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Abstract— this study focuses on the spatial context of 

hacking to networks of Honey-pots. We investigate the 

relationship between topological positions and 

geographic positions of victimized computers and 

system trespassers. We've deployed research Honeypots 

on the computer networks of two academic institutions, 

collected information on successful brute force attacks 

(BFA) and system trespassing events (sessions), and 

used Social Network Analysis (SNA) techniques, to 

depict and understand the correlation between spatial 

attributes (IP addresses) and hacking networks’ 

topology. We mapped and explored hacking patterns 

and found that geography might set the behavior of the 

attackers as well as the topology of hacking networks. 

The contribution of this study stems from the fact that 

there are no prior studies of geographical influences on 

the topology of hacking networks and from the unique 

usage of SNA to investigate hacking activities. Looking 

ahead, our study can assist policymakers in forming 

effective policies in the field of cybercrime.  

Keywords: Hacking, Cybersecurity, Cyberspace Policies, 

Topology, SNA, Hot-spots 

INTRODUCTION 

William Gibson (1984) coined the term ‘cyberspace,’ 
and defined it as: “A consensual hallucination 
experienced daily by billions of legitimate operators, 
in every nation...A graphic representation of data 
abstracted from the banks of every computer in the 
human system…clusters and constellations of data.” 

“Cyberspace”, in this sense, is a ubiquitous fragile 
dimension, which has a distinct location, though a 
non-physical one. Therefore, it is a challenging 
environment for researchers to study (Graham, 2013). 
Cyberspace therefore is as a “place” with terms that 
express this conception: “Worlds, Domains, Sites, and 
Rooms (Barak and Suler, 2008). It is a place with 
social control and boundaries (Barzilai-Nahon and 
Neumann; 2005), and a place in which traffic is 
concentrated within localities, states, and regions. 
Moreover, its communication efficiency (Murnion 
and Healy 1998; Thelwall 2002) is depended on 
physical locations of data, hardware (routers, fiber 

optic cables, phone lines, etc.), and on the number of 
miles the data travels (Dodge and Zook 2009; 
Goldsmith and Wu 2006). The cultural characteristics 
that translate into different desires, expectations, 
online routines and behaviors change the Internet 
experience correspond to geographical boundaries 
(Goldsmith and Wu, 2006).  

Nonetheless, most of us capture the Internet as a 
technology that creates virtual worlds disengaged 
from a physical location. As Johnson and Post (1996) 
claimed, 'a new boundary, made up of screens and 
passwords that separate the virtual world from the 
"real world", emerges.' This is not solely a metaphor. 
This boundary defines the Cyberspace: a new world, 
with new rules, regulations, and laws (such as 
spamming, phishing, and hacking). In addition, 
Cyberspace has a number of unique characteristics: 
non-existence geographical boundaries, vague 
“privacy”, and extensive anonymity. These 
characteristics make cyberspace a perfect setting for 
hackers who seek to cross-geographical spaces and 
exceed identity restrictions.  

This study explores hacking in cyberspace. 
Specifically, it analyzes the influence of geographical 
locations of victimized and attacking computers on 
hacking-networks’ topology. Though hacking is not a 
new phenomenon (Furnell, 2002), it evolved in recent 
years and became more sophisticated and organized 
(Grabosky, 2014). Hacking, thus, carries enormous 
consequences on commercial, governmental (Rantala, 
2008), and individual computer users (Bossler and 
Holt, 2009).  

The focus of this study is cyber-attacks on computer 
networks. The data was collected using Honey-pots 
computers (A Honey-pot is a computer that enables 
the collection of information on real system 
trespassing events). We designed and deployed these 
target computers in the infrastructures of two 
universities – in Israel and China. 

Many complex social and natural systems are made of 
components and obscured web of connections among 
them. Identifying these components and links is 
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crucial to the understanding of the network, its 
structure and functionality. To build the attackers' 
network with the same technique of Tranos and 
Nijkamp (2013), we used the IP addresses of Honey-
pots, Brute Force Attacks (BFA) - successful attempts 
by hackers to guess login passwords to target 
computers for the first time, and System Trespassing 
events (i.e. Sessions) - successful computer intrusions 
based on credentials gained during BFAs. Both the 
attackers and attacked computer systems are nodes in 
a bi-partite network. We then employed SNA 
techniques to capture the dynamics of attack-
networks’ typologies. We analyzed the topological 
and statistical data collected from these target 
computers and explored the node-level (attacked and 
attackers attributes) and the network as a whole 
(patterns of hacking activities). 

