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Abstract—The fading broadcast channel with confidential mes-
sages (BCC) is investigated, where a source node has common in-
formation for two receivers (receivers 1 and 2), and has confidential
information intended only for receiver 1. The confidential infor-
mation needs to be kept as secret as possible from receiver 2. The
broadcast channel from the source node to receivers 1 and 2 is cor-
rupted by multiplicative fading gain coefficients in addition to ad-
ditive Gaussian noise terms. The channel state information (CSI) is
assumed to be known at both the transmitter and the receivers. The
parallel BCC with independent subchannels is first studied, which
serves as an information-theoretic model for the fading BCC. The
secrecy capacity region of the parallel BCC is established, which
gives the secrecy capacity region of the parallel BCC with degraded
subchannels. The secrecy capacity region is then established for the
parallel Gaussian BCC, and the optimal source power allocations
that achieve the boundary of the secrecy capacity region are de-
rived. In particular, the secrecy capacity region is established for
the basic Gaussian BCC. The secrecy capacity results are then ap-
plied to study the fading BCC. The ergodic performance is first
studied. The ergodic secrecy capacity region and the optimal power
allocations that achieve the boundary of this region are derived.
The outage performance is then studied, where a long-term power
constraint is assumed. The power allocation is derived that min-
imizes the outage probability where either the target rate of the
common message or the target rate of the confidential message is
not achieved. The power allocation is also derived that minimizes
the outage probability where the target rate of the confidential mes-
sage is not achieved subject to the constraint that the target rate of
the common message must be achieved for all channel states.

Index Terms—Confidential message, ergodic capacity, fading
broadcast channel, Gaussian broadcast channel, outage prob-
ability, parallel broadcast channel, power allocation, secrecy
capacity.

I. INTRODUCTION

WIRELESS communication has an inherent broadcast na-
ture, for which security issues are captured by a basic

wiretap channel introduced by Wyner in [1]. In this model, a
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source node wishes to transmit confidential information to a des-
tination node and wishes to keep a wiretapper as ignorant of this
information as possible. The performance measure of interest
is the secrecy capacity, which is the largest communication rate
achievable from the source node to the destination node with the
wiretapper obtaining no information. The secrecy capacity was
given in [1] for the discrete memoryless wiretap channel and
in [2] for the Gaussian wiretap channel. Fading wiretap chan-
nels were studied recently in, e.g., [3]–[7], and multiple-antenna
wiretap channels were studied in, e.g., [8]–[11]. A more gen-
eral model of the wiretap channel was studied by Csiszár and
Körner in [12], where the source node also has a common mes-
sage for both receivers in addition to the confidential message
for only one receiver. This channel is regarded as the broadcast
channel with confidential messages (BCC). The capacity-equiv-
ocation region and the secrecy capacity region of the BCC were
characterized in [12]. The BCC was further studied recently in
[13]–[15], in which the source node transmits two confidential
messages to two receivers, respectively.

In this paper, we investigate the fading BCC, which is based
on the BCC studied in [12] with the channels from the source
node to receivers 1 and 2 corrupted by multiplicative fading gain
coefficients in addition to additive Gaussian noise terms. The
fading BCC model captures the basic time-varying property of
wireless channels, and hence understanding this channel plays
an important role in solving security issues in wireless appli-
cations. For the fading BCC, we assume that the fading gain
coefficients are stationary and ergodic over time. We further as-
sume that the channel state information (CSI) is known at both
the transmitter and the receivers. The CSI at the source node can
be realized by a reliable feedback from the two receivers, who
are legitimate members of the broadcast network and thus are
supposed to receive information from the source node. We note
that the cases in which the CSI is not known at the transmitter
were considered in [7].

The fading BCC we study in this paper relates to or gener-
alizes a few channels that have been previously studied in the
literature. Compared to the fading broadcast channel that was
studied in [16]–[20], the fading BCC requires an additional se-
crecy constraint that the confidential information for one re-
ceiver must be perfectly secret from the other receiver. Com-
pared to the fading wiretap channel studied in [5] (the confer-
ence version of this paper), [6] and [7] (the full CSI case), the
fading BCC we study in this paper assumes that the source node
has a common message for both receivers in addition to the con-
fidential message for receiver 1. Hence, the fading BCC includes
the fading wiretap channel as a special case. The fading BCC
also includes the parallel Gaussian wiretap channel studied in
[21] (the case in which wiretappers cooperate) as a special case
for the same reason as above and also because a power constraint
is assumed for each subchannel in [21].
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Before studying the fading BCC, we first study a more gen-
eral model of the parallel BCC with independent subchan-
nels, where the source node communicates with receivers 1 and
2 over parallel links. This model serves as a general infor-
mation-theoretic model that includes the fading BCC as a spe-
cial case. We establish the secrecy capacity region of the par-
allel BCC. In particular, we provide a converse proof to show
that having independent inputs for each subchannel is optimal
to achieve the secrecy capacity region. This fact does not follow
directly from the single-letter characterization of the secrecy ca-
pacity region of the BCC given in [12]. The secrecy capacity
region of the parallel BCC further gives the secrecy capacity re-
gion of the parallel BCC with degraded subchannels.

We further study the parallel Gaussian BCC, which is an ex-
ample parallel BCC with degraded subchannels. We show that
the secrecy capacity region of the parallel Gaussian BCC is a
union over the rate regions achieved by all source power al-
locations (among the parallel subchannels). Moreover, we de-
rive the optimal power allocations that achieve the boundary of
the secrecy capacity region and hence completely characterize
this region. The secrecy capacity region of the parallel Gaussian
BCC also establishes the secrecy capacity region for the basic
Gaussian BCC. This result complements the secrecy capacity
region of the discrete memoryless BCC given by Csiszár and
Körner in [12].

