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Abstract— Linear transceiver design for multiple access chan-
nels (MACs) with spatial correlation at both transmitter and
receiver is investigated in the presence of inaccurate channel
state information (CSI). We consider a training-based channel
estimation at the receiver while a limited-rate feedback channel
conveys the transmitter information. Imperfect knowledgecomes
from the channel estimation errors and the quantization noise.
Restricting the decoder to be linear yields to minimize of the
sum-mean square error (sum-MSE) subject to individual power
constraints. Although no closed-form solution is possiblein a
multi-user setting, an efficient iterative algorithm relying on the
KKT conditions is derived. Numerical results show sum-MSE
and BER performance to measure the sensitivity of a mismatched
design as well as the effect of quantization noise. Furthermore,
the study of channel uncertainty enables to assess the relative
impact of imperfect CSI at both ends.

I. I NTRODUCTION

Multiple-input multiple-output (MIMO) systems are widely
recognized to substantially increase the spectral efficiency of
wireless channels. However, the benefits of multi-user MIMO
highly depend on the type of channel state information (CSI)
at both ends and on the level of accuracy of this information.
Practical high data rates wireless systems can only have
imperfect CSI at the receiver (CSIR), i.e., an estimate of the
channel based on training sequence. As for the information
fed back to the transmitter, either analog or digital methods,
imperfection can come from partial knowledge (e.g., channel
distribution information (CDI), channel quality information
(CQI)) and uncertainty (e.g., quantization induced noise or
noisy feedback channel). In all cases the adaptation to the
channel information errors is mandatory to design reliable
solutions.

Practical implementations of multi-user wireless systems
often consider linear precoding to reduce interference and
linear MMSE receivers, whose design is based on the sum-
Mean Square Error (MSE) minimization. This choice, albeit
sub-optimal, provides a good trade-off between performance
and complexity. The joint transceiver design has been widely
studied in the case of perfect CSI in [1] [2] for single-
user, while the multi-user extension has been developed in
[3]. Interestingly, the problem of finding out the optimum
covariance matrices maximizing the mutual information is
known to be closely related to the computing of optimum
precoders/decoders minimizing the total MSE [4].

However, robust transceiver designs should incorporate the
quality of the channel state information. On one hand, several
works have considered imperfect CSIR owing to training-
based estimation. [5] has studied the problem of optimum
balanced power allocation between data and pilots. More
recently, the authors in [6] have found the optimal closed-form
solution of a single-user MIMO system with spatial transmit
correlation. As various criteria exist to measure the system
performance, [7] has proposed two general classes of cost
functions, namely Schur-convex and Schur-concave functions.
On the other hand, only few works have considered imperfect
CSI at transmitter (CSIT). Coupled with imperfect CSIR, [8]
has investigated partial knowledge CSIT through mean and
covariance feedback. The proposed robust transceiver designs
exhibit similar structure with the perfect CSI case but witha
different noise covariance matrix. None of those works extend
to quantized feedback, where the channel state informationis
conveyed to the transmitter through a limited-rate feedback
channel.

In this paper, we evaluate the minimization of the sum-MSE
in a spatially correlated uplink MIMO channel. We focus on
linear transceiver design handling with imperfect CSI at both
receiver and transmitter sides. In contrast to previous work,
we consider a general channel estimation model [9], which
leads to a composite channel averaging the channel law over
all channel estimation errors. Furthermore, by imperfect CSIT,
we allow for the impact of quantization errors brought by
the precoders compression. The Lagrangian formulation of the
sum-MSE optimization enables to derive an efficient iterative
numerical algorithm, since in a multi-user scenario no closed-
form solution exists. We show how the system can benefit from
adaptive precoding even when subject to limited-rate feedback.

The paper is organized as follows. In section II, we describe
the communication model in details. Section III formulates
the sum-MSE optimization and presents an iterative algorithm.
Section IV provides some simulation results before drawing
some conclusions in Section V.

Notation: Lower-case and capital bold letters are used to
denote vectors and matrices, respectively. LetA be a matrix,
[A]i,j designates the(i, j) entry of A. The superscript†

indicate Hermitian transpose. The operatortr(.) stands for the
trace of square matrices.