In the broad, diverse, and rich spectrum of cyberspace 
attacks, we focus on one specific type of attacks – 
system trespassing events of SSH servers. We are not 
analyzing additional types of attacks such as web 
server attacks, e-mail phishing frauds, and database 
attacks (e.g. SQL injections). This is an important 
disclaimer for the validity of our research. Although 
we reach conclusions on the behavior of the network 
of cyber-attacks, our conclusions refer to hackers who 
only choose to use this type of attacking strategy. 
Although we focus on a specific attacking strategy, 
this strategy is a common method for gaining control 
over servers within organizations and throughout the 
cloud environment. Thus, understanding how hackers 
directly take over cyberspace resources and use them 
as their own, is a promising step forward in today's 
information security research.  

The paper comprises seven sections. Following this 
introduction, we review the related work regarding 
topology and the spatiality of the Internet. Then, we 
present our three hypotheses. Next, the research 
methodology and the research results are reported 
respectively. Conclusions regarding potential 
theoretical contributions and suggested future research 
are discussed in the last section 

REALED WORK 

a. The Role of Topology 

The way a network shapes its basic topology is a 
challenging issue in social network research in general 
(Morgan et al., 1997; Kossinets and Watts, 2006; 
Braha and Bar-Yam, 2006; Viswanath et al., 2009) 
and in the research of dynamic social networks in 
particular (Berger-Wolf and Saia, 2006; Hill and 
Braha 2010). Without understanding the processes 
that led the network to its current visible topology, the 
typology is meaningless (Berger-Wolf and Saia, 
2006). 

The coming section explores the factors that might 
shape the network’s topology and its relevance to 
geography.  

Network’s topology is the sum of many sub-
topologies, each one having its own purpose (Cross et 
al., 2001; Holme et al., 2004). It is a field of interests 
with many goals affecting its final structure (Lickel et 
al., 2006). This is the case in our current study, with 
many different Brute Force Attackers and system 
trespassing events that contain various mal-intentions.  

Several studies investigated the relations between 
topology and functionality of a network. Since 
topology evolves (or designed) to carry out efficiently 
the network’s mission, and since the network is 
influenced by its topology, understanding the 
topology is essential for understanding network’s 
function. 

The structure of a network contributes to a network’s 
dynamics (Watts, 1999) and to its ability to carry and 
deliver messages or viruses (Watts, 2004). For 
example, the physical topology of Internet servers is a 
scale-free power law, and it resembles the topology of 
the World Wide Web, which embodies the logical 
(Hub and Authorities) layer of the Internet (Faloutsos 
et al. 1999). Additionally, the small world topology of 
financial institutions in Canada serves its banks best 
(Baum et al., 2003). The decay of friendship 
probability with geographic distance in ‘LiveJournal’ 
helps members to navigate in its social structures 
(Liben-Nowell et al., 2005). Recently, using 
Messenger communications to investigate 
geographical properties of the social network, 
Leskovec and Horvitz (2014) found that geography 
provides an important cue in navigating between 
arbitrary source and target nodes and re-approved 
Liben-Nowell et al. (2005) conclusions.  

Another ubiquitous topological example of interests 
shaping the network topology is the “Structure 
Holes”. These individuals benefit from serving as 
intermediaries between non-connected vertices or 
groups. These groups have conflicting interests in the 
network and structured holes gained from their special 
position in the network (Granovetter, 1973; Burt 
1995; Kleinberg, 2006).  

Following these examples, we choose to investigate 
several centrality measurements of the attacking 
computers' networks. These measurements include 
Degree Centrality, Degree Centrality, Eigenvector 
Centrality and Hub, and Authority Centrality. We use 
these parameters to understand the structure of the 
attacking computers and to identify the main nodes in 
each network. We also use in-degree and out-degree 
parameters to correlate network’s topology with 
geographic distance. 
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b. The spatiality of the Internet

In 2001, Cairncross predicted that distance is dead, 
and yet, in recent years, several studies investigate the 
dependency of online social networks (OSN) topology 
in geography. The states’ growing involvement in 
Internet-regulation presents spatial aspect of the 
Internet. Goldsmith and Wu suggest (2006) that this 
involvement is due to a bottom-up demand. The 
citizens want the state to protect them while they use 
the Internet and it is not an attempt of the state to 
preserve its power. Moreover, geography matters even 
in the digital world for reasons such as: the necessity 
for social depth, the needed physical proximity for 
knowledge exchange, and the inherited nature of the 
OSN (Morgan, 2004).  Clusters of friends in OSN are 
often geographically close in the real world (Scellato 
et al., 2010) and physical distance has a significant 
impact on the intensity of the Internet infrastructure 
(Tranos and Nijkamp, 2013). People establish distant 
online connections with lesser probability than 
proximate ones (Lengyel et al., 2014). 

