
Belief Base Revision for Datalog+/- Ontologies

Songxin Wang1,2, Jeff Z. Pan2, Yuting Zhao2, Wei Li3, Songqiao Han1, and Dongmei
Han1

1 Department of Computer Science and Technology
Shanghai University of Finance and Economics, China

2 Department of Computer Science, University of Aberdeen, UK
3 School of Computer Science, Fudan University, China

Abstract. Datalog+/- is a family of emerging ontology languages that can be
used for representing and reasoning over lightweight ontologies in Semantic Web.
In this paper, we propose an approach to performing belief base revision for
Datalog+/- ontologies. We define a kernel based belief revision operator for Datalog+/-
and study its properties using extended postulates, as well as an algorithm to re-
vise Datalog+/- ontologies. Finally, we give the complexity results by showing
that query answering for a revised linear Datalog+/- ontology is tractable.

Keywords: Datalog+/-, ontology, belief revision, kernel

1 Introduction

Datalog+/- [3] has its origin from database technologies, encompasses and general-
izes the tractable description logics EL and DL-Lite, which can be used to represent
lightweight ontologies in Semantic Web [6]. Datalog+/- enables a modular rule-based
style of knowledge representation. Its properties of decidability of query answering and
good query answering complexity in the data complexity allows to realistically assume
that the database D is the only really large object in the input. These properties together
with its expressive power make Datalog+/- a useful tool in modelling real applications
such as ontology querying, web data extraction, data exchange, ontology-based data
access and data integration.

Belief revision deals with the problem of adding new information to a knowledge
base in a consistent way. Ontologies are not static, e.g., they may evolve over time, so
it is important to study belief revision for Datalog+/- ontologies. For both classic logic
and description logic, belief revision has been studied intensively and many literature
exist, such as [1, 7]. There are some extensions of Datalog+/- to deal with incomplete
or inconsistency information, including inconsistent handling method [4], probability
extension [5, 8], and well-founded semantics extension [9], however, to the best of our
knowledge, there is no belief revision method for Datalog+/- before.

In this paper, we address the problem of belief revision for Datalog+/- ontologies
and propose a kernel-incision based belief revision operator. Kernel consolidation was
originally introduced by Hansson [10] based on the notion of kernels and incision func-
tion. The idea is that, given a knowledge base KB that needs to be consolidated (i.e.,
KB is inconsistent), the set of kernels is defined as the set of all minimal inconsistent

2 Songxin Wang, Jeff Z. Pan, Yuting Zhao, Wei Li, Songqiao Han, and Dongmei Han

subsets of KB. For each kernel, a set of sentences is removed (i. e. , an incision is made)
such that the remaining formulas in the kernel are consistent. Note that it is enough to
remove any single formula from the kernel because they are minimal inconsistent sets.
The result of consolidating KB is then the set of all formulas in KB that are not removed
by the incision function.

We adopt the kernel-based consolidation idea into Datalog+/- ontologies, and give
an approach to deal with belief revision in the face of new information which contains
two parts of message: (i) the new facts A, and (ii) the unwanted set Ω. With our belief
revision operator, a Datalog+/- ontology KB is able to be undated by adding new facts
A in its database, and removing some database element to prevent any result in the
unwanted set Ω, such as inconsistency ⊥. We study the properties of proposed approach
using extended postulates, and then give algorithms to revise the Datalog+/- ontologies.
We finally give the complexity results by showing that query answering for a revised
Datalog+/- ontology is tractable if a linear KB is considered.

The paper is organized as follows. In Section 2 we introduce some preliminary
knowledge about Datalog+/-. In Section 3 we give our revision operator on Datalog+/-
ontologies. The properties of the operator are investigated in Section 4. In Section 5 we
give the algorithm and provide complexities results. Related works and the conclusion
are given in Section 6 and 7 respectively.

2 Preliminaries on Datalog+/-

In this section, we briefly recall some necessary background knowledge on Datalog+/-.

