
An Empirical Study on Requirements Traceability Using Eye-Tracking

Nasir Ali1,2, Zohreh Sharafi1,2, Yann-Gaël Guéhéneuc1, and Giuliano Antoniol2

1 Ptidej Team, 2 SOCCER Lab, DGIGL, École Polytechnique de Montréal, Canada

E-mail: {nasir.ali,zohreh.sharafi,yann-gael.gueheneuc}@polymtl.ca, antoniol@ieee.org

Abstract—Requirements traceability (RT) links help develop-
ers to understand programs and ensure that their source code
is consistent with its documentation. Creating RT links is a
laborious and resource-consuming task. Information Retrieval
(IR) techniques are useful to automatically recover traceability
links. However, IR-based approaches typically have low accu-
racy (precision and recall) and, thus, creating RT links remains
a human intensive process. We conjecture that understanding
how developers verify RT links could help improve the accu-
racy of IR-based approaches to recover RT links. Consequently,
we perform an empirical study consisting of two controlled
experiments. First, we use an eye-tracking system to capture
developers’ eye movements while they verify RT links. We anal-
yse the obtained data to identify and rank developers’ preferred
source code entities (SCEs), e.g., class names, method names.
Second, we use the ranked SCEs to propose two new weighting
schemes called SE/IDF (source code entity/inverse document
frequency) and DOI/IDF (domain or implementation/inverse
document frequency) to recover RT links combined with an IR
technique. SE/IDF is based on the developers preferred SCEs
to verify RT links. DOI/IDF is an extension of SE/IDF
distinguishing domain and implementation concepts. We use
LSI combined with SE/IDF , DOI/IDF , and TF/IDF to
show, using two systems, iTrust and Pooka, that LSIDOI/IDF

statistically improves the accuracy of the recovered RT links
over LSITF/IDF .

Keywords-Requirements traceability, source code, eye track-
ing, LSI, LDA.

I. INTRODUCTION

Requirements traceability (RT) is “the ability to describe

and follow the life of a requirement, in both forwards

and backwards direction” [1]. RT links help developers to

understand programs and ensure that their source code is

consistent with its documentation. However, creating RT

links is a laborious and resource-consuming task. Moreover,

during software evolution, developers add, remove, and

modify functionalities to meet ever-changing users’ needs

without updating RT links due to the lack of resources

(time and effort). Consequently, automated techniques to

recover RT links are important to save resources. Many

researchers have used Information Retrieval (IR) techniques

[2], [3], [4] to develop techniques to create traceability links

between requirements (and other “high-level” artifacts) and

source code. They have shown that IR techniques in general

and Vector Space Model (VSM) [3] and Latent Semantic

Indexing (LSI) [2] techniques in particular are useful for

creating RT links.

However, these researchers also have shown and discussed

[5] that IR-based techniques have different levels of accuracy

depending on their parameters and on the systems on which

they are applied. Thus, they agreed that there is still room for

improving the accuracy of IR-based techniques, in particular

by understanding how developers create/verify RT links [5],

[6]. Thus, in this paper, our conjecture is that understanding

how developers verify RT links can allow developing an

improved IR-based technique to recover RT links with better

accuracy than previous techniques.

We bring evidence supporting our conjecture by stating

and answering the following research questions:

RQ1: What are the important source code entities1 (SCEs)

on which developers pay more attention when verify-

ing RT links?

By answering the RQ1, we obtain a ranked list of SCEs,

ranked based on the average amount of developers’ visual

attention on each SCE. That list shows that developers pay

more visual attention on method names then comments then

variable names and, finally, class names. Using this list, we

build a new weighting scheme, SE/IDF , which integrates

developers’ preferred SCEs during RT links verification task.

We compare this new weighting scheme against the state-

of-the-art scheme, TF/IDF , and ask the following RQ2:

RQ2: Does using SE/IDF allow developing a RT links

recovery technique with a better accuracy than a

technique using TF/IDF ?