We then apply our results to investigate the fading BCC. We
first study the ergodic performance, where no delay constraints
on message transmission are assumed and the secrecy capacity
region is averaged over all channel states. Now the fading BCC
can be viewed as the parallel Gaussian BCC with each fading
state corresponding to one subchannel. Thus, the secrecy ca-
pacity region of the parallel Gaussian BCC applies to the fading
BCC. In particular, since the source node knows the CSI, it can
dynamically change its transmission power with the channel
state realization to achieve the best performance. We obtain the
optimal power allocations that achieve the boundary of the se-
crecy capacity region for the fading BCC.

We further study the outage performance of the fading BCC,
where messages must be transmitted over a certain time (one
block) to satisfy the delay constraint. We adopt the block-fading
model, where the fading coefficients remain constant over one
block and change to another realization in the next block. The
block length is assumed to be large enough to guarantee de-
coding in one block. We assume the power constraint at the
source node applies over a large number of blocks (i.e., it is a
long-term power constraint as in [22]). As in the analysis of the
ergodic performance, we assume that the CSI is known both at
the transmitter and at the receivers, and hence the source node
can allocate its transmission power to achieve the best outage
performance. We first obtain the power allocation that mini-
mizes the outage probability where either the target rate of the
common message or the target rate of the confidential message
is not achieved. We then obtain the power allocation that min-
imizes the outage probability where the target rate of the con-
fidential message is not achieved subject to the constraint that
the target rate of the common message must be achieved for all
channel states.

Fig. 1. The parallel BCC.

In this paper, we use to indicate a group of vari-
ables , and use to indicate a group
of vectors , where indicates the vector

. Throughout the paper, the logarithmic
function is to the base .

The paper is organized as follows. We first study the parallel
BCC with independent subchannels, and its special case of
the parallel BCC with degraded subchannels. We next study
the parallel Gaussian BCC. We then study the ergodic and
outage performances of the fading BCC and demonstrate our
results with numerical examples. We conclude the paper with
a few remarks.

We note that the wiretap channel has also been studied in
[23]–[35] and references therein. The topic of common ran-
domness and secret key capacity in communication systems has
been studied in [36]–[38]. Such communication system may be
viewed as a wiretap channel with side information (which might
be common randomness, i.e., a key at a certain rate). Other re-
lated work on this topic can be found in [39]–[47] and references
therein. We also remark that the secrecy rate/capacity has also
been studied for the multiple-access channel in, e.g., [48]–[51],
the relay channel in, e.g., [52]–[56], and the interference channel
in [13] and [57].

II. PARALLEL BCCS

A. Channel Model

We consider the parallel BCC with independent subchan-
nels (see Fig. 1), where there are one source node and two re-
ceivers. Each subchannel is assumed to be a general broadcast
channel from the source node to the two receivers. As in the
BCC, the source node wants to transmit common information to
both receivers and confidential information to receiver 1. More-
over, the source node wishes to keep the confidential informa-
tion as secret as possible from receiver 2.

More formally, the parallel BCC consists of finite input al-
phabets , and finite output alphabets and .
The transition probability distribution is given by

(1)

where , and for .
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If the parallel BCC has only one subchannel, i.e., ,
this channel becomes the BCC studied in [12]. Moreover, each
subchannel is assumed to be a general broadcast channel as in
[12] and is not necessarily degraded as assumed in [1].

A code consists of the following elements.
• Two message sets: and

with the messages and uniformly
distributed over the sets and , respectively;

• One (stochastic) encoder at the source node that maps each
message pair to a codeword ;

• Two decoders: one at receiver 1 that maps a received se-
quence to a message pair ;
the other at receiver 2 that maps a received sequence

to a message .
The secrecy level of the confidential message achieved

at receiver 2 is measured by the equivocation rate defined as
follows:

(2)

The higher the equivocation rate, the less information that re-
ceiver 2 obtains about the confidential message .

The average error probability is

or (3)

A rate-equivocation triple is achievable if there
exists a sequence of codes with the average
error probability as goes to infinity and with the
equivocation rate satisfying

(4)

In this paper, we focus on the case in which perfect secrecy is
achieved, i.e., receiver 2 does not obtain any information about
the message . This happens if . In this case, we
define the secrecy capacity region in the following.

Definition 1: The secrecy capacity region is defined to be
the set that includes all such that
is achievable, i.e.,

is achievable (5)

We note that the definition of secrecy capacity region was
given in [1] and [12] as the performance measure in the case
of perfect secrecy. In this paper, we study this classical notion
in the context of fading broadcast channels.

We also note that the notion of secrecy studied in this paper
is the same as that in cryptography. However, in this paper, we
focus on secrecy achieved by exploiting the underlying phys-
ical channel, which is different from cryptographic methods
based on shared keys. Coding schemes for accomplishing se-
crecy by physical layer approaches (which involve stochastic
encoding) can be found in [1] and [12]. Here, we apply the in-
formation-theoretic approaches to study wireless fading broad-
cast channels.

B. Secrecy Capacity Region of Parallel BCCs

For the parallel BCC, we obtain the following secrecy ca-
pacity region.

Theorem 1: The secrecy capacity region of the parallel BCC
is given by

(6)

where can be chosen as a deterministic function of for
.

Proof: See Appendix I.

