therefore, the proposed
MKSE is suitable for the coded MIMO system without itera-
tive detection and decoding (i.e., no loop between the MIMO
detector and the outer decoder), which may be a practical case
in MIMO applications with medium to high date rates.

Fig. 11 shows comparative simulation results with an outer
turbo code with memory 2. The MKSE

outperforms the KSE and the hard-output detection
by about 0.7 and 1.7 dB, respectively, but has about 0.5 dB loss
compared with the LSD at the first iteration. On the other hand, it
is clear from Fig. 11 that the performance of the MKSE
is close to that of the LSD . Therefore, a similar
conclusion to the case of convolutional code can be obtained in
the case of turbo code. As a low complexity soft-output MIMO
detector, the proposed MKSE is also suitable for the turbo coded
MIMO receiver without iterations.

VII. PROPOSED VLSI ARCHITECTURE

The proposed KSE and MKSE algorithms share the same
VLSI architecture, except that the MKSE needs an extra soft-
output module. Fig. 12 shows the overall architecture of the de-
coder for a 4 4 16-QAM MIMO system. The architecture sup-
ports both hard outputs and soft outputs. When the soft-output
module is not included, the architecture is simply a hard-output
KSE decoder. Otherwise, the architecture becomes a soft-output
MKSE decoder. In this section, the hard-output KSE decoder is
described first, then the soft-output MKSE decoder is analyzed
as an extension of the hard-output KSE decoder.

As shown in Fig. 12, the architecture consists of eight pipeline
stages. Each stage has a processing element (PE), which imple-
ments the operations corresponding to step 2)–step 4) of the al-
gorithm. Stage 1 to stage 8 corresponds to the eighth to the first
level of computation in the algorithm. The buffers U, D, Y, and
E between adjacent PEs are needed to store the variables ,

, and in the algorithm, respectively. The pre-
processed channel information and are combined
into a single data stream, which is the input to the buffer G.

A. PEs

According to the (6)–(8), the original dataflow graph (DFG)
for the th level computation of K-best SE
can be derived, as in Fig. 13(a), which mainly consists of two
multipliers, one squarer and one sorting unit. An alternative is to
time-multiplex the multiplier and the squarer, as shown in
Fig. 13(b). The DFG of Fig. 13(b) can be further simplified as a
DFG consisted of only one multiplier, one adder, and one sorting
unit, as done in [12]. This is the DFG with the smallest area,
but it may result in an implementation with the less efficient
throughput due to excessive time-multiplexing.

In contrast, from the second stage in our implementation, the
multiplier is time-multiplexed with the multiplier at the
preceding stage, as shown in Fig. 13(c). This new time-multi-
plexing scheme alone can improve the decoding throughput by
about three times compared with [12], even if the impact of the
sorting unit is not taken into account. The penalty is an extra
squarer. It should be noted that the hardware complexity of the
squarer is only about half of the multiplier [22]. Furthermore,
the squarer and the following adder can be integrated into a
single unit using carry-save adder (CSA) technique, and the re-
sulting circuit is smaller and faster than a separate squarer and
a separate adder.

The eighth PE is also implemented as in Fig. 13(c), but the
multiplier and the following adder are not needed according
to the algorithm. The DFG of the first PE is shown in Fig. 13(d).
The structure of the first PE is similar to Fig. 13(b), since there
is no preceding PE that can share its multiplier with the first PE.
On the other hand, the DFG of the first PE should be similar to
Fig. 13(c), since the first PE has to share its multiplier with
the second PE.

It is shown in [12] and [20] that the cost of sorting is linear
with the value of , when the bubble sorting algorithm is em-
ployed. In the proposed architecture, the data are input to the
sorting unit in series. Furthermore, the length of sorting se-
quence is in our implementation, that is
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Fig. 12. VLSI architecture of the KSE/MKSE decoder for 4� 4 16-QAM MIMO system. The buffers U, D, Y, and E correspond to u , bestdist , ~y , and
e in the algorithm, respectively.

only half of that in [12]. Therefore, the bubble sorting algorithm
is the most suitable choice for our sorting unit compared with
the other sorting algorithms mentioned in [20].

B. Buffers

Since a large number of small buffers with various sizes exist
in the proposed VLSI architecture, all the buffers are imple-
mented in register banks instead of RAMs. The reason is the
large number of RAMs could result in the overhead in place and
route and the inefficiency in silicon area and power consumption.
In this paper, the size of a buffer is denoted as , where and

represents the number of banks and the number of pipelined
registers in each bank, respectively. The default value of is 1
if ignored. The sizes of all the buffers are shown in Table I.