Databases and Queries We assume (i) an infinite universe of (data)constants constants
∆ (which constitute the normal domain of a database), (ii) an infinite set of (labelled)
nulls ∆N (used as fresh Skolem terms, which are placeholders for unknown values, and
can thus be seen as variables), and (iii) an infinite set of variables V (used in queries,
dependencies, and constraints). Different constants represent different values (unique
name assumption), while different nulls may represent the same value. We also assume
that there is a lexicographic order on ∆ ∪ ∆N , with every symbol in ∆N following all
symbols in ∆. We denote by X sequences of variables X1, ..., Xn with k ≥ 0.

We assume a relational schema R, which is a finite set of predicate symbols (or
simply predicates). A term t is a constant, null, or variable. An atomic formula(or atom)
a has the form P(t1, ..., tn), where P is an n-arry predicate, and t1, ..., tn are terms.

We assume a Database (instance) D for R is a (possibly infinite) set of atoms with
predicates fromR and arguments from ∆. A conjunctive query (CQ) over R has the form
Q(X) = ∃YΦ(X,Y), where Φ(X,Y) is a conjunction of atoms (possibly equalities, but
not inequalities) with the variables X and Y, and possibly constants, but without nulls.
A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as the set of all its
atoms, without quantifiers. Answers to CQs and BCQs are defined via homomorphisms,
which are mappings µ : ∆∪∆N ∪V → ∆∪∆N ∪V such that (i) c ∈ ∆ implies µ(c) = c,
(ii) c ∈ ∆N implies µ(c) ∈ ∆ ∪ ∆N and (iii) µ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms.

Belief Base Revision for Datalog+/- Ontologies 3

The set of all answers to a CQ Q(X) = ∃YΦ(X,Y) over a database D, denoted
Q(D), is the set of all tuples t over ∆ for which there exists a homomorphism µ : X∪Y→
∆ ∪ ∆N such that µ : Φ(X,Y) ⊆ D and µ(X) = t. The answers to a BCQ Q() over a
database D is Yes, denoted D |= Q, iff Q(D) , ∅.

Given a relational schema R, a tuple-generating dependency (TGD) σ is a first-
order formula of the form ∀X∀YΦ(X,Y) → ∃Ψ (X,Z), where Φ(X,Y) and Ψ (X,Z)
are conjunctions of atoms over R (without nulls), called the body and head the head of
σ, denoted body(σ) and head(σ), respectively. Such σ is satisfied in a database D for R
iff, whenever there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms
of D , there exists an extension h′ of h that maps the atoms of Ψ (X,Z) to atoms of D.
All sets of TGDs are finite here. A TGD σ is guarded iff it contains an atom in its body
that contains all universally quantified variables of σ.A TGD σ is linear iff it contains
only a single atom in its body. Query answering under TGDs, i.e., the evaluation of
CQs and BCQs on databases under a set of TGDs is defined as follows. For database D
for R, and a set of TGDs Σ on R, the set of models of D and Σ, denoted mods(D, Σ), is
the set of all (possibly infinite) databases B such that (i) D ⊆ B and (ii) every σ ∈ Σ is
satisfied in B. The set of answers for a CQ Q to D and Σ, denoted ans(Q,D, Σ), is the
set of all tuples a such that a ∈ Q(B) for all B ∈ mods(D, Σ). The answer for a BCQ
Q to D and Σ is Yes, denoted D ∪ Σ |= Q, iff ans(Q,D, Σ) , ∅. It is proved that query
answering under general TGDs is undecidable, even when the schema and TGDs are
fixed.

For a BCQ Q we say that (D∪Σ) entail Q if answer for a BCQ Q to D and Σ is Yes,
D ∪ Σ entail a set of BCQs if it entail some element of it.

Negative constraints (NC): A negative constraints γ is a first-order formula ∀XΦ(X)→
⊥, where Φ(X) (called the body of γ) is a conjunction of atoms (without nulls and not
necessarily guarded).