If the source node transmits only confidential information to
receiver 1, i.e., , the parallel BCC becomes the parallel
wiretap channel. The secrecy capacity of this channel is given
in the following corollary.

Corollary 1: The secrecy capacity of the parallel wiretap
channel is

(7)

where is the secrecy capacity of subchannel and is given by

(8)

The maximum in the preceding equation is over the distributions
, which satisfies the Markov chain condi-

tion .
Proof: Corollary 1 follows from Theorem 1 by setting

and noticing that is
maximized by a constant .

Remark 1: Theorem 1 implies an important property that
having independent inputs for each subchannel is optimal. This
fact does not follow directly from the single-letter result on the
secrecy capacity of the BCC given in [12], although the parallel
BCC can be viewed as a special case of the BCC. Hence, a con-
verse proof is needed, which is provided in Appendix I.

We note that the secrecy capacity region of subchannel
is given in [12, Corollary 1], i.e.,

(9)

We now define the sum of the secrecy capacity regions of the
subchannels to be

with for
(10)
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Fig. 2. A parallel BCC example.

Remark 2: The secrecy capacity region in Theorem 1
may be larger than the sum of the secrecy capacity
regions of the subchannels. Hence, the secrecy capacity region
of the parallel BCC is achieved by coding over all parallel
subchannels.

This observation was also made in [58] for the broadcast
channel with common messages. This fact follows because the
common rate has the following property

(11)

This can also be seen from the following simple example. For
simplicity, we consider the case in which the source node has
only the common message for both receivers. We further assume

, and each subchannel is a deterministic broadcast channel
for (see Fig. 2). For subchannel 1, the link capacities
to receivers 1 and 2 are and , respectively.
For subchannel 2, the link capacities to receivers 1 and 2 are

and , respectively. The capacity of this parallel
channel is given by

(12)

However, the sum of the capacities of the two subchannels is

(13)

which is clearly smaller than the capacity given in (12).
Similarly to Theorem 14.6.1 in [59], we obtain the following

lemma for the BCC studied in [12], which also applies to the
parallel BCC we study in this paper.

Lemma 1: The secrecy capacity region of the BCC studied
in [12] depends only on the marginal transition probability
distributions of the channel from the source node to
receiver 1 and of the channel from the source node
to receiver 2.

Proof: The proof follows from the reasoning in [59,
p. 454, Problem 10] and the fact that the equivocation rate

depends only on the marginal distribution of
.

One application of Lemma 1 is to obtain the following gen-
eralization of the result in [2] for the Gaussian wiretap channel,
which is a special case of the BCC.

Corollary 2: The secrecy capacity of the Gaussian wiretap
channel given in [2, Theorem 1] holds for the case, where the
noise variables at the destination node and the wiretapper have
a general correlation structure.

Lemma 1 will be useful in establishing the secrecy capacity
region of the parallel Gaussian BCC in Section III.

C. Parallel BCCs With Degraded Subchannels

We consider the parallel BCC with degraded subchannels (see
Fig. 3), where each subchannel is either degraded such that the
output at receiver 2 is a degraded version of the output at receiver
1, or degraded such that the output at receiver 1 is a degraded
version of the output at receiver 2. Note that although each sub-
channel is degraded, the entire channel may not be degraded be-
cause the subchannels may not be degraded in the same fashion.

We define to be the index set that includes all indices of
subchannels, where the output at receiver 2 is a degraded version
of the output at receiver 1, i.e.,

for (14)

Hence, the Markov chain condition is satisfied
for . We define to be the complement of the set ,
and includes all indices of subchannels, where the output at
receiver 1 is a degraded version of the output at receiver 2, i.e.,

for (15)

Hence, the Markov chain condition is satisfied
for . The channel transition probability distribution is
given by

(16)

For the parallel BCC with degraded subchannels, we apply
Theorem 1 and obtain the following secrecy capacity region.
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Fig. 3. The parallel BCC with degraded subchannels.

Corollary 3: The secrecy capacity region of the parallel BCC
with degraded subchannels is

(17)

Remark 3: It can be seen that the common message is
sent over all subchannels, and the confidential message for
receiver 1 is sent only over the subchannels for which the output
at receiver 2 is a degraded version of the output at receiver 1, i.e.,

. Furthermore, over these subchannels, the messages
and are sent by using the superposition encoding scheme.

Proof: The achievability follows from Theorem 1 by set-
ting for and setting for .

To show the converse, we first note that for

and (18)

which follow from the Markov condition .
We apply the bounds in (18) to the bound on given in (6) and
obtain the bound on given in (17).

For , we also obtain

(19)

where the last equality follows because
due to the degradedness condition (15).

For , we obtain the following bound:

(20)

where follows because and
due to the Markov chain condition

, and follows because
due to the degradedness condition (14).

By applying the bounds (19) and (20) to the bound on
given in (17), we obtain the bound on given in (6). This
concludes the proof of the converse.

III. PARALLEL GAUSSIAN BCCS

In this section, we study the parallel Gaussian BCCs, where
the channel outputs at receivers 1 and 2 are corrupted by additive
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Gaussian noise terms. The channel input–output relationship is
given by

for

(21)

where is the time index. For , the noise pro-
cesses and are independent and identically dis-
tributed (i.i.d.) with the components being zero-mean Gaussian
random variables with variances and , respectively. We as-
sume for and for . The channel
input sequence is subject to the average power constraints

, i.e.,

(22)

We now apply Lemma 1 to obtain the secrecy capacity region
of the parallel Gaussian BCC. It can be seen from (21) that the
subchannels of the parallel Gaussian BCC are not physically
degraded. We consider the following subchannels:

for

for

(23)

where and are i.i.d. random processes with com-
ponents being zero-mean Gaussian random variables with vari-
ances (for ) and (for ), respec-
tively. Moreover, is independent of and is
independent of . It can be seen that the channel defined in
(23) has physically degraded subchannels. This channel has the
same marginal distributions and as the parallel
Gaussian BCC defined in (21). Hence, by Lemma 1, the two
channels have the same secrecy capacity region.