It seems that even in Twitter distance considerably 

constrains ties. Almost 40% of Twitter users connect 

users within the same regional cluster while ties 

longer than 5,000 km are underrepresented 

(Takhteyev et al., 2012). Yet, in one study, 

geographical distance was found to have smaller 

deflated power on the frequency of online friendships 

(Onnela et al., 2011). In our study, we will examine 

these conflicting claims in an attempt to conclude 

whether distance plays a role on hacking networks’ 

topologies.  

HYPOTHESES 

In the previous chapter we quoted few studies 
explaining why “distance is not dead” for Online 
Social Networks. Our study follows these studies’ 
footsteps and explores the relation between physical 
location and topology in the context of hacking 
networks.  

We claim that geography has an influence on the 
behavior of the attacker and as a result, geography has 
an influence on the topology of networks. Unlike any 
other network, in the attack network, one side (the 
Honey-pots i.e. the target computer) is passive and the 
only factor determining the topology of the network is 
the attackers’ behavior. Specifically, we hypothesize 
that:  

(1) H1: The geographic location of the Honey-pots 
(i.e. the target computer) has no effect on attack-
networks topology. We expect to find that the fact that 
Honey-pots are differently located (once in China and 
once in Israel) has no influence on the network's 
topology of attacking computers' locations. 

 (2) H2: The geographic location of the attacking 
computer influences its network topology. We expect 
to see a similar attackers’ behavior, meaning similar 
network attributes such as centrality-parameters, once 
the attacks are originated from the same countries 
(regardless of the Honey-pots’ location).  

 (3) H3: The geographic position of the attackers 
correlates with their topological positions in the 
network. We follow Onnela et al. (2011) and expect 
the geographical distances (in km) between the IP 
addresses used by hackers to correlate with the 
number of interactions between them. 

METHODOLOGY 

First, we will describe the research methodology and 
then the research set-up and plan. A description of the 
units of analysis and their properties is following. This 
study models the relations between hackers' IP 
addresses and Honey-pots (HP) as a directed network. 
A Honey-pot is a “security resource whose value lies 
in being probed, attacked or compromised” (Spitzner 
2003). 

The Honey-pot (HP) enables the collection of 
information on real system trespassing events. 
Consistent with past criminological (Maimon et al., 
2014) and technological studies (Salles-Loustau, et 
al., 2011), we deployed research HPs on the computer 
networks of Chinese and Israeli academic institutions. 
240 public IP addresses were used as HP in the 
Chinese network and 60 public IP addresses were 
employed for the deployment of HP on the Israeli 
network. Both computer networks had Linux Ubuntu 
10.04 as their operating system. The Chinese HPs 
were active for a period of 4 months (August 21, 
2012-December 21, 2012) and the Israeli HPs were 
active for a period of 3-month period (May 23, 2013-
August 31, 2013). 

In line with prior conceptualizations of password-
guessing attempts (Keith et al., 2007; SANS Institute 
2007), we operationalize a successful brute force 
attack as any event in which an unauthorized person 
or automatic tool successfully guesses the password to 
the system. Thus, we consider any target computer 
that was subject to a successful remote password-
guessing attempt a victim of a brute force attack. 
Similarly, we follow prior conceptualizations of 
system trespassing events (Berthier and Cukier 2009; 
Maimon et al, 2014), and operationalize a system 
trespassing event as any incident in which an 
unauthorized person accesses and logs in to a 
computer system based on a prior brute force attack.  

To infiltrate a HP, system trespassers had to scan the 
network, identify these computers and break into them 
through vulnerable entry points. In both networks 
(Chinese and Israeli) The HPs denied intruders’ login 
attempts until a random predefined threshold 
(between 150 and 200) was reached and then the 
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target-computer was “successfully” infiltrated and 
allowed intruders to initiate a system trespassing 
event.  

Once infiltrating the HP, we allowed system 
trespassers to employ the target computers for a 
period of 30 days. At the end of a 30-day period, the 
HP blocked the system-trespasser’s access; we 
cleaned it and re-deployed it on the network. We use 
HP to explore who the attackers are, where do they 
come from, and what patterns of attacks they create in 
their behavior. We collected information on both 
successful brute force attacks, and system trespassing 
events, which are both successful break-in attempts 
into Honey-pots on these networks. 