Equality-generating dependencies (EGD): A equality-generating dependency σ is
a first-order formula of the form ∀XΦ(X) → Xi = X j, where Φ(X), called the body
of Σ, denoted body(σ), is a (without nulls and not necessarily guarded) conjunction of
atoms, and Xi and X j are variables from X . Such σ is satisfied in a database D for R
iff, whenever there exists a homomorphism h such that h(Φ(X,Y) ⊆ D, it holds that
h(Xi) = h(X j).

The Chase The chase was first introduced to enable checking implication of depen-
dencies, and later also for checking query containment. It is a procedure for repairing
a database relative to a set of dependencies, so that the result of the chase satisfies the
dependencies. By chase, we refer both to the chase procedure and to its result.

The chase works on a database through TGD and EGD chase rules. Let D be a
database, and Σ a TGD of the form Φ(X,Y) → ∃ZΨ (X,Z). Then, Σ is applicable to
D if there exists a homomorphism h that maps the atoms of Φ(X,Y) to atoms of D. Let
Σ be applicable to D, and h1 be a homomorphism that extends h as follows: for each
Xi ∈ X, h1(Xi) = h(Xi); for each Z j ∈ Z, h1(Z j) = z j where z j is a fresh null, i.e.,
z j ∈ ∆N , z j does not occur in D, and z j lexicographically follows all other nulls already
introduced. The application of Σ on D adds to D the atom h1(Ψ (X,Z)) if not already in
D.

4 Songxin Wang, Jeff Z. Pan, Yuting Zhao, Wei Li, Songqiao Han, and Dongmei Han

The chase algorithm for a database D and a set of TGDs consists of essentially
an exhaustive application of the TGD chase rule in a breadth-first (level-saturating)
fashion, which outputs a (possibly infinite) chase for D and Σ.

The chase relative to TGDs is a universal model, that means, there exists a homo-
morphism from chase(D, Σ) onto every B ∈ mods(D, Σ). This implies that BCQs Q
over D and Σ can be evaluated on the chase for D and Σ, i.e., D ∪ Σ |= Q is equivalent
to chase(D, Σ) |= Q. For guarded TGDs Σ, such BCQs Q can be evaluated on an initial
fragment of chase(D, Σ) of constant depth k|Q|, which is possible in polynomial time
in the data complexity.

Datalog+/- ontology A Datalog+/- ontology KB=(D, Σ), where D is database, Σ =

ΣT ∪ ΣE ∪ ΣNC , consists of a database D, a set of TGDs ΣT , a set of non-conflicting
EGDs ΣE , and a set of negative constraints ΣNC . We say KB is linear iff ΣT is linear.
A Datalog+/- ontology KB=(D, Σ) is consistent, iff model(D, Σ) , ∅, otherwise it is
inconsistent.

3 Belief base revision in Datalog+/- ontology

We give an approach for performing belief base revision for Datalog+/- ontology in this
section. We present a framework based on kernels and incision functions to deal with
the problem of belief revision for Datalog+/- ontologies.

3.1 Revision

Firstly we give the definition of kernel in Datalog+/- ontologies.

Definition 1 (Kernel). Given a Datalog+/- ontology KB = (D, Σ), new observation
database instance A, unwanted database instanceΩ. A kernel is a set c ⊆ D∪A such that
(c, Σ) entail Ω, and there is no c′ ⊂ c such that (c′, Σ) entail Ω. We denote (D ∪ A) y Ω
the set of all kernels.

Example 1. A (guarded) Datalog+/- ontology KB=(D, Σ) is given below. Here, the
formulas in ΣT are tuple-generating dependencies (TGDs), which say that each person
working for a department is an employee (σ1), each person that directs a department
is an employee (σ2), and that each person that directs a department and works in that
department is a manager (σ3). The formulas in ΣNC are negative constraints, which say
that if X supervises Y, then Y cannot be a manager (ν1), and that if Y is supervised by
someone in a department, then Y cannot direct that department (ν2). The formula ΣE

is an equality-generating dependency (EGD), saying that the same person cannot direct
two different departments.