For the channel defined in (23), we can apply Corollary 3 to
obtain the secrecy capacity region. In particular, the degraded-
ness of the subchannels allows the use of the entropy power
inequality in the proof of the converse. The secrecy capacity
region obtained for this channel also applies to the parallel
Gaussian BCC defined in (21), and is presented in the following
theorem.

Theorem 2: The secrecy capacity region of the parallel
Gaussian BCC is

(24)

where is the power allocation vector, which consists of
for and for as components, and the

set includes all power allocation vectors that satisfy the
power constraint (22), i.e.,

(25)

Proof: See Appendix II.

Note that indicates the power allocation among all subchan-
nels. For , since the source node transmits both common
and confidential messages, and indicate the powers al-
located to transmit the common and confidential messages, re-
spectively. For , the source transmits only the common
message, and indicates the power allocated to transmit the
common message.

If , the parallel Gaussian BCC becomes the Gaussian
BCC. The following secrecy capacity region of the Gaussian
BCC follows directly from Theorem 2.

Corollary 4: The secrecy capacity region of the Gaussian
BCC is

(26)

where if and if .

To characterize the secrecy capacity region of the parallel
Gaussian BCC given in (24), we need to characterize every
boundary point and the corresponding power allocation vector
that achieves this boundary point. It is clear that the secrecy ca-
pacity region given in (24) is convex due to the converse proof in
Appendix II. Hence, the boundary of the secrecy capacity region
can be characterized as follows. For every point on the
boundary, there exist and such that is
the solution to the following optimization problem:

(27)

Therefore, the power allocation that achieves the boundary
point is the solution to the following optimization
problem:

(28)

where and indicate the bounds on and in
(24). We further define and to be the two terms
over which the minimization in is taken, i.e.,

. The optimization (28) serves as a com-
plete characterization of the boundary of the secrecy capacity
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region of the parallel Gaussian BCC. The solution to (28) pro-
vides the power allocations that achieve the boundary of the se-
crecy capacity region. Our goal now is to solve the optimization
problem (28).

The optimization problem (28) is a max-min optimization,
and can be solved by the approach used in [60]. The main idea
is contained in Proposition 1 in [60], which is stated in the fol-
lowing lemma.

Lemma 2: The optimal that solves (28) falls into one of
the following three cases:

Case 1: maximizes

and

Case 2: maximizes

and

Case 3: maximizes

where is such that

and (29)

By applying Lemma 2, we obtain the optimal power alloca-
tion that solves (28).

Theorem 3: The optimal power allocation vector that
solves (28) and hence achieves the boundary of the secrecy
capacity region of the parallel Gaussian BCC has one of the
following three forms.

Case 1: if the following satisfies
.

For , if , then

Alternatively, if then

and

For

(30)

where is chosen to satisfy the power constraint

(31)

Case 2: if the following satisfies
.

For if then

and

Alternatively, if then

and

For

(32)

where is chosen to satisfy the power constraint defined in (31).
Case 3: if there exists such that the

following satisfies .

For if then

and

Alternatively, if then

and

For

(33)

where is chosen to satisfy the power constraint defined in (31).
Proof: See Appendix III.

Based on Theorem 3, we provide the following algorithm to
find the optimal .
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Fig. 4. The fading BCC.

Algorithm to find that solves (28)

Step 1. Find given in (30).
If , then and
finish.
Otherwise, go to Step 2.

Step 2. Find given in (32).
If , then and
finish.
Otherwise, go to Step 3.

Step 3. For a given , find given in (33).
Search over to find that satisfies

Then and finish.

IV. FADING BCCS: ERGODIC SECRECY CAPACITY REGION

In this section, we study the fading BCC (see Fig. 4), where
the channels from the source node to receivers 1 and 2 are cor-
rupted by multiplicative fading gain processes in addition to ad-
ditive white Gaussian processes. The channel input–output re-
lationship is given by

and (34)

where is the time index, is the channel input at the time in-
stant , and and are channel outputs at the time instant

at receivers 1 and 2, respectively. The channel gain coeffi-
cients and are proper complex random variables. We
define , and assume is a stationary and er-
godic vector random process. The noise processes and

are zero-mean i.i.d. proper complex Gaussian with
and having variances and , respectively. The input se-
quence is subject to the average power constraint , i.e.,

.
We assume that the CSI (i.e., the realization of ) is known at

both the transmitter and the receivers instantaneously. The CSI
at the source node can be realized by a reliable feedback from
the two receivers, who are legitimate participants in the network
and are thus supposed to receive information from the source
node. Depending on the CSI, the source node can dynamically
change its transmission power to achieve better performance. In
this section, we assume that there are no delay constraints on the
transmitted messages, and the performance criterion we study,
i.e., the secrecy capacity region, is averaged over all channel
states and is referred to as the ergodic secrecy capacity region.

It can be seen that for a given fading state, i.e., a realization
of , the fading BCC is a Gaussian BCC. Hence, the fading
BCC can be viewed as a parallel Gaussian BCC with each fading
state corresponding to one subchannel. Thus, the following se-
crecy capacity region of the fading BCC follows from Theorem
2. In the following, for each channel state , we use
and to denote the source powers allocated to transmit
the common and confidential messages, respectively. We define

. We further define the following set
that includes all power allocations that satisfy the power con-
straint:

(35)

Note that for .