We are fully aware of hackers’ tendency to mask their 
origins. Thus, an IP address of an attacker in our data 
is most probably not the real IP of the attacker's 
computer. Nevertheless and even though the IPs 
might not indicate the exact location of the hacker, it 
represents the most available IP address that the 
hacker can use in order to attack HPs, in either the 
Chinese or Israeli networks for both first (BFAs) and 
following (Sessions) attacks. 

Throughout the data collection period, 752 Chinese 
target computers experienced brute force attacks. 
These attacks originated in 347 unique IP addresses. 
However, not all system trespassers initiated a system 
trespassing event against our target computers: only 
301 Chinese target computers recorded a first system 
trespassing event. These incidents initiated from 140 
unique IP addresses. In contrast, due to the low 
number of IP addresses employed at the Israeli site, 
only 118 Israeli target computers experienced brute 
force attacks during the data collection period. These 
attacks originated in 115 unique IP addresses. 
Similarly, first system trespassing events initiated 
from 60 unique IP addresses against our 72 Israeli 
computers. 

Once we gathered the data, we built the Chinese and 
the Israeli HP’s networks; we deployed SNA 
techniques to explore their topological parameters and 
analyzed the results in the country level (in both the 
attackers and the HPs). In the coming Graphs we 
present the results. Each time there is s directed link 
from country A to country B, that link means that a 
BFA from country A was followed by a Session from 
country B. 

MAIN RESULTS 

1. The Geographic dimension with relation to the 
topology  

First, we analyzed the structure of the two hacking 
networks. The honey-pots, located in China and Israel 
separately are the base for the two networks. Both 
hacking networks are topologically alike without 
relation to the geographical location of the honey-

pots. Though the honey-pots were located in two 
different geographic places the topology of the 
attackers’ networks attacking each site is similar.  

The following graphs represent the Chinese and 
Israeli networks. In graph 1 and graph 2 we present 
the distribution of the attacks (BFA and Sessions) per 
country in both the Chinese and the Israeli networks. 

 

Graph 1: the distribution of BFA attempts per country in the 
Chinese and the Israeli networks. 

 

Graph 2: the distribution of Sessions attempts per country in the 
Chinese and the Israeli networks. 

The distribution pattern in China and Israel (graph 1 
and graph 2) is almost identical. Many countries are 
engaged in several attacks and only a few countries 
are massively attacking the Honey Pots. This might 
give a hint on the behavior of the hackers in both 
networks. Next and in order to understand the relation 
between geography and patterns of hacking activity, 
we investigated the hacking activity in the country 
level. 

Figures 1 and 2 map the main countries which origin 
hackers’ attacks on Chinese and Israeli Honey-pots 
networks. Since many countries contribute only few 
attacks, we filtered the data and figure 1 and figure 2 
present the countries that have the highest hacking 
activity. We only present the countries that their 
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number of attacks is higher than the mean value of 
attacks in each network (4 in the Israeli network and 5 
in the Chinese network). Figure 3 and 4 in the 
appendix map all the relations between the attacking 
countries in the Chinese and the Israeli networks. 

 

Figure 1: BFA and Sessions relation in Israeli HP’s network (links 

>4) 

 

Figure 2: BFA and Sessions relation in Chinese HP’s network (links 

>5) 

Figures 1 and 2 make it very clear to notice that once 
a BFA happens (a node with a pointing arrow) the 
sessions (a node with an arrow pointing at it) which 
follow it, originate from all over the globes and not 
from a nearby country. This phenomenon exists in 
both Chinese and Israeli networks. Table 1 in the 
appendix details the list of countries in Chinese and 
Israeli HP’s network. For both Israeli and Chinese 
Honey-Pots, the frequency of sessions and BFAs is 
similar, BFAs are originated in three main nodes and 
sessions are coming from all over the globe. Thus, as 
predicted in H1, the geographic location of the 
Honey-pots does not have any effect on the topology 
of the hacking network.  

2. Resemblance of nodes and topologies’ parameters 

First, we explored the main topological identity of the 
main countries in the Chinese HP network and the 
Israeli HP network. We used the common network 
centrality parameters to analyze the main countries in 
each network and found them almost identical in both 
Honey-Pots' networks. In graphs 3 and 4 we present 
the distribution of the attacks (BFA and Sessions) 
originating from the top 10 countries. In both Chinese 
and Israeli networks, the “main players”, meaning the 

leading countries with the highest hacking activity 
level, are similar.  