II. COMMUNICATION MODEL

A. Channel model

We consider aK-user MIMO-MAC communication system
where theK transmitters are equipped withN1 · · ·NK anten-
nas and the receiver withNR antennas. Feedback information
is conveyed to the transmitter through a noiseless feedback
link. Transmission occurs over a Rayleigh flat fading channel.
Each user spreads its data overMk ≤ Nk streams. The
received signal vectory ∈ CNR×1 is

y =

K
∑

k=1

HkFkxk + n (1)

where xk ∈ CMk×1, Fk ∈ CNk×Mk and Hk ∈ CNR×Nk

denote, respectively, the transmit signal vector, the linear
precoder and the channel matrix of userk = 1, . . . ,K.
The additive noise vectorn ∈ CNR×1 is independent and
identically distributed (i.i.d.) zero-mean circularly symmetric
complex Gaussian with covariance matrixΣ0 = σ2

nINR
.

Each user is subject to a power constraintPk such that
tr(FkE[xkx

†
k]F†

k) ≤ Pk with E[xkx
†
k] = IMk

. The total
transmit power from all users is

∑K
k=1

Pk = P . We further
assume that the elements ofHk are correlated. The channel
matrix of userk can thus be factorized as

Hk = R
1/2

NR
HW,kR

1/2

Nk
(2)

whereHW,k is the spatially white channel matrix. The pdf of
Hk is ψHk

= CN (0,RNk
⊗ ΣHk

), whereΣHk
= σ2

h,kRNR
.

Note that the diagonal elements of the transmit and receive
correlation matrices are equal to 1.

At the receiver side, the received signal of userk is decoded
with the use of a linear receiverGk ∈ C

Mk×NR . The signal
estimate vectorrk is given by

rk = Gky. (3)

To study the robust design of linear transceivers when inaccu-
rate channel estimation is considered, the performance metric
used is the sum-MSE. Hence, the MSE matrix of userk is
given by

MSEk = E
[

(rk − xk)(rk − xk)†
]

(4)

Next, the channel estimation model is presented so as to have
an exact definition of the sum-MSE in function of the channel
estimation errors.

B. Estimation model

Each channel matrix estimatêHk may be obtained by the
use of a training sequence sent from userk to the receiver, be-
fore transmitting the data. The training sequence is constituted
of Lk vectorsXT,k = (xT,k,1, · · · ,xT,k,Lk

). We assume that
the receiver can capture the statistics of the channel accurately,
notably the transmit correlation. Therefore, we choose a train-
ing sequenceX′

T,k that decorrelates the transmit correlation,

i.e., X′
T,k = R

−1/2

Nk
XT,k. The average energy of the training

symbols may be expressed asPT,k = 1

LkNk
tr(XT,kX

†
T,k).

The corresponding received signalYT,k = R
1/2

NR
HW,kXT,k +

NT,k allows the receiver to perform ML estimation. Since to
estimateR1/2

NR
HW,k we need at leastNRNk measurements,

and each symbol time yieldsNR samples, we must have
Lk ≥ Nk provided thatXT,k is full rank. Let us then

consider that̂Hk =
(

R
1/2

NR
HW,k + Ek,w

)

R
1/2

Nk
, whereEW,k

is a white estimation error matrix if we assume thatXT,k is
orthogonal. The estimation variance isσ2

e,k = SNR−1

T,k with

SNRT,k =
LkPT,k

σ2
n

. As a result, the conditional pdf of̂Hk

givenHk is

ψ
Ĥk|Hk

= CN (Hk,RNk
⊗ ΣEk

) (5)

with ΣEk
= σ2

e,kINR
. The a posteriori pdf ψ

Hk|Ĥk

can be derived from (5) andψHk
, and is expressed as

ψ
Hk|Ĥk

= CN (Σ∆k
Ĥk,RNk

⊗ Σ∆k
ΣEk

) where Σ∆k
=

ΣHk
(ΣHk

+ ΣEk
)−1. Then by averaging the unknown chan-

nel with conditional pdfW (y |x1, . . . ,xK ,H1, . . . ,HK ) over
all channel estimation errors and after some algebra, we obtain
the composite channel, witĥH =