We observe in the ranked list of developers’ SCEs

that developers tend to prefer domain concepts over

implementation concepts when verifying RT links. Indeed,

while verifying RT links, developers pay more visual

attentions to SCEs (class names, method names, and so

on) representing domain concepts than those representing

implementation concepts. Domain concepts are concepts

pertaining to the system use. For example, in the Pooka

e-mail client, addAddress, saveAddressBook, and

removeAddress in AddressBook.java are domain-

related identifiers. Implementation concepts relate to data

structures, GUI elements, databases, algorithms, and so

on. Usually, developers use implementation concepts to

recall the names of data types or algorithms. For example,

in the Pooka e-mail client, addFocusListener,

1In this paper, we call “source code entities” the class names, method
names, variable names, and comments.

978-1-4673-2312-3/12/$31.00 c© 2012 IEEE

2012 28th IEEE International Conference on Software Maintenance (ICSM)

191

updateThread, and buttonImageMap in

AddressEntryTextArea.java are implementation

concepts. Using this difference between domain and

implementation concepts, we build another weighting

scheme, DOI/IDF , which distinguishes between domain

and implementation related SCEs. We compare this new

weighting scheme against the state-of-the-art scheme,

TF/IDF , and ask the following RQ3:

RQ3: Does using DOI/IDF allow developing a RT links

recovery technique with a better accuracy than a

technique using TF/IDF ?

To answer these questions, we conduct an empirical

study on RT consisting of two controlled experiments. The

goal of the first experiment, to answer RQ1, is to observe

developers’ eye movements using an eye-tracker while they

verify RT links to identify important SCEs. We perform this

experiment with 26 subjects. We collect and analyse the

data related to the developers’ visual attention on SCEs. If

developers pay more visual attention on a SCE, we consider

it an important SCE.

The goal of the second experiment, to answer RQ2 and

RQ3, is to measure the accuracy improvement of a LSI-

based RT links recovery technique using SE/IDF and

DOI/IDF over one using TF/IDF . We use LSI because

it has been shown to produce interesting results [2]. We also

use latent Dirichlet allocation (LDA), as used in previous

work [7], [8], to distinguish SCEs related to domain or

implementation concepts.

We create three sets of RT links using LSI: LSITF/IDF ,

LSISE/IDF , and LSIDOI/IDF , to compare them. Results

show that, on iTrust and Pooka, LSIDOI/IDF statistically

improves precision, recall, and F-measure on average up to

11.01%, 5.35%, and 5.03%, respectively.

This paper is organised as follows: Section II provides a

brief overview of the state-of-the-art RT techniques and of

the use of eye-tracking system in program comprehension.

Section III and IV provide the details of our experiment

with the eye-tracker to understand developers’ preferred

SCEs the results. Sections III and V describe our novel

weighting schemes, SE/IDF and DOI/IDF , sketches

our implementation, and the results. Section VI reports the

discussion on our findings. Finally, Section VIII concludes

with future work.

II. RELATED WORK

We now present some work related to RT, zoning, and the

use of eye-trackers in program comprehension.

RT: In past couple of decades, RT has received much atten-

tion. Many researchers have proposed various techniques [3],

[9] with various accuracy results [5] to recover traceability

links between high-level documents, e.g., requirements, and

low-level documents, e.g., source code. IR techniques have

been used by researchers since the early works on traceabil-

ity recovery [3] and feature location [9]. Often, IR-based RT

techniques [2], [3], [9] use vector space models, probabilistic

rankings, or a vector space model transformed using latent

semantic indexing. Whenever available, dynamic data [9]

proved to be complementary and useful for traceability

recovery by reducing the search space.

Antoniol et al. [10] proposed a technique for automat-

ically recovering traceability links between object-oriented

design models and code. The authors used class attributes

as traceability anchors to recover traceability links. Ali et

al. [11] proposed COPARVO to recover traceability links

between the source code of object-oriented systems and

requirements. They partitioned source code in four parts

(class, method, and variable name, and comments). Each

source code part then “votes” on the RT links recovered

using VSM. Results showed that using source code parts

improved the accuracy of the VSM RT technique.

Wang et al. [6] performed an exploratory study of feature

location with developers. They recorded video of the devel-

opers’ actions during feature location tasks. They analysed

the process used by developers to train a second group

of developers. Their results showed that the second group

performed better than the first one. However, this study

only consisted of manual feature location tasks. The authors

did not provide any automated RT links recovery technique

based on their observations with developers.

We draw inspiration from this previous work to observe

concretely how developers read source code when verifying

RT links and to use the results of this observation to

develop new weighting schemes to improve the accuracy

of automated RT links recovery techniques.