The topological structure of the three leading nodes in 
figures 1 and 2 (China, Romania and the Unites 
States) looks quite the same in both networks.  

 

 

Graph 3: BFA and Sessions relation in Chinese HP’s network 

 

 

Graph 4: BFA and Sessions relation in Israeli HP’s network  

Next, we compared the two hacking networks with 

regard to five topology measures: Degree centrality, 

Hub centrality, Authority centrality, Eigenvector 

centrality and Betweenness centrality. The following 

graphs present our findings; 

In graph 5 we present the “Total Degree Centrality” 

which calculates the total number of times a country is 

engaged in hacking activity, either sending HP’s data 

to other countries or getting this data from other 

countries. The top five most active countries in this 

parameter are the same in the Chinese and Israeli HP 

networks. 

 

Graph 5: Top Total Degree Centrality in Chinese and Israeli HP 
Networks 
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In graph 6 and 7 we present the top “Hub Centrality” 

and top “Authority Centrality” countries. A country is 

hub-central to the extent that it sends hacking data 

(many out-links) to countries that receive a lot of 

hacking data (many in-links). A country is Authority-

central to the extent that it gets a lot of hacking data 

(many in-links) from countries that have send a lot of 

data (many out-links). In the Chinese and the Israeli 

HP Networks, the top Hub and Authority countries are 

almost identical.  

 

Graph 6: Top Total Hub Centrality in Chinese and Israeli HP 

Networks 

 

 

Graph 7: Top Total Authority Centrality in Chinese and Israeli HP 

Networks 

In graph 8 we present the top “Eigenvector 

Centrality” countries. Eigenvector centrality is a 

measure of the influence of a country on the hacking 

network, based on its links to high-scoring countries. 

It is a high-quality measure for “major players” in the 

network, since it calculates the links to others that are 

themselves highly connected to each other. In the 

Chinese and the Israeli HP Networks, these top Hub 

nodes are almost identical. 

 

Graph 8: Top Total Eigenvector centrality in both Chinese and 

Israeli HP Networks 

In graph 9 we present the top “Betweenness 

Centrality” countries. Betweenness centrality is a 

measure of the influence of a country in the hacking 

network, based on its influence on the transfer of 

items through the network. It is a high-quality 

measure for “major players” in the network, since it 

calculates the number of the shortest paths from all 

countries to all other countries that pass through it. In 

the Chinese and the Israeli HP Networks, these top 

Hub nodes are almost identical. 

 

Graph 9: Top Betweenness centrality in both Chinese and Israeli HP 

Networks 

Overall, network analysis of the Chinese and the 

Israeli HP networks reveals that the node-sets in the 

two networks are similar (see table 1 in the appendix), 

the main players in the two networks are almost the 

same, and their topological measures are alike (see 

graphs 5-9 above). To conclude this part based on the 

overall topology and the proximity of the major 

players in the networks (Rechavi and Rafaeli, 2014), 

we find that the topologies of the networks, which 

describe the dynamics between BFA and Sessions, are 

extremely similar to each other.                                                                                                                                    

3. Physical Centrality and Topological Centrality 
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In several studies (Scellato et al., 2010; Takhteyev et 

al., 2012; Tranos and Nijkamp, 2013; Lengyel et al., 

2014) the geographical distance had a meaning in 

people’s network. These studies found a correlation 

between the physical distance between two people in 

real life and their mutual relations in their social 

networks.  

Though geographical distance has power on topology, 

geography is not the only parameter that sets the 

behavior of attackers. We follow Onnela et al. (2011) 

and in our third hypothesis, we expected that the 

geographic positions of the attackers (distance 

between countries) correlate with their topological 

positions in the network. In graph 10 we present the 

ratio between geographical distance of the countries 

and the number of interactions between them.  

 

Graph 10: Chinese HP - Total Number of links and Distance 

between nodes   

As the graph shows, no correlation was found 

between the geographic distance between nodes and 

the number of links between them (Total Degree 

Centrality), in both the Chinese and the Israeli HP 

network. When we separately explore the “In-degree” 

and “Out-Degree” of the nodes we found the same 

results.  

DISCUSSION AND CONCLUSIONS 

Analyzing crime in the context of place is not new in 

criminological research. However, researchers paid 

little attention to the geography of attackers and 

victims in cyber sphere. This study attempts to 

address this gap in the literature and explore the 

relationship between countries that are involved in 

hacking activities. 