Corollary 5: The secrecy capacity region of the fading BCC
is

(36)

where

where the random vector has the same distribu-
tion as the marginal distribution of the process at one time
instant.

Remark 4: The secrecy capacity region given in Corollary 5
is established for fading processes where only ergodic and
stationary conditions are assumed. The fading process can
be correlated across time, and is not necessarily Gaussian.

Remark 5: The secrecy capacity region given in Corollary 5
also applies to the case in which the two component processes

and are correlated. However, the secrecy capacity
region does depend on the correlation between the two pro-
cesses. In fact, the average in (36) needs to be taken over
the joint distributions of and to derive the correct se-
crecy capacity region.

This fact can be seen from the following example. We assume
that only the confidential message is transmitted, i.e., .
We also assume that both and take the values and

with equal probabilities of . We first consider case 1 in
which . From (36) it is clear that , i.e., no
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secrecy capacity is possible, because the channels to the two
receivers are the same for all channel realizations. However, for
case 2 in which , from (36) the secrecy capacity
equals , where the power is allocated only to the
channel states where and . From this example,
one can see that the correlation between and affects the
secrecy capacity region, although the marginal distributions of

and are the same for the two cases. We further note that
this fact is consistent with Lemma 1 because and are
now considered as channel parameters (with each realization
corresponding to one subchannel) due to CSI availability at the
transmitter. The channel statistics come only from the additive
Gaussian noise terms for each subchannel with one realization
of and .

Remark 6: The secrecy capacity region in Corollary 5 is es-
tablished for the case with general correlation between the noise
variables and .

From the bound on in (36), it can be seen that as long
as is not a zero probability event, positive secrecy rate can
be achieved. Since fading introduces more randomness to the
channel, it is more likely that the channel from the source node
to receiver 1 is better than the channel from the source node to
receiver 2 for some channel states, and hence positive secrecy
capacity can be achieved by exploiting these channel states.

Since the source node is assumed to know the CSI, it can allo-
cate its power according to the instantaneous channel realization
to achieve the best performance, i.e., the boundary of the secrecy
capacity region. The optimal power allocation that achieves the
boundary of the secrecy capacity region for the fading BCC can
be derived from Theorem 3 and is given in the following.

Corollary 6: The optimal power allocation that
achieves the boundary of the secrecy capacity region of the
fading BCC falls into one of the following three cases.

Case 1: if the following satisfies

For if then we have the first set
of equations at the bottom of the page. Alternatively, if

then

and

For

(37)

where the parameter is chosen to satisfy the following power
constraint:

(38)

Case 2: if the following satisfies
.

For if then we get the second
set of equations at the bottom of the page. Alternatively, if

then

and

For

(39)

where is chosen to satisfy the power constraint defined in (38).
Case 3: if there exists such that

the following satisfies .
For if

then we get the first set of equations at the bottom of the fol-
lowing page. Alternatively, if

and

and
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then we get the second set of equations at the bottom of the page.
For we get (40) at the bottom of the page, where is
chosen to satisfy the power constraint defined in (38).

If the source node does not have common messages for both
receivers, and only has confidential messages for receiver 1,
the fading BCC becomes the fading wiretap channel. For this
channel, the secrecy capacity is readily obtained from Corol-
laries 5 and 6.

Corollary 7: The secrecy capacity of the fading wiretap
channel is

(41)

The optimal power allocation that achieves the secrecy
capacity in (41) is given by the last expression at the bottom
of the page, where is chosen to satisfy the power constraint

.

V. FADING BCCS: OUTAGE PERFORMANCE

In Section IV, we considered the ergodic secrecy capacity
region for the fading BCC. In this case, messages can be coded

over long block lengths and hence over all channel realizations.
This applies to wireless systems in which transmission delay
can be tolerated. In this section, we consider wireless systems
in which there is a stringent delay constraint, and messages must
be transmitted within a certain time.

We adopt the channel model described in (34). However, we
now make the block fading assumption, in which the fading
coefficients and remain constant over one block and
change to another realization in the next block in an ergodic and
stationary manner. Moreover, we assume that the block length
is large enough such that coding over one block can achieve
small probability of error. We assume that the delay constraint
is within the block length. Coding over multiple blocks and,
hence, over multiple channel state realizations is not allowed.
We also assume that both the transmitter and the receivers know
the channel state information.

We use to indicate a target rate pair, i.e., the
common and confidential messages need to be transmitted to
the two receivers at the rates and , respectively, in each
block (each fading state realization). If the target rate pair is
not achieved for one block, an outage is claimed. We define the
outage probability to be

(43)

and

and

(40)

if

if

otherwise

(42)
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where is the secrecy capacity region for the channel
with fading state realization , and indicates the transmis-
sion power used by the source node for this fading state. The
source node is able to adapt its transmission power to the in-
stantaneous channel state realization, i.e., is a function of

, because CSI is assumed to be known at the transmitter. We
assume that the power constraint applies over a large number of
blocks and hence over all fading state realizations (i.e., it is a
long-term power constraint as in [22]); that is, we assume

(44)

We define the set .
It is clear from (43) that the outage probability depends on the

power allocation function . Our goal is to study the power
allocation that minimizes the outage probability, i.e.,

(45)

To understand this problem, we note that for each channel
state, the source node knows how much power it needs to use
to support the target rate pair. If the power needed is too large,
the source node may decide not to transmit and claim outage
in order to save power for other channel states that need lower
power to support the target rate pair. Hence, the source node first
allocates power to those channel states that need lower power to
support the target rate, and then to those channel states that need
higher power to support the target rate until all power is utilized.
This suggests that the power allocation is a threshold decision.