The first buffer G with size 1 9 stores the value
and , in which is required by the multi-

plier at the first stage to calculate for the second stage. The
input symbol is buffered using double register banks to maxi-
mize the decoding throughput. The size of the first buffer E cor-
responds to two continuous symbol vectors. In our implementa-
tion, the first element of is processed in the first PE directly.
The size of the first buffer E is, thus, 2 7. The number of reg-
ister banks required in the buffers D, Y, and E is four at the second
stage, since there are only four candidates available from the pre-
ceding stage according to the algorithm. It is straightforward to
derive the sizes of the other buffers, taking into account.

The register banks between the adjacent PEs are not always
fully occupied by the transferring data, since the sphere radius

of the algorithm makes it possible that the number of candi-
dates is less than at some stages. Each of the register banks is
designed to be activated only when it is required by the candi-
dates generated at the preceding stage. The power consumption
on buffers can, thus, be reduced.

C. Timing Schedule

As far as timing schedule is concerned, it should be noted
that all the data are calculated and transferred serially in the
proposed architecture. To maximize the decoding throughput,
the clock cycles covered by each stage should be minimized.

The sorting unit is the bottleneck in the timing schedule, since
it covers 20 clock cycles. The other arithmetic units need 5 clock
cycles, as shown in Fig. 13(a), assuming that a multiplier or
squarer has the same speed as an adder. Therefore, the calcu-
lation period of clock cycles is needed for each
stage. Moreover, time-multiplexing is extensively used in the
proposed architecture, as shown in Fig. 13(c) and (d), which
needs 5 more clock cycles in the final implementation. In total,
each stage needs 30 clock cycles, in which 25 clock cycles are
involved in the calculations, and the remained 5 clock cycles are
used for time-multiplexing. The latency for the architecture to
process a symbol vector is, thus, clock cycles, as
shown in Fig. 12.

The multiplier at the second stage performs the calcula-
tion on according to (7). On the other hand, it has
to calculate for the third stage due to time-multi-
plexing. Therefore, the multiplier at the second stage could
be covered by clock cycles for processing
a received symbol vector. As analyzed above, however, the cal-
culation period is limited to 25 clock cycles for each stage. The
solution is to borrow 10 clock cycles from the sixth stage, since
the multiplier at the sixth stage is covered by 10 clock cy-
cles only. In other words, the multiplier at the sixth stage is
time-multiplexed with the second stage for 10 clock cycles. The
same problem would happen to the multiplier at the third
stage, which could be covered by 30 clock cycles. In the final
implementation, the multiplier at the sixth stage is further
time-multiplexed with the third stage for 5 clock cycles.

D. Hard-Output KSE Versus K-Best SD

Table II shows a rough comparison on the number of re-
sources between the proposed hard-output KSE and
the K-best SD of [12], assuming that the same data-
path wordlength of 16 bits is employed. Table II also shows the
derived number of resources of K-best SD assuming
that the same VLSI architecture as [12] is employed. It is clear
from Table II that the proposed architecture has less buffers and
comparators than [12], with the penalty of seven squarer/adders
and seven adders.
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Fig. 13. Illustration of dataflow graph (DFG). The shaded area represents that
the squarer and the following adder can be merged into a single unit using
CSA technique. (b) Derived by merging M and squarer in (a). (c) Derived
by merging M and M in (a), and used for the second PE and the nth (n =
3 . . . 8) PE.

TABLE I
SIZES OF ALL THE BUFFERS IMPLEMENTED IN REGISTER BANKS

Moreover, as described above, the latency of the proposed ar-
chitecture is 240 clock cycles. In contrast, the period of each
stage and the total latency of [12] is 160 and 1280 clock cycles,
respectively. This shows that the proposed architecture outper-
forms over [12] in both decoding throughput and decoding la-
tency when the same clock period is employed. The throughput

TABLE II
COMPARISONS OF THE NUMBER OF RESOURCES BETWEEN THE

HARD-OUTPUT KSE AND K-BEST SD, 4� 4 16-QAM

Fig. 14. Block diagram of the soft-output module. The numbered square
represents bit metric. The shadowed square represents bit metric estimated by
ZF path augmenting.

gain of the KSE results from both the decreased and the im-
proved time-multiplexing DFG scheme (cf. Fig. 13).

E. Soft-Output Extension

As shown in Fig. 12, the VLSI architecture proposed above
for the hard-output KSE algorithm is easily extended to sup-
port the soft-output MKSE algorithm, with only a soft-output
module appended. The function of the soft-output module is to
exploit the discarded paths from the hard-output module. Ac-
cording to the simulation results for the 4 4 16-QAM MIMO
system, the MKSE should retain the discarded paths from the
fourth stage to the last stage.