Zoning: Some researchers [12], [13], [14] observed that

if a term appears in different zones of a document, then

its importance changes. This idea that a term has different

importance to a reader depending on where it appears has

been investigated in the domain of information retrieval [12].

Search engines, such as Google, assign higher ranks to the

Web pages that contain the searched terms in specific parts

of the pages, e.g., their titles.

Erol et al. [13] used a questionnaire to ask participants

which parts of some documents are more important for

performing tasks. They concluded that title, figure, and

abstract are the most important parts for both searching

and understanding documents while figure caption is only

important for understanding.

Thus, we conclude that physically dividing documents

into zones, e.g., title and abstract, has been already inves-

tigated in the field of information retrieval. However, we

report the first analysis of developers’ visual attention on

SCEs using eye-tracking. In particular, we believe that peo-

ple’s preferences for documents may differ from developers’

preferences for source code.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

192

Eye-Tracking: Eye-trackers have recently been used to

study program comprehension. De Smet et al. [15] per-

formed 3 different eye-tracking experiments to investigate

the impact of Visitor, Composite and Observer design pat-

terns, and Model View Controller style on comprehension

tasks. Yusuf et al. [16] also conducted a study using an eye-

tracker to analyse how well a developer comprehends UML

class diagrams. Their results showed that developers tend to

use stereotypes, colours, and layout to have a more efficient

exploration and navigation of the class diagrams. Uwano

et al. [17] also conducted an experiment to characterise

the performance of developers while reviewing the source

code. They concluded that the more developers read the

source code, the more efficiently they find defects. Sharif

et al. [18] carried an eye-tracking experiment to analyse the

effect of identifier style, i.e., camel case and underscore, on

developers’ performance while reading source code. Sharif

et al. [19] suggested in their position paper that eye-tracking

system could be used in the field of traceability.

To the best of our knowledge, none of previous work

performed experiment to analyse what are important SCEs

for developers, how does SCE impact RT if different impor-

tance are given to each SCE, and the role of domain and

implementation entities. The work presented in this paper

is complementary to the existing IR-based RT techniques,

because it exploits the identifiers’ importance based on their

position (e.g., class or method names) or their role (e.g.,

domain or implementation).

III. EMPIRICAL STUDY

Goal: Our empirical study consists of two controlled ex-

periments. The goal of our first experiment is to identify

developers’ preferred SCEs using an eye-tracker during RT

links verification process. In particular, we want to observe

precisely which SCE receives more visual attention while

verifying RT links. In our second experiment, our goal is

to improve an IR-based RT links recovery technique by

proposing novel weighting schemes based on developers’

preferred SCEs, as observed in the eye-tracking experiment.

Study: In our first experiment, we use an eye-tracker to

capture developers’ visual attention. In our second experi-

ment, we use the observations from the first experiment to

design two novel weighting schemes, i.e., SE/IDF and

DOI/IDF . We perform experiments using both schemes

combined with LSI to measure the improvement of these

schemes when compared to TF/IDF weighting scheme.

Relevance: Understanding the importance of various SCEs

is important from the point of view of both researchers

and practitioners. For researchers, our results bring further

evidence to support our conjecture that all SCEs must be

weighted according to their importance. For practitioners,

our results provide concrete evidence that they should pay

attention to identifier names to help developers in performing

RT links recovery. In addition, using more domain terms in

source code would improve the accuracy of any IR-based

technique to create RT links.

Hypotheses: We formulate the following null hypotheses:

H01: All SCEs have equal importance for developers.

H02: Domain and implementation related SCEs have equal

importance for developers.

H03: There is no difference between the accuracy of a LSI-

based technique using TF/IDF and using the novel

weighting scheme, SE/IDF in terms of F-measure.

H04: There is no difference between the accuracy of a LSI-

based technique using TF/IDF and using the novel

weighting scheme, DOI/IDF in terms of F-measure.

H01 and H02 are related to RQ1 while H03 is related to

RQ2 and H04 is related to RQ3. In Section IV, we address

H01 and H02 while in Section V, we address H03 and H04.

IV. EXPERIMENT DESIGN: EYE-TRACKING

Eye-trackers are designed to work with the human visual

system, it provides the focus of attention during the cognitive

process of a human [20]. An eye-tracker provides us with

two main types of eyes-related data: fixations and saccades.