To formally solve the optimization problem (45), we apply
the approach in [22], where the minimum outage probability
of the fading channel without a secrecy constraint was studied.
This approach was also applied in [19] to study the minimum
outage probability of the fading broadcast channel without a se-
crecy constraint. In the following, we describe the power allo-
cation that minimizes the outage probability of the fading BCC,
i.e., the solution to (45).

For a given block with the fading state realization
, the channel we consider is a Gaussian BCC. From

Corollary 4, the secrecy capacity region is given as follows.
If then

Alternatively, if then

(46)

We now use (46) to compute the minimum power that is
needed to achieve the target rate pair . It is clear from

(46) that, only when can we possibly achieve a positive
. The minimum power needed to achieve is

if

otherwise.
(47)

The minimum power to support is then given by

if

otherwise.

(48)

Hence, the minimum power needed to support is

if

otherwise.
(49)

For , we define

(50)

where is given in (49).
The average powers that are needed to support the rate pair

for the channel states in and are

and

(51)

For the given power constraint , define

and

(52)

We then obtain the following optimal power allocation .

Proposition 1: The power allocation that solves (45),
and hence minimizes the outage probability for a given target
rate pair , is given by

if
with prob. if
if

(53)
where is given in (49).

Proof: Proposition 1 follows by using (49) and applying
Lemma 3 and Proposition 4 in [22].

It can be seen that the optimal power allocation is a
threshold solution. The power is first allocated to the fading
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states that need smaller amounts of power to achieve the target
rate pair, and is then allocated to the fading states that need larger
amounts of power to achieve the target rate pair. When the total
power is used up by these fading states, no further power is
allocated to other states.

In the above problem setting, an outage is claimed if either
or is not achieved. This results in an optimal solution

that allocates power only to those states for which both
and can be achieved by relatively small power consumption.
However, some channel states may support one target rate with
small power consumption, but need a large amount of power
to support both rates. These states are unlikely to be allocated
power. For example, even if the channels from the source node
to both receivers are good to transmit common messages, it
may happen that no power is allocated to this fading state if the
channel from the source node to receiver 1 is worse than the
channel from the source node to receiver 2 so that cannot
be achieved. Sometimes this is not reasonable, because the two
messages are independent, and one message should be trans-
mitted whenever the channel is good to transmit it. It should not
depend on whether the other message is transmitted or not. Nev-
ertheless, the solution to the problem (45) we have considered is
useful if we consider the following two more reasonable prob-
lems.

It is clear that the solution to the problem (45) immediately
implies the optimal power allocation for the case where only the
confidential message is transmitted and only the target rate
is assumed. Now the minimum power to achieve is given by

if

otherwise.
(54)

The power allocation that minimizes the outage probability
follows from Proposition 1 by using (54) to replace (49) in
(50)–(53).

We next consider a scenario in which the source node has both
common and confidential messages to transmit. We assume that
the common message is required to be transmitted at a constant
rate for all channel states, i.e., no outage is allowed for the
common rate. This scenario applies to wireless systems in which
a constant common rate must be satisfied. Since must be
achieved for all channel states, the total power must be large
enough to support this rate, i.e.,

(55)

where is the power that is needed to support the rate
for the channel state and is given by

(56)

In addition to the common message, the source node wishes to
transmit confidential information to receiver 1 at a target rate
and with as small an outage probability as possible. We note that
a similar problem was studied in [19] for the broadcast channel
with separate messages for two receivers and the rate to one
receiver must be constant for all channel states.

We need to find the power allocation that minimizes the
outage probability that the target rate is not achieved. The
optimization problem is summarized as follows:

Minimize

Subject to

is achieved for all i.e., (57)

We can change the problem (57) to the following equivalent
problem:

Minimize

Subject to (58)

where is the difference between the
power needed to support and the power needed to sup-
port only.

It can be seen that the problem (58) is the same as the problem
(45) with in (45) being replaced by . Thus, the op-
timal can be derived from Proposition 1 with in
(50)–(53) being replaced by , which is the minimum
difference between the power needed to support and
the power needed to support and is given by

if

otherwise.
(59)

VI. NUMERICAL RESULTS

In this section, we provide numerical results to demonstrate
the ergodic and outage performance for the fading BCC.

We first consider the Rayleigh-fading BCC, where and
are zero-mean proper complex Gaussian random variables.

Hence and are exponentially distributed with param-
eters and . We assume the source power 5 dB, and fix

. In Fig. 5, we plot the boundaries of the secrecy capacity
regions corresponding to and , respectively. It
can be seen that as decreases, the secrecy rate of the con-
fidential message improves, but the rate of the common mes-
sage decreases. This fact follows because smaller implies a
worse channel from the source node to receiver 2. Thus, confi-
dential information can be forwarded to receiver 1 at a higher
rate. However, the rate of the common information is limited by
the worse channel from the source node to receiver 2.

For the Rayleigh-fading BCC with and , we
plot the boundary of the secrecy capacity region in Fig. 6. The
three cases (see Corollary 6) to derive the boundary achieving
power allocations are also indicated with the corresponding
boundary points. It can be seen that the boundary points with
large are achieved by the power allocations derived from
Case 1, and are indicated by the line with circles on the graph.
The boundary points with large are achieved by the optimal
power allocations derived from Case 2, and are indicated by
the line with squares. Between the boundary points achieved
by Case 1 and Case 2, the boundary points are achieved by the
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Fig. 5. Secrecy capacity regions for a Rayleigh-fading BCC.