(

Ĥ1, . . . , ĤK

)

,

W̃
(

y|x1, · · · ,xK , Ĥ
)

= CN
(

K
∑

k=1

Σ∆k
ĤkFkxk, Σ̃0

)

Σ̃0 = Σ0 +
∑K

k=1
Σ∆k

ΣEk
tr(RNk

Fkxkx
†
kF

†
k). (6)

From this expression, the MSE matrix of userk can now be
expressed as

MSEk = Gk

[ K
∑

i=1

Σ∆i
ĤiFiF

†
i Ĥ

†
iΣ∆i

+ σ2

nINR

+

K
∑

i=1

Σ∆i
ΣEi

tr(RNi
FiF

†
i )

]

G
†
k − GkΣ∆k

ĤkFk

+ IMk
−

(

GkΣ∆k
ĤkFk

)†
(7)

C. Limited feedback link

With a limited feedback channel, the choice of the precoder
for each user is contained on a pre-defined codebook whose
size depends on the feedback rate constraint. The need for
compression of precoders induces some distortion, which is
modelled as an additive quantization noise. This yields to the
following expression

Fk = F̂k + Dk (8)

where Dk is the quantization error matrix, with i.i.d. zero-
mean circularly symmetric complex Gaussian entries of vari-
anceσ2

d,k. LetB be the total number of feedback bits allowed
in the low-rate feedback channel, shared by theK users. It
results thatσ2

d,k is a function ofB and K. Moreover, its
expression mainly depends on the quantizer design includ-
ing both dimension (e.g., scalar, vector...) and method (e.g.,
random, Lloyd-Max...). Consequently, the robust transceiver
design should incorporate all sources of CSI imperfection.



Based on the proposed distortion model (8), the MSE matrix
of userk is finally given by

MSEk = Gk

[ K
∑

i=1

Σ∆i
ĤiF̂iF̂

†
i Ĥ

†
iΣ∆i

+ σ2

nINR

+

K
∑

i=1

Σ∆i
Ĥiσ

2

d,iĤ
†
iΣ∆i

+

K
∑

i=1

Σ∆i
ΣEi

tr(RNi
F̂iF̂

†
i )

+

K
∑

i=1

Σ∆i
ΣEi

σ2

d,itr(RNi
)

]

G
†
k − GkΣ∆k

ĤkF̂k

+ IMk
−

(

GkΣ∆k
ĤkF̂k

)†
(9)

To avoid a large feedback overhead, the base station com-
putes the optimized precoders and receivers in a centralized
fashion. Then, the resulting precoders are quantized and then
broadcasted to all users. Next section details the optimization
process.

III. SUM-MSE WITH IMPERFECTCSIR
AND QUANTIZED CSIT

Usually the multi-user MAC transceiver optimization solves
the minimization of the sum-MSE under individual power
constraints. Solution of this optimization leads to a set of
receive matrices{Gk}K

k=1
and a set of quantized precoders

{F̂k}K
k=1

.

A. Joint optimization of precoding and receive filters

The objective function considers that a maximum trans-
mit power Pk is allowed for each userk. These individual
power constraints ensure that none of the power budgets
are exceeded. Therefore the sum-MSE minimization can be
formulated as

min
{Gk,Fk}

K
∑

k=1

tr
(

MSEk

)

(10)

subject to tr
(

F̂kF̂
†
k

)

≤ Pk, k = 1, . . . ,K (11)

Although this problem has no closed-form solution, an effi-
cient algorithm based on the Lagrangian can be derived. As-
sociated with the minimization problem (10), the Lagrangian
functionL({F̂k}, {Gk}, {µk}) is given by

L =

K
∑

k=1

tr
(

MSEk

)

+

K
∑

k=1

µk

(

tr(F̂kF̂
†
k) − Pk

)

(12)

where{µk ≥ 0}K
k=1

is the Lagrangian multiplier with respect
to the power constraints. The optimal transceiver design is
then obtained with the KKT conditions. By taking the partial
derivatives of expression (12) with respect toGk and F̂k,
we obtain the expressions (13) and (14) respectively. Each
Lagrange multiplier is calculated so as to satisfy its corre-
sponding transmit power constraint. Then, the computationof
the Lagrange multiplier can be solved for

µk

[

tr
(

F̂kF̂
†
k

)

− Pk

]

= 0.