A fixation is the stabilisation of the eye on an object of

interest for a period of time, whereas saccades are quick

movements from one fixation to another. We use fixations

measure the subjects’ visual attention because comprehen-

sion occurs during fixations [21], [22]. This choice directs

our experiment settings.

A. Eye-tracking System

We use FaceLAB from Seeing Machine [23] which is

a video based remote eye-tracker. We use two 27” LCD

monitor for our experiment: the first one is used by the

experimenter to set up and run the experiments while

monitoring the quality of the eye-tracking data. We use the

second one (screen resolution is 1920 x 1080) for displaying

the Java source code and the questions to the subjects.

B. Experiment Settings

We show pieces of source code to developers and a

requirement to verify RT links. We make sure that all the

SCEs are easy to read and understand to avoid any bias.

We define an Area of Interest (AOI) as an rectangle that

encloses one (and only one) type of SCE. In this paper, we

establish two sets of AOIs for our source code stimulus.

The first set contains four SCEs (class name, method name,

variables, and comments) and we use this set to analyse

which SCE is more important than the others for subjects.

For the second set, each SCE could belong to either domain

or implementation concept. For each AOI, we calculate

time by adding the duration of all fixations available in

that AOI. Eye-tracker provides us the duration of each

2012 28th IEEE International Conference on Software Maintenance (ICSM)

193

fixation in milliseconds. The total time of fixation shows the

amount of time spent by each subject on specific AOI while

s/he focused on that part to understand it. The eye-tracker

captures the fixations at the granularity of line. Therefore,

for each identifier, we consider the line that contains the

identifier. We divide the total calculated time spent on a

SCE by that specific source code lines of code (LOC) to

have the average time for each SCE. For example, if the

comments are written on two lines and a subject spends 40
milliseconds to read comments, we divide 40 by 2 to get the

time spent on each comment line.

C. Subjects Selection

There are 26 subjects from École Polytechnique de

Montréal and University de Montréal. Most of the subjects

performed traceability creation/verification tasks in the past;

they are representative of junior developers, just hired in a

company. The subjects are volunteers and they have guaran-

teed anonymity and all data has been gathered anonymously.

We received the agreement from the Ethical Review Board

of École Polytechnique de Montréal to perform and publish

this study. There are 7 female and 19 male subjects. Out

of 26 subjects, there are 4 masters and 22 Ph.D. students.

All of the subjects have, on average, 3.39 years of Java pro-

gramming experience. The subjects could leave experiment

at any time, for any reason, without any kind of penalty.

No subject left the study and it took on average 20 minutes

to perform the experiment including setting up eye-tracking

system. The subjects were aware that they are going to

perform RT tasks, but do not know the particular experiment

research questions. There was only one case where we could

not have fixations because of subject’s eyeglasses. Thus, we

excluded that subject and also one pilot subject from our

study and analyse total 24 subjects.

D. Source Code Selection

We use a criteria to select the source code used in our eye-

tracking experiment. We use Java programming language

to perform our experiment because it is one of the OOP

languages that contains several different SCEs, i.e., class,

method, variable names, and comments. In addition, we

select short and easy to read source code that could fit on

one screen to have better control over eye-tracking system.

However, the source code size is similar to previous eye-

tracking studies [24], [25]. We remove the automatically

generated comments and we mix the domain and imple-

mentation related terms in the various SCEs, e.g., class or

method name. Font size was 20, and the 6 pieces of source

code have 19, 18, 19, 18, 24, 28 LOCs.

E. Links, Tasks, and Questionnaires

We ask subjects to manually verify RT links. A subject

can read a requirement and source code on screen to verify a

RT link between them. If a subject thinks that yes there must

be a link, s/he can simply write on the paper. We capture

subjects’ eye movement during the RT links verification

task. There are six requirements and source codes that

subjects must read to verify a link between them. We

manually created RT links to evaluate the subjects’ answers.