Fig. 6. Three cases for power allocation optimization to achieve the boundary of the secrecy capacity region for a Rayleigh-fading BCC.

power allocations derived from Case 3, and are indicated by the
plain solid line.

The intuition as to how the three cases associate with the
boundary points is given as follows. To achieve large secrecy
rate , most channel states in the set where receiver 1 has
a stronger channel than receiver 2 are used to transmit the con-
fidential message. The common message is hence transmitted
mostly over the channel states in the set , over which the
common rate is limited by the channel from the source node
to receiver 1. Thus, power allocation needs to optimize the rate
of this channel, and hence the optimal power allocation follows
from Case 1. To achieve large , the common message is for-
warded over the channel states both in and . It can be seen
that on average the source node has a much worse channel to

receiver 2 than to receiver 1, and hence, the channel from the
source node to receiver 2 limits the common rate. Power alloca-
tion now needs to optimize the rate to receiver 2, and the optimal
power allocation follows from Case 2. Between these two cases,
power allocation needs to balance the rates to receivers 1 and 2
and hence follows from Case 3.

We next consider the case in which , i.e., only the
confidential message is transmitted from the source node to re-
ceiver 1. We assume . In Fig. 7(a), we plot the op-
timal power allocation as a function of . It can be seen
from the graph that most of the source power is allocated to the
channel states with small . This behavior is shown more
clearly in Fig. 7(b), which plots as a function of for
different values of , and in Fig. 7(c), which plots as a
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Fig. 7. Optimal power allocation p (h) for a Rayleigh-fading BCC withR =
0. (a) p (h) as a function of (h ; h ). (b) p (h) as a function of jh j . (c) p (h)
as a function of jh j .

function of for different values of . The source node
allocates more power to the channel states with larger to
forward more confidential information to the destination node,
and allocates less power for the channel states with larger
to prevent receiver 2 for obtaining the confidential information.

It can also be seen from Fig. 7(b) and Fig. 7(c) that the source
node transmits only when the channel from the source node to
receiver 1 is better than the channel from the source node to re-
ceiver 2.

For the case in which , Fig. 8 plots the secrecy ca-
pacity achieved by the optimal power allocation, and compares
it with the secrecy rate achieved by a uniform power allocation,
i.e., allocating the same power for all channel states .
It can be seen that the uniform power allocation does not pro-
vide performance close to the secrecy capacity for the signal-to-
noise ratio (SNR) values of interest. This is in contrast to the
Rayleigh-fading channel without the secrecy constraint, where
the uniform power allocation can be close to optimal even for
moderate SNRs. This also demonstrates that the exact channel
state information is important to achieve higher secrecy rate.

We now consider the outage performance of the Rayleigh-
fading BCC. We assume and . We first as-
sume the target rate , i.e., only the confidential mes-
sage is transmitted. In Fig. 9, we plot the outage probabili-
ties corresponding to different values of the target rate . The
outage probability decreases as the target rate decreases. For
a fixed , the outage probability is bounded below by a cer-
tain threshold. This fact follows because the outage probability
cannot be prevented for those channel states where the channel
from the source node to receiver 1 is worse than the channel
from the source node to receiver 2. In Fig. 10, we compare the
outage probability when with the outage probability
when 0.2 b/s/Hz. It can be seen that even a small positive
common rate can cause a large increase in outage proba-
bility. In Fig. 11, we compare the outage probability minimized
by the power allocation and that achieved by the equal power al-
location for all channel states. It can be seen that optimizing the
power allocation significantly reduces the outage probability.

VII. CONCLUSION

We have established the secrecy capacity region of the par-
allel BCC, where a converse proof has shown that having in-
dependent inputs to each subchannel is optimal. We have also
established the secrecy capacity region for the parallel Gaussian
BCC, and have characterized the optimal power allocations that
achieve the boundary of this region. One fundamental result we
have established is the secrecy capacity region of the Gaussian
BCC, which complements the secrecy capacity region of the dis-
crete memoryless BCC given by Csiszár and Körner in [12].

We have further applied our results to obtain the ergodic
secrecy capacity region for the fading BCC and the optimal
power allocations that achieve the boundary of the secrecy
capacity region. Our results generalize the secrecy capacity
results that have been recently obtained in [5], [6], and [7] (full
CSI case). We have also studied the outage performance of
the fading BCC, and have obtained the power allocation that
minimizes the outage probability that certain target rates are
not achieved.

APPENDIX I
PROOF OF THEOREM 1

The achievability follows from [12, Corollary 1] by
setting ( is indicated by in
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Fig. 8. Comparison of the secrecy capacity achieved by optimal power allocation with the secrecy rate achieved by uniform power allocation for a Rayleigh-fading
BCC with R = 0.

[12]), ( is indicated by in [12]),
, and

with , and having independent components. Further-
more, we choose the components of these random vectors to sat-
isfy the Markov chain conditions:
for .

To show the converse, we consider a code
with average error probability . The probability distribution
on is given by

(60)

By Fano’s inequality [59, Sec. 2.11], we have

(61)

where if .
For , we define the following auxiliary random

variables:

(62)

We note that satisfies the following
Markov chain condition:

(63)

We first bound the common rate as follows:

(64)

where follows from the chain rule and Fano’s inequality,
follows from the chain rule, follows because

, and follows from the definition (62).
We can also bound the common rate as follows:

(65)
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Fig. 9. Outage probabilities for a Rayleigh-fading BCC with �R = 0.