D={directs(tom, d1), directs(tom, d2),worksin(john, d1),worksin(tom, d1)};
ΣT ={σ1 : worksin(X,D)→ emp(X), σ2 : directs(X,D)→ emp(X),

σ3 : directs(X,D) ∧ worksin(X,D)→ Manager(X)};

Belief Base Revision for Datalog+/- Ontologies 5

ΣNC={ν1 : supervises(X,Y) ∧ manager(Y)→ ⊥,
ν2 : supervises(X,Y) ∧ worksin(X,D) ∧ directs(Y,D)→ ⊥};

ΣE={ν3 : directs(X,D1) ∧ directs(X,D2)→ D1 = D2}.

If new observation is supervises(tom, john), unwanted sentence is emp(tom), then
kernel is c1 = {worksin(tom, d1)}.

If new observation is supervises(tom, john), unwanted atom is ⊥, then kernels are
c1 = {supervises(tom, john), direct(tom, d1),worksin(john, d1)}
c2 = {supervises(tom, john), direct(tom, d1),worksin(tom, d1)}
c3 = {direct(tom, d1), direct(tom, d2)}.

We then give the definition of incision function in Datalog+/- ontologies.

Definition 2 (Incision Function). Given a Datalog+/- ontology KB = (D, Σ), new ob-
servation database instance A, unwanted database instance Ω, an incision function is a
function σ that satisfies the following two properties

1. σ((D ∪ A) y Ω) ⊆
⋃

((D ∪ A) y Ω) .
2. if X ∈ ((D ∪ A) y Ω) then X ∩ σ((D ∪ A) y Ω) , ∅.

We now give the definition of revision operator. The idea is to add the new in-
formation to ontology and then cut unwanted information from it in a consistent way.
Intuitively, the revision intends to add A and avoid Ω in a rational way. Note that we
cut unwanted database Ω, which is a generation of just cutting ⊥ from the ontology to
avoid the contravention. In this point we are like Ribeiro et al.[11].

Definition 3 (Revision Operator). Given a Datalog+/- ontology KB = (D, Σ), new ob-
servation database instance A, unwanted database instance Ω, let D′ = (D∪A)\σ((D∪
A) y Ω), where σ is an incision function, then revised ontology KB ∗ A = (D′, Σ).

Example 2. We continue with example 1. If new observation is supervises(tom, john),
unwanted atom is emp(tom), let incision function be {worksin(tom, d1)}, then revised
database is

D′ = {directs(tom, d1), directs(tom, d2),worksin(john, d1)}.
If new observation is supervises(tom, john), unwanted atom is ⊥, let incision func-

tion be {supervises(tom, john), direct(tom, d2)}, then revised database is
D′ = {directs(tom, d1),worksin(john, d1),worksin(tom, d1)}.

4 General Properties

It is important to ensure the revision operator behave rationally, so we analyze some
general properties of it in this section. We first propose the revision postulates for
Datalog+/- ontologies, which is an adaptation of known postulates for semi-revision,
then prove that these new postulates are indeed satisfied by the operator.

Definition 4 (Postulates). Given a Datalog+/- ontology KB = (D, Σ), a new observa-
tion database instance A, an unwanted database instance Ω, let KB♦A = (D′, Σ) be the
revised ontology, then the postulates are:

6 Songxin Wang, Jeff Z. Pan, Yuting Zhao, Wei Li, Songqiao Han, and Dongmei Han

1. (Consistency) Any element of Ω is not entailed by KB♦A.
2. (Inclusion)) D′ ⊆ D ∪ A.
3. (Core-retainment) if β ∈ D and β < D′, then there is D′′ such that D′′ ⊆ D ∪ A,

(D′′ ∪ {β} , Σ) entail Ω, but (D′′, Σ) does not entail Ω.
4. (Internal change) If A ⊆ D, B ⊆ D then KB♦A = KB♦B.
5. (Pre-expansion) (D ∪ A, Σ)♦A = KB♦A.