Since the MKSE is only suitable for the iterative
MIMO receiver with no iterations, the soft-output module is
designed to calculate the soft outputs of the MIMO detector
directly. Specifically, the soft-output module calculates the soft
values first based on the discarded paths retained from the fourth
stage. The final soft outputs are calculated just after the

paths are obtained at the last stage. In this way, the transferred
data in the soft-output module are the soft values (path metrics)
instead of the retained paths, and the MKSE does not need to
keep up to 80 paths until the last stage. Consequently, the soft
values generation unit in Fig. 3 is avoided in the MKSE, and the
implementation complexity of the soft-output module is reduced
sufficiently. Moreover, the decoding period and latency of the
hard-output module are not affected by the soft-output module.
Hence, the MKSE has the same decoding throughput as the KSE.

Fig. 14 shows the block diagram of the soft-output module.
It consists of five soft-value processing elements (SPE) and a
soft-value calculation (SVC) unit. The SPE units accept the dis-
carded paths from the fourth PE to the eighth PE, and calculate
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Fig. 15. Block diagram of the fifth SPE unit. The shadowed DEMOD unit
accepts estimated symbol, and the shadowed square represents bit metric
estimated by ZF path augmenting.

the corresponding bit metrics. Specifically, the fourth SPE ac-
cepts 15 discarded paths in series from the fourth PE, and cal-
culates bit metrics for bit 1–bit 8. Then, the fifth SPE accepts
the bit metrics from the fourth SPE, as well as 15 paths from the
fifth PE, updates the bit metrics for bit 1–bit 8, and calculates
bit metrics for bit 9–bit 12. The bit metric wordlength is deter-
mined to be 24 bits according to simulations. The higher 12 bits
represents the bit metric when , while the lower
12 bits represents the bit metric when . All the
16 bit metrics corresponding to a symbol vector are obtained
after the calculation in the eighth SPE. The SVC unit simply
subtracts from for each bit metric, and output
the final soft values. The SVC unit uses two subtractors in par-
allel to calculate the soft outputs. Hence, the calculation period
of the eighth SPE combined with the SVC unit is within 30 clock
cycles, as shown in Fig. 12.

Note that the bit metrics for bit 9–bit 12 calculated in the fifth
SPE are estimation values based on the ZF path augmenting,
since the symbol corresponding to bit 9–bit 12 is not detected
until the sixth stage. The ZF path augmenting is also used in the
seventh SPE, since the symbol corresponding to bit 13–bit 16
is not detected until the eighth stage. Therefore, the fifth and
seventh SPE need to estimate the corresponding symbol by
rounding the extra input.

Fig. 15 shows the structure of the fifth SPE. It consists of three
symbol metric calculation (SMC) units. Similarly, the fourth
SPE consists of two SMC units, the seventh SPE consists of
four SMC units and so on. Each SMC unit consists of four
bit metric calculation (BMC) units and one DEMOD unit. The
DEMOD unit, implemented in a 4-to-4 combinational decoder,
demodulates the detected symbol corresponding to four bits.
Each output bit of the DEMOD unit is an input to one of four

Fig. 16. BMC unit structure.

TABLE III
BUFFER WORDLENGTH COMPARISON BETWEEN HARD-OUTPUT KSE

AND SOFT-OUTPUT MKSE, 4� 4 16-QAM

BMC units in the SMC unit. The BMC unit accepts the path
metrics (PM) in series and the loaded metrics (LM) from the
previous stage of SPE, and calculates the corresponding bit met-
rics. For the unit SMC3 in Fig. 15, the DEMOD unit accepts the
symbol estimated by rounding the input. Moreover, The LM
inputs of SMC3 are fixed to the maximum value corresponding
to the chosen wordlength, since the metrics for bit 9–bit 12 are
not available from the fourth SPE.

Fig. 16 shows the structure of the BMC unit, which mainly
consists of a comparator, two registers and three MUXs. It loads
the LM input at the first clock cycles, then accepts the path met-
rics and performs the comparison in series. After all the path
metrics are compared, the bit metrics and are
held at the outputs of the two registers.

F. Soft-Output MKSE Versus Hard-Output KSE

Compared with the hard-output KSE, the additional resources
to the soft-output MKSE are 16 4-to-4 combinational decoders,
64 comparators, 64 BM registers, and 2 subtractors used in the
SVC unit. However, wordlength requirements are relaxed in the
MKSE compared with the hard-output KSE. The MKSE tries
to find a range of better points and calculate the soft values,
while the hard-output KSE tries to search for the best point cor-
responding to the hard output. What the MKSE focuses is on the
diversity of the searched points, not on the absolute accuracy.
That is also why a soft-output MIMO detector always prefers
finding as many points as possible. Our fixed-point simulation
results prove the statement above. Table III shows the buffer
wordlength comparison between the implemented hard-output
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Fig. 17. Implemented MIMO decoders, 4� 4 16-QAM.