Our findings support the first hypothesis. The HPs 

computers were “passive victims” and the only 

information the hackers knew about the HPs was their 

geographic location – a university campus (in Israel or 

China). Since the attacks in the Chinese and Israeli 

campuses looked alike from a network topology 

perspective, we can deduce that the HPs’ location did 

not affect the behavior of the hackers. Hence, the 

geographic location of the passive target computer 

does not have an effect on the attacking dynamics. 

Our findings moderately support the second 

hypothesis. We found that besides similarity in the 

topology of the two hacking networks, the node-sets 

in the networks are also similar. Meaning not only 

topologically speaking the networks look alike but 

also the nodes, the hacking countries are almost the 

same in the Chinese and Israeli networks. On one 

hand the resemblance of the two networks’ topologies 

can explicit a general attack pattern and in this case, 

the location of the attacking has no meaning. On the 

other, the resemblance of the two networks’ 

topologies can happen because the attacking IPs in 

both cases come from the same countries. In that case, 

the topologies can explicit a specific attack pattern 

which is location-dependent. This means that the 

location of the attacker influences the network’s 

topology, as we suggested in the second hypothesis. 

Lastly, with regard to our third hypothesis, we find 

that there is no correlation between the topological 

and geographical centrality of nodes within the two 

networks. The strength of relations between two 

hacking countries in the network (the number of 

interactions between two countries) does not correlate 

with the physical distance between them (number of 

Km). This finding does not complement other 

researchers. A possible explanation for that is the 

special nature of hacking activities. Unlike social 

network relations, sharing hacking-data is based upon 

pure interests of both sides. It seems that in this 

manner “the world is flat” and the hackers share data 

across the globe without local or spatial 

characteristics. Digital data (and crime) knows no-

border and a clear relation between geographic place 

and cyber space is still vague.  

Our findings are preliminary and refer to specific 

victims (university network) and to hackers working 

only in a certain way (SSH protocol). Further study 

should explore other courses of action of hackers (for 

example - different protocols of hacking) and other 

networks (banks, telecommunications companies, 

etc.).  

The fact that our research is based on the last IP 

address from which the attack was carried out, and not 

on the actual geographical location of the attacker, is a 

testament to the challenge faced by law enforcement 
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agencies in identifying and punishing hackers. 

Drawing from Hot Spots policing theory (Braga, 

Papachristos and Hureau, 2012) and the crime 

concentration rule (Weisburd, Groff, and Yang, 

2012), we believe that mapping the 'hot countries' 

from which the hackers choose to launch their attacks, 

is critical. We are aware of the fact that a comparison 

between street segments and the virtual space is not 

obvious. It requires theoretical development and 

empirical testing that the network analysis 

methodology can potentially address.  

Overall, the full understanding of hacking activities 

includes the formation of hacking networks, their 

evolution, and their functionality. This requires the 

analysis of the dynamics and structure of hacking 

networks. The usage of network analysis 

methodologies is a promising step in this direction; it 

brings together topology and functionality and 

investigates them simultaneously. We call for more 

research in this promising area - the Cyber 

Criminology Network Analysis (CCNA).  
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APPENDIXES 

Figure 3: All BFA and Sessions relation in Israeli HP’s network

Figure 4: All BFA and Sessions relation in Chinese HP’s network  

Common countries in the 

Chinese and Israeli’s 

Networks 

Unique Countries in the 

Chinese Network 

Unique Countries in the 

Israeli Network 

Anonymous Proxy, 

Argentina, Armenia, 

Australia, Bangladesh, 

Brazil, Bulgaria, Canada, 

Chile, China, Colombia, 

Finland, France, 

Germany, Hong Kong, 

India, Indonesia, Italy, 

Kazakhstan, Korea, 

Republic of, Mexico, 

Netherlands, NULL, 

Panama, Philippines, 

Romania, Russian 

Federation, South Africa, 

Spain, Sweden, Taiwan, 

Turkey, Ukraine, United 

Kingdom, United States 

Albania, Czech Republic, 

Ecuador, Hungary, 

Iceland, Israel, Japan, 

Lebanon, Macedonia, 

Malaysia, Moldova, 

Republic of, Mongolia, 

Pakistan, Peru, Poland, 

Singapore, Slovenia, Sri 

Lanka, Switzerland, 

Thailand, Vietnam, 

Zimbabwe 

Costa Rica, Dominican 

Republic, Guatemala, Iran, 

Morocco,  Saudi Arabia, 

Serbia, Slovakia, Venezuela 

Table 1: Detailed list of countries in Chinese and Israeli HP’s 

network 
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