The intuitive meaning of the postulates are as follows: consistency means no atom
in the unwanted database should be entailed; inclusion means that no new atoms were
added; core-retainment means if an atom is deleted, then there must be some reason;
internal change means that every time an ontology is revised by any of its own elements
of database, then the result ontology should be same; pre-expansion means that if an
ontology is expanded by a database and then revised by it, the result should be the same
as revising the original ontology by the database.

We now prove that the revision operator given in the last section satisfy these pos-
tulates.

Theorem 1. Given a Datalog+/- ontology KB = (D, Σ), new observation database
instance A, unwanted database instance Ω, let KB∗A = (D′, Σ) be the revised ontology
defined as above, then the revision satisfies the postulates in Def. 4.

Proof. Inclusion, internal change, pre-expansion follows directly from the construc-
tion. To prove consistency, assume by contradiction that it is not. Then there is an ele-
ment of Ω that is entailed by KB♦A, as Datalog+/- is a fragments of first-order logic,
from compacity of first-order logic it follows that there is a Z ∈ D ∪ A, such that there
is an element of Ω that is entailed by (Z, Σ). We can then infer by monotonicity that
there is a Z′ ⊆ Z such that Z′ ∈ (D ∪ A) y Ω. Then we must have Z′ , ∅, and by
construction there must be ε ∈ σ((D ∪ A)) ∩ Z′, but if this is true then ε < (D ∪ A) and
ε ∈ Z′ ⊆ (D ∪ A), which is a contradiction. To prove core-retainment, we have that if
β ∈ D and β < D′, then there is β ∈ σ((D∪ A) y Ω), That is, there is a X ∈ (D∪ A) y Ω
such that β ∈ X. Considering D′′ = X/β, then D′′ ⊆ D ∪ A, (D′′ ∪ {β} , Σ) entail Ω, but
(D′′, Σ) does not entail Ω.

5 Algorithms

In the section, we first give an algorithm to compute all kernels when an atom is un-
wanted, and then give the algorithm of revision. We deal with linear ontology in this
section.

5.1 Computing kernels for an atom

Given a linear Datalog+/- ontology KB = (D, Σ), new observation database instance A,
unwanted atom ω, we give in this subsection a method to calculate all kernels (D∪A) y
ω.

We first give the method when unwanted atom λ is a node in Chase of (D ∪ A, Σ).
The idea is to travel chase graph bottom-up and then cut non-minimal ones from result

Belief Base Revision for Datalog+/- Ontologies 7

sets of atoms. Note that this idea is similar to the one used in Lukasiewicz etc [4], which
use a bottom-up travel of chase graph starting from the matching a body every rule of
ΣNC to compute the culprits of an inconsistent ontology.

We now give algorithm Justs(λ). Min(Justs(λ)) are exactly kernels (D ∪ A) y λ,
where Min is used in the usual sense of subset inclusion. Note that just below is not a
set of nodes, but a set of sets of nodes. Note also that step 2 can be done because we
can collect all information needed from Chase.

Algorithm 1 Justs(λ)
Require: a linear Datalog+/- ontology KB = (D, Σ), a new observation database instance A, and

a node λ in Chase of (D ∪ A, Σ).
Ensure: Justs(λ)
1: just = ∅

2: for all Φi ⊆ (nodes in Chase) such that there is rule r : Φ(X,Y) → ∃Z Ψ (X,Z) which is
applicable to Φi and produces λ do

3: just = just ∪ {Φi}

4: end for
5: for all Φi ∈ just do
6: for all Φ j

i ∈ Φi do
7: if Justs(Φ j

i) , ∅ then
8: just = Expand(just, Φ j

i)
9: end if

10: end for
11: end for
12: return just

13: Expand(just, a)
14: for all φ ∈ just do
15: if a ∈ φ then
16: just = just/φ
17: for all j a ∈ Justs(a) do
18: just = just ∪ {φ/a ∪ j a}
19: end for
20: end if
21: end for
22: return just

We now have the following theorem.