To find {µk}
K
k=1

, a closed-from solution may be obtained
using similar derivation to that employed in [3]. It is explicitly
detailed in the Appendix.

B. Iterative algorithm

In the multi-user case, the resulting (colored) noise covari-
ance matrix is also a function of the covariance matrices of all
other users. Thus, it is not possible to find a closed form so-
lution simultaneously diagonalizing (13) and (14). Therefore,
we iterate successively between{Gk}K

k=1
and {F̂k}K

k=1
to

obtain the optimized set of receivers and precoders. A general
algorithm follows.

Proposed algorithm - minimum sum-MSE

• Initialize {F̂k}K
k=1

to a diagonal matrix, where its

(m,n)-th entry is equal to 0 ifm 6= n or equal to
√

Pk

Mk

elsewhere.
• Step 1: for k = 1, . . . ,K computeGk using the partial

derivative of the Lagrangian with respect toGk (13). The
linear receive filters correspond to the LMMSE receiver.

• Step 2: Satisfy the power constraint: updateµk for each
k = 1, . . . ,K.

• Step 3: for k = 1, . . . ,K compute F̂k using partial
derivative of the Lagrangian function with respect toF̂k

(14).
• Repeatuntil convergence.

The proposed algorithm is guaranteed to converge. Indeed, the
iterative process between users is a monotonically decreasing
function of the sum-MSE. Besides the objective function is
clearly lower bounded by zero, as a result the algorithm will
always converge to a local optimum. However, we cannot
guarantee to reach the global optimum as the sum-MSE
function is not jointly convex over all{F̂k,Gk}K

k=1
. When

K = 1 a unique solution exists using similar arguments as in
[10, chapter 4], which can be derived in closed-form, where
some constants need to be computed numerically.

IV. N UMERICAL RESULTS

In this section, we present some numerical results when
we assume that the total number of feedback bits is equally
shared between all users. Furthermore, since the focus of
this paper is the additional impact of quantization errors (and
not the optimized design of quantizer), we consider a scalar
quantization. Based on the rate-distortion theory [11], the
variance induced by quantization noise of any userk can thus
be formulated as

σ2

d,k = 2
− B

KNkMk (15)

The (i, j)-th entry of the correlation matrix is modelled as
[

R
]

i,j
= ρ|i−j|, whereρ ∈ [0, 1] is the correlation parameter

(with subscriptR or k to denote receive or transmit correla-
tion). We assume that each user have the same parameters
σ2

h,k = 1, σ2

d,k = σ2

d, Nk = NT , Lk = L, ρk = ρT ,
and the same individual power constraintsPk = P/K. The



Gk = F̂
†
kĤ

†
kΣ∆k

[

∑K
i=1

Σ∆i
ĤiF̂iF̂

†
i Ĥ

†
iΣ∆i

+
∑K

i=1
Σ∆i

Ĥiσ
2

d,iĤ
†
iΣ∆i

+ σ2
nINR

+
∑K

i=1
Σ∆i

ΣEi
tr(RNi

F̂iF̂
†
i ) +

∑K
i=1

Σ∆i
ΣEi

σ2

d,itr(RNi
)

]−1 (13)

F̂k =

[

∑K
i=1

Ĥ
†
kΣ∆k

G
†
iGiΣ∆k

Ĥk + µkINk
+

∑K
i=1

tr(GiΣ∆k
ΣEk

G
†
i )RNk

]−1

Ĥ
†
kΣ∆k

G
†
k

(14)
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Fig. 1. Rayleigh channel. Impact of the channel correlationfactor with 1
stream/user,K = 2, L = 4, σ2

d
= 0.01.

average energy of the training symbols is set equal to the
power constraint, i.e.,PT,k = Pk. To obtain the Bit Error
Rate (BER) performance, we use uncoded 4-QAM on each
user data stream. Our results are plotted for 2 users equipped
with 2 antennas and we assume thatNR = 4 receive antennas.