Fig. 10. Comparison of outage probabilities when R = 0 with those when R = 0.2 b/s/Hz for a Rayleigh-fading BCC.

We now bound the rate and obtain
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Fig. 11. Comparison of outage probabilities achieved by optimal power allocation with those achieved by equal power allocation for a Rayleigh-fading BCC with
R = 0.

(66)

where follows from the perfect secrecy condition, fol-
lows because follows
from Fano’s inequality, follows from the chain rule, and

follow from Lemma 7 in [12], and follows from the def-
inition (62).

We introduce a random variable that is independent of
all other random variables, and is uniformly distributed over

. Define
, and for . Note that

satisfies the following Markov chain condi-
tion:

for (67)

Using the above definitions, (64), (65), and (66) become

(68)

Therefore, an outer bound on the secrecy capacity region
is given by the following set:

that satisfy (68) (69)

where the union is over all probability distributions
. Finally, we note that each

term in (68) depends only on the distribution .
Hence, there is no loss of optimality to consider only those
distributions that have the form .
This concludes the converse proof.

APPENDIX II
PROOF OF THEOREM 2

By Lemma 1, we need to prove Theorem 2 only for the
channel defined by (23).

The achievability follows by applying Corollary 3 and
choosing the following input distribution:

for

with independent of

(70)

for
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To show the converse, we first apply (64) and obtain

(71)

where we define .
It is easy to see that for

(72)

and

(73)

Hence, there exists such that

(74)

Applying (74) to (71), we obtain

(75)

We apply (65), follow the steps that are similar to those in (71),
and obtain the following bound:

(76)

For the second term in the preceding equation, we apply the
entropy power inequality and obtain

(77)

Hence

(78)

where and follow from Jensen’s inequality and the fact
that is a convex function of , and follows
from (74).

By applying (78) to (76), we obtain

(79)

We apply (66), follow steps similar to those in (20), and obtain
the following bound:

(80)

where the last equality follows from (74) and (78).
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For , we define and . For
, we define . It is clear from (22) that

(81)

This concludes the proof of the converse.

APPENDIX III
PROOF OF THEOREM 3

We apply Lemma 2 and consider the following three cases.
For each case, we apply the technique in [17] to solve the opti-
mization problem.

Case 1: We need to find that maximizes

If satisfies , then the optimal
.

The Lagrangian is given by

(82)

where is a Lagrange multiplier.
For needs to maximize the following :

(83)

It is clear that that optimizes is either the root of the
following equation:

(84)

if the root is positive or zero, i.e.,

(85)

For and need to maximize the following :

(86)

where

(87)

We next derive and that achieve the upper bound on
in (86) and hence maximize .

We define to be the root of and to be
the largest root of , i.e.,

(88)

It can be seen that and intersect only once at

(89)

In the following, we consider two cases.

1) , i.e., is positive.

It is easy to see that . The optimal and
depend on the value of and fall into the following three

possibilities.
(a) If (see Fig. 12(1)-(a)), i.e.,

then both and are negative for . The upper
bound on in (86) is achieved by and .

(b) If and (see Fig. 12(1)-(b)), i.e.,

then the upper bound on in (86) is achieved by and
.

(c) If (see Fig. 12(1)-(c)), i.e.,

then the upper bound on in (86) is achieved by
and .

In summary, we obtain

and
(90)

2) , i.e., is zero or negative.

It is easy to see that .

(a) If (see Fig. 13(2)-(a)), i.e.,

then the upper bound on in (86) is achieved by and
.
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Fig. 12. Illustration of u (x) and u (x) for Case 1 with > .

Fig. 13. Illustration of u (x) and u (x) for Case 1 with � .

(b) If (see Fig. 13(b)), i.e.,

then the upper bound on in (86) is achieved by
and .

In summary, we obtain

(91)

The Lagrange parameter needs to be chosen to satisfy the
power constraint

(92)

According to Lemma 2, if the condition
is satisfied, then the optimal .

Case 2: We need to find that maximizes

If satisfies , then the optimal
.

The Lagrangian is given by

(93)

where is a Lagrange multiplier.
For , it is easy to see that

(94)

For , , and need to maximize the following :

(95)

where

(96)

We define to be the root of and to be
the root of , i.e.,

(97)
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It is clear that and intersect only once at

(98)

Following steps similar to those in Case 1, we obtain the fol-
lowing and that achieve the upper bound on in (95)
and hence maximize .

1) If , i.e., is positive, then

and
(99)

2) If , i.e., is zero or negative, then

and (100)

The Lagrange multiplier needs to be chosen to satisfy
the power constraint. According to Lemma 2, if the condition

is satisfied, then the optimal .
Case 3: We need to find that maximizes

for a given . We then choose to satisfy
. According to Lemma 2, if we have not found the

optimal in Cases 1 and 2, such an must exist.
The Lagrangian is given by

(101)

where is a Lagrange multiplier.
For , it is clear that is either the root of the fol-

lowing equation:

(102)

if the root is positive, or zero. Hence, is given by

(103)

For , , and need to maximize the following :

(104)

where

(105)

We define to be the largest root of and
to be the largest root of , i.e.,

(106)

It is clear that and intersect only once at

(107)

Following steps similar to those in Case 1, we obtain
1) If , i.e., is positive, then

and
(108)

2) If , i.e., is negative or zero, then

and (109)

The Lagrange multiplier needs to be chosen to satisfy the
power constraint. We finally choose to satisfy

. Then .
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