Theorem 2. Given a linear Datalog+/- ontology KB = (D, Σ), new observation database
instance A, Let λ be a node in chase graph of Datalog+/- ontology (D ∪ A, Σ), then
Min(Justs(λ))=(D∪A) y λ. The algorithm run in polynomial time in the data complex-
ity.

Proof. We first prove that (Min(Justs(λ)), Σ) entail λ, that is, for every model M of
(Min(Justs(λ)), Σ), there is a homomorphism µ such that µ(λ) ⊆ M.

8 Songxin Wang, Jeff Z. Pan, Yuting Zhao, Wei Li, Songqiao Han, and Dongmei Han

In fact, we will show that for all nodes that were produced in the bottom-up travel
process, it holds that the node is entailed by (Min(Justs(λ)), Σ), Then, as a result, the λ
is also entailed by (Min(Justs(λ)), Σ) automatically.

Suppose the derivation level of λ is N. We prove level by level from 1 to N. If the
node level is 1. let M be a model of (Min(Justs(λ)), Σ), then M ⊇ Min(Justs(λ)), but
from the definition of satisfaction of a rule, whenever there is a homomorphism that
map the body to the database, there is a extended homomorphism that map the head to
the database,so, this homomorphism map the node to M, the entailment holds.

Suppose for all node whose derivation level is n, it is right. That is, there is a a
homomorphism that map the node to M, now we consider the node whose derivation
level is n+1. Consider the rule that applicable and can get this node, since all parent
nodes of the node has a level smaller or equal to n, so there is a homomorphism that
map these nodes to M, as the rule itself is satisfied by M, we can then construct a new
homomorphism by extend the above homomorphism to map the node to M. So we have
(Min(Justs(λ)), Σ) entail the node.

We now show that there are no other subsets of D ∪ A that along with Σ entail
λ and is smaller than Min(Justs(λ)). Otherwise, suppose it is not, that is, there is a
subset of D ∪ A that is smaller than Min(Justs(λ)) and along with Σ entail λ. Then
we have a ChaseGraph that end with λ, however, according to the construction of the
Min(Justs(λ)), this set should be equal to some element of Min(Justs(λ)), this is a con-
traction.

We finally shows that computing Min(Justs(λ)) in the linear case can be done in
polynomial time in the data complexity. Note that the ChaseGraph is constant-depth
and polynomial-size for a linear ontology due to the result in [3]. Note also that Justs(λ)
is a recursive procedure, it will be called N × M times at most, where N is the depth of
the graph and M is the numbers of rules in the Σ, and that at each time the algorithm
is running, the time complexity exclusive the recursive procedure is polynomial, so the
algorithm Min(Justs(λ)) run in polynomial time.

We now give the algorithm Kernels(ω) to compute kernels for an atom ω. Note that
by match(ω,Chase) we mean the procedure of finding the same node as ω in Chase, if
it is successful, return this node, otherwise return ∅.

Algorithm 2 Kernels(ω)
Require: a linear Datalog+/- ontology KB = (D, Σ), a new observation A, and an atom ω

Ensure: Kernels(ω)
1: compute the Chase of KB = (D ∪ A, Σ)
2: L=match(ω,Chase)
3: if L=∅ then
4: return ∅
5: else
6: return Min(Justs(L))
7: end if

Belief Base Revision for Datalog+/- Ontologies 9

Theorem 3 (Correctness and Complexity of Kernels(ω)). Given a linear Datalog+/-
ontology KB = (D, Σ), new observation A, an unwanted atom ω, algorithm Kernels(ω)
compute (D ∪ A) y ω correctly in polynomial time in the data complexity.

Proof. If L=∅, then KB′ = (D ∪ A, Σ) do not entail the atom as ChaseGraph is sound
and complete with respect to query answering. If L, ∅ then the atom is entailed by KB′,
in this case, MinJust(L) are all minimal sets of atoms that belong to database D∪ A and
along Σ entail ω according to theorem 1. So Kernels(ω) compute (D∪A) y ω correctly
in both cases.