Fig. 1 shows the impact of the channel correlation. For
the optimized design (10), we compare the BER for different
correlation factors. Quite naturally, a high correlated channel
exhibits worse performance. It appears that the receive corre-
lation has a more negative impact than transmit correlation.
Indeed, whenρT = {0.5; 0.8}, the increase ofρR from 0.5 to
0.8 results in a 3 dB-gap to achieve a target BER of10−3.

Next, we illustrate the influence of imperfect CSIT on
Fig. 2. As expected, decreasing the number of feedback bits
can critically damage the error probability. With high value
of distortion (e.g.,B = 10), an error floor occurs. Note
that employing vector or matrix quantizer enables to lower
the average distortion, or similarly permits to reduce the
number of feedback bits needed. Additionally, we compare
the optimized multi-user system design with the mismatched
design. By mismatched, we mean that precoders and receivers
are designed by considering the set of{Ĥk}K

k=1
and{F̂k}K

k=1

as the true values. For any SNR > 10 dB, the mismatched

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 0  2  4  6  8  10  12  14  16  18  20

A
ve

ra
ge

 B
E

R
/u

se
r 

st
re

am

SNR (dB)

Mismatched, B=30
Optimized, B=30
Mismatched, B=20
Optimized, B=20
Mismatched, B=10
Optimized, B=10

Fig. 2. Rayleigh channel. Impact of quantization errors with 1 stream/user,
K = 2, L = 4, ρT = ρR = 0.5.

design leads to non-negligible performance loss with respect to
the optimized design. For instance whenB = 20, 1.2 dB gap
is observed at a target BER of10−3. Fig. 3 is similar to Fig. 2
except that we plot the average sum-MSE performance instead
of the BER. Analogous performance trends are observed.
However, with this metric, the gap between the optimized
and mismatched designs is nearly constant at all SNR. To
conclude, quantization errors have a major impact specifically
when the SNR > 10 dB or when the variance induced by
distortion is too high (here, whenB = 10).

Finally, Fig. 4 compares the optimized for different CSI
assumptions. This comparison reveals that at low SNR the im-
pact of imperfect CSIT is small, while in contrast, the channel
estimation errors significantly contribute to the corruption of
data. In addition, we also plot a non-precoded system (e.g.,
precoders are set to a scaled identity matrix) but only with
imperfect CSIR. No quantization is needed since precoders
cannot be adapted. The non-precoding curve shows the worse
performance suggesting that even with quantization errors, it
is still useful to have an adaptive precoded system design.
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V. CONCLUSIONS

In this work we have studied the sum-MSE minimiza-
tion over spatially correlated channels. The multi-user uplink
transceiver design with individual power constraints is ad-
dressed under the assumption of imperfect CSI arising from in-
accurate channel estimation and quantization errors. Although
no closed-form solution is possible, the optimized design
can be obtained by means of efficient numerical algorithms
based on the KKT conditions. Simulation results show that
channel estimation errors impact the performance at all SNR.
In contrast, imperfect CSIT is more pronounced at higher
SNR. Significant gains can thus be obtained with an adaptive
precoding design if the noise variance induced by quantization
is acceptable. The sensitivity of the mismatched transceiver
design has also been assessed.
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APPENDIX

The computation of Langrange multipliers relies on the
optimized precoder̂Fk. It is easily seen from (14) that̂Fk

has the form

F̂k =
(

µkIMk
+ Ck

)−1
Bk (16)

As µk should satisfy the individual power constraint, we
havetr

(

F̂kF̂
†
k

)

= Pk. SinceCk andBk are known we can
eigendecomposeCk = UkΣkU

†
k. It leads to

tr
[

(

µkIMk
+ Σk

)−2
U

†
kBkB

†
kUk

]

= Pk (17)

Let Jk = U
†
kBkB

†
kUk, we can thus expressed the previous

equation as
NT
∑

i=1

ji,i
(µk + σi,i)2

= Pk (18)

whereji,i andσi,i are theith diagonal coefficients ofJk and
Σk respectively. The LHS of (18) is a monotically decreasing
funtion of µk. Therefore, it exists only one non-negative real
value ofµk satisfying (18), otherwise, it is 0.