TABLE IV
MEASUREMENT RESULTS OF THE HARD-OUTPUT KSE,

4� 4 16-QAM, 0.35-�m PROCESS

KSE and soft-output MKSE. Clearly, the wordlength required
in the MKSE is much less than that in the KSE. The increase of
the total buffer bits in the MKSE is mainly due to the additional
BM registers. As proved later in Section VIII, the core equiva-
lent gates number of the MKSE is only 6.5% higher than that
of the hard-output KSE. This penalty is worth since the MKSE
supports soft outputs.

VIII. IMPLEMENTATION RESULTS

The proposed VLSI architectures are modeled in Verilog
HDL, synthesized using Synopsys Design Compiler, and routed
using Cadence SoC Encounter/Silicon Ensemble. The RTL
and gate level netlists are all verified against the same test
vectors generated from the MATLAB fixed-point model. The
postlayout timing is verified using Synopsys PrimeTime with
net and cell delays back annotated in SDF format [28].

A. Hard-Output KSE Decoder

The hard-output KSE decoder is fabricated in a 0.35- m
CMOS technology. Fig. 17(a) shows the die photo of the chip.
The chip core area is 2.4 2.4 mm with 91 K gates. For the
4 4 16-QAM MIMO system, each symbol vector contains
16 bits. The decoding throughput that the chip can support is,
thus, equal to , where denotes the clock frequency.
The decoding latency of the chip is equal to . The
nominal supply is 3.3 V, but the chip was functional at 2.8 V
with a 100 MHz clock at room temperature. Table IV shows
the decoding throughput, latency, and the measured core power
consumption with various clock frequencies.

B. Soft-Output MKSE Decoder

The soft-output MKSE decoder is to be sent for fabrication
in a 0.13- m 6-ML CMOS technology. Fig. 17(b) shows the
layout of the chip. The chip core area is 0.75 0.75 mm with

TABLE V
SILICON IMPLEMENTATION COMPARISON, ALL THE HARD-OUTPUT DECODERS

CAN ACHIEVE ML PERFORMANCE WITHIN THE INVESTIGATED

RANGE OF SNR, 4� 4 16-QAM

TABLE VI
SILICON COMPLEXITY COMPARISON OF SOFT-OUTPUT DECODING,

4� 4 16-QAM, ESTIMATED WITH 0.18-�m
AND 122.88 MHZ CLOCK FREQUENCY

97 K gates. The postlayout timing simulation shows that the chip
can be operated at a maximal clock frequency of 200 MHz. The
maximal decoding throughput of the MKSE is, thus, expected to
be more than 100 Mb/s, and the corresponding decoding latency
is 1.2 s. The implemented MKSE chip can make its soft-output
module work in sleeping mode in order to reduce its power con-
sumption. This flexibility is useful when the hard-output MIMO
decoding could meet the system requirements.

C. Comparison to Other MIMO Decoders

Table V shows the silicon implementation comparison be-
tween the published hard-output decoders and our work. The
equivalent gates number is defined as the total core area divided
by the area of a drive-1 NAND gate. All the hard-output de-
coders shown in the table can achieve ML performance within
the, respectively, investigated range of SNR. The number of
resources of [12], including RAMs, is translated to equivalent
gates number. Both KSE and MKSE outperform the K-best
SD in complexity and decoding throughput. The decoding
throughput of [27] is variable due to employing the sequential
SE type of algorithm. [27] can achieve a much higher peak
throughput than the KSE or MKSE, but suffers from the instan-
taneous throughput loss under worse channel conditions.

For soft-output 4 4 16-QAM MIMO decoding, there has
been only one silicon complexity estimation published [29].
It uses the LSD algorithm and its complexity is
estimated in a 0.18- m CMOS process. To enable a compar-
ison with [29], we scaled the MKSE decoder from 0.13- m to
0.18- m [28]. Table VI shows a rather rough comparison in sil-
icon complexity between [29] and the MKSE. The comparison
results show that the MKSE can achieve higher de-
coding throughput with lower complexity compared with the
LSD . It should be noted that the BER performance
of the LSD is better than that of the MKSE
even at the first iteration, as shown in Fig. 9.

IX. CONCLUSION

In this paper, the KSE algorithm is proposed to approach
near-ML performance for MIMO detection, which is shown to
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be capable of supporting soft outputs. The MKSE algorithm is
further proposed to improve the performance of the soft-output
KSE with minor modifications. The simulation results show that
the MKSE can approach the performance of the LSD proposed
in [6] with lower complexity. Moreover, a VLSI architecture is
proposed for both algorithms. There are several low complexity
and low-power features incorporated in the proposed algorithms
and the VLSI architecture. The implementation results show
that it is feasible to achieve near-ML performance and high de-
tection throughput for 4 4 16-QAM MIMO detection using
the proposed algorithms and the VLSI architecture with reason-
able complexity.
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