The complexity of the algorithm depends on the match procedure, as the ChaseGraph
is polynomial-size and constant-depth for a linear ontology, the travel of ChaseGraph
can be done in polynomial time, so the Kernels(ω) can be done in polynomial time.

5.2 Revision

We now give the algorithm to revise a linear Datalog+/- ontology named as RevisionKB.

Algorithm 3 RevisionKB
Require: a linear Datalog+/- ontology KB = (D, Σ), a new observation A, unwanted instance Ω
Ensure: Revised ontology KB ∗ A
1: for every atom ω, ω ∈ Ω do
2: compute Kernels(ω)
3: end for
4: get all combinations of Kernels(ω, every combination corresponds to a way of choosing each

element from Kernels(ω), where ω ∈ Ω.
5: (D ∪ A) y Ω=minimal subsets of all combinations
6: KB ∗ A=((D ∪ A)\σ((D ∪ A) y Ω), Σ)

Note that ((D∪ A), Σ) may be an inconsistent ontology, however, inconsistency can
be removed in the revised ontology by making ⊥ ⊆ Ω.

We now show that the algorithm can compute revision of ontology and give the
complexity.

Theorem 4 (Correctness and Complexity of RevisionKB). Given a linear Datalog+/-
ontology KB = (D, Σ), new observation database instance A, unwanted database in-
stance Ω, algorithm RevisionKB can compute revision correctly in polynomial time in
the data complexity.

Proof. Note that (D ∪ A) y Ω can be obtained by combining (D ∪ A) y ω for every
elements ω ∈ Ω and cut from it the non-minimal ones, the algorithm’s correctness then
follows directly from the definition of revision operator.

The complexity of the algorithm depends basically on the task of finding Kernels(ω),
as it run in polynomial time due to Theorem 3, so we have the conclusion.

10 Songxin Wang, Jeff Z. Pan, Yuting Zhao, Wei Li, Songqiao Han, and Dongmei Han

6 Related Works

There is strong relationship between Datalog+/- ontology and description logic as they
can be translated to each other in many cases. In the area of belief revision in descrip-
tion logic, Ribeiro et al. [11] bear much similarities to our work since they also used a
kernels-based semi-revision method, they give a belief revision method to a monotonic
logic, take description logic as a spacial case. However, there are difference between
their work and this paper. They deal with monotonic logic, but Datalog+/- has a differ-
ent syntax and semantic and cannot been cover by it. Furthermore, Ribeiro et al. [11]
compute kernels by invoke classical reasoning, but this paper give a direct method to
calculate kernels and prove that the complexity of computing revision is tractable.

In the area of Datalog+/-, Lukasiewicz et al. [4] give an inconsistency reasoning
method for Datalog+/- ontologies, theirs work is close related to ours work since they
use culprit to resolve the inconsistency of ontologies, and the culprit is equivalent with
the kernel of this paper in the case of atom unwanted is ⊥. However, there are some
difference. Although the area of belief change is closely related to the management of
inconsistent information, they are still quite different in both goals and constructions.
Inconsistency can be handled by using kernels and clusters in [4], ours work can also
deal with inconsistency, however revision operator given in ours work can do more
except this, for example, it can choose a set of atoms as unwanted information, not only
⊥, thus give more flexibility to resolve the inconsistency, and in this sense this work is
more general than theirs work. Note also that in [4] the properties of the reasoning result
are not clear even in the case of inconsistency handling because they did not study the
properties of the operation from the viewpoint of belief revision.

There are still some works that extend Datalog+/- with the capability of dealing
with uncertainty. In Lukasiewicz et al. [5], they developing a probabilistic extension of
Datalog+/-. This extension uses Markov logic networks as the underlying probabilistic
semantics and focus especially on scalable algorithms for answering threshold queries.
Riguzzi et al. [8] apply the distribution semantics for probabilistic ontologies (named
DISPONTE) to the Datalog+/- language. Lukasiewicz et al. [9] tackle the problem of
defining a well-founded semantics for Datalog rules with existentially quantified vari-
ables in their heads and negations in their bodies, thus provide a kind of nonmonotonic
reasoning capability to Datalog+/-. Our work also deal with the commonsense reason-
ing in the background of Datalog+/- language, however, we focus on the problem of
belief revision, instead of adding quantitative or qualitative uncertainties to ontologies.

7 Summary and Outlook

In this paper, we address the problem of belief revision for Datalog+/- ontologies. In our
approach, we introduce a kernel based belief revision operator, and study the properties
using extended postulates, we then provide algorithms to revise Datalog+/- ontologies,
and give the complexity results by showing that query answering for a revised linear
Datalog+/- ontology is tractable.

In the future, we plan to study how to implement belief revision when some heuristic
information, i.e., different trust [12] or reputation [2] levels of both database and rule
set due to the different source of information, can be added to Datalog+/- ontologies.

Belief Base Revision for Datalog+/- Ontologies 11

Acknowledgments. This work is partially supported by the National Natural Science
Foundation of China Grant No.61003022 and Grant No.41174007, as well as the FP7
K-Drive project (No. 286348) and the EPSRC WhatIf project (No. EP/J014354/1).

References

1. Giorgos Flouris, Zhisheng Huang, Jeff Z. Pan, Dimitris Plexousakis and Holger Wache. In-
consistencies, Negations and Changes in Ontologies. In Proc. of the 21st National Conference
on Artificial Intelligence (AAAI-06), 1295-1300. 2006.

2. Andrew Koster and Jeff Z. Pan. Ontology, Semantics and Reputation. In Agreement Technolo-
gies, ISBN 978-94-007-5582-6, Springer. 2013.

3. Thomas Lukasiewicz, Andrea Cali and Georg Gottlob, A General Datalog-Based Framework
for Tractable Query Answering over Ontologies. Journal of Web Semantics, 2012, Vol 14,
Pages 57-83

4. Thomas Lukasiewicz, Maria Vanina Martinez and Gerardo I. Simari, Inconsistency Handling
in Datalog+/- Ontologies, in the Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI) 2012. Pages 558-563.

5. Thomas Lukasiewicz, Maria Vanina Martinez and Gerardo I. Simari, Query Answering un-
der Probabilistic Uncertainty inDatalog+/- Ontologies, Annals of Mathematics and Artificial
Intelligence, 2013, Pages 195-197

6. Jeff Z. Pan, Edward Thomas, Yuan Ren and Stuart Taylor. Exploiting Tractable Fuzzy and
Crisp Reasoning in Ontology Applications. In IEEE Computational Intelligence Magazine,
7(2):45-53. 2012.

7. Guilin Qi, Peter Haase, Zhisheng Huang, Qiu Ji, Jeff Z. Pan, Johanna Vlker. A Kernel Revi-
sion Operator for Terminologies . In Proc. of the 7th International Semantic Web Conference
(ISWC2008). 2008.

8. Fabrizio Riguzzi, Elena Bellodi, and Evelina Lamma, Probabilistic Datalog+/- under the dis-
tribution semantics. In the Proceedings of the 25th International Workshop on Description
Logics (DL), Aachen, Germany, 2012, pages 519-529.

9. Thomas Lukasiewicz, Maria Vanina Martinez and Gerardo I. Simari, Well-Founded Seman-
tics for Extended Datalog and Ontological Reasoning. In the Proceedings of the 32nd ACM
Symposium on Principles of Database System. ACM Press. 2013

10. Sven Hansson, Semi-revision, Journal of Applied Non-Classical Logics, Vol 7, Issue 1-2,
1997.

11. Marcio M. Ribeiro and Renata Wassermann. Base Revision for Ontology Debugging. Journal
of Logic and Computation. Vol 19, Issue 5, 2009, pages 721-743.

12. Murat Sensoy, Achille Fokoue, Jeff Z. Pan, Timothy Norman, Yuqing Tang, Nir Oren and
Katia Sycara. Reasoning about Uncertain Information and Conflict Resolution through Trust
Revision. In Proc. of the 12th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS2013). 2013.