The first two authors manually created traceability links

between source code and requirements. The third author

verifies the manually created links to avoid any bias. One

of the subjects performed a pilot-study to validate that the

requirements used in the experiment are clear and simple

and the source code on the screen is easy to read and

understand. The tasks given to the subjects in our experiment

consist of answering specific questions by viewing Java

source code. Each question deals with the implementation

of a requirement. For example, a Java code implements the

requirement “CalculateArea class takes an input the radius of

a circle to calculate its area”. A subject can answer as ‘true”

if s/he thinks that the code is implementing the specified

requirement. Due to page limitation, we provides all the data

online 2

F. Procedure

We conduct the experiment in a quiet, small room where

the eye-tracking system is installed. We divide the experi-

ment into four steps. In the first step, we provide a single

page instruction and guidelines to the subjects to perform

the experiment. In the second step, we ask the subjects

to provide their Java programming experience in years, if

they have any. Before running the experiment, we briefly

give a tutorial to explain the procedure of the experiment

and the eye-tracking system (e.g., how it works and what

information is gathered by the eye-tracker).
The subjects are seated approximately 70cm away from

the screen in a comfortable chair with arms and head rests

and the eye-tracker is calibrated. This process takes less than

five minutes to complete. After this, the environment in front

of them is just a Java source code image with a question at

the right side of the image.
In the third step, we ask the subjects to read the source

code, requirements, and verify traceability links between

them. We instruct subjects that they can press space bar

button when they find the answer. Space bar button will take

them to a blank screen with next image number. Subjects

could move easily to write down their answer on the paper.

For each question, we ask subjects to spend adequate time to

explore the code while we capture subjects’ eye movements

during traceability verification process.
In the last step, we ask subjects’ feedback about source

code readability and understandability. We also ask their

source code entity preferences to verify RT links. For

example, if they prefer more comments over variable names

to verify a link. We ask this question to analyse if subjects

followed the same pattern in eye-tracking experiment or not.

2http://www.ptidej.net/download/experiments/icsm12a/

2012 28th IEEE International Conference on Software Maintenance (ICSM)

194

G. Analysis And Result

We perform the following analysis to answer RQ1, (see

Section I) and try to reject our null hypotheses. We have one

independent variable: the SCEs and we use two dependent

variables: (1) the total time of fixation spent by subjects

on each SCE and (2) the percentage of correct answers.

We use Taupe [15] to analyse the collected data. Taupe

software system is developed in Ptidej research group 3 to

help researchers visualise, analyse, and edit the data recorded

by eye-tracking systems.

For each subject, we calculated the total fixation time

that a subject spent at a specific SCE, e.g., class or method

name, in milliseconds. We apply Kruskal-Wallis rank sum

test on four sets of SCEs to analyse if subjects have equal

preference, in particular visual attention, for class, method,

variable names and comments or they are all statistically

different for them. The Kruskal-Wallis rank sum test is

a non-parametric method for testing the equality of the

population medians among different groups. The two sets

are subjects’ data that we collected when they performed

RT links verification task. Table I reports that p-value of

Kruskal-Wallis test, for all the SCEs results, are statistically

significant (the p-value is below than the standard significant

value, i.e., 0.05). In addition, a wide majority of the fixations

that show subjects’ visual attention are found on method

names and comments. We analyse that as soon as the sub-

jects read the requirement, they go directly to read method

names and–or comments. Also, we analyse all the heatmaps

consisting of cumulative fixations of all the subjects for RT

verification task. In Figure 1, we also present the heatmap

for one of our source codes which shows a large number of

fixations on the method name, comments, and requirement.

Moreover, we observed that subjects’ visual attention

is more on SCEs that belong to domain concept than

the implementation. For example, more fixations were at

“radius” identifier and very less on “bufRead” identifier.

We observed that subjects were more interested in domain

related SCEs to comprehend the source code. We have on

average 48% domain and 52% implementation SCEs in our

experiment. Subjects on average spent 4865.3 milliseconds

on domain identifiers, whereas only 1729.8 millisecond on

implementation SCEs. Our post-experiment question about

subjects’ personal ranking for SCEs to comprehend the

source code is also in agreement with observations we made

with the eye-tracking.

Thus, we reject H01 and H02 and answer our RQ1

that developers pay different visual attention on different

SCEs to verify RT links. In particular, developers’ visual

attention changes as the SCEs change. In addition, devel-

opers almost doubles the visual attention if a SCE appears

in domain or implementation concept of a program.

3http://www.ptidej.net/research/taupe/

Figure 1. A heatmap showing the cumulative fixations of subjects. The
colors red, orange, green and blue indicate the decrease in number of
fixations from highest to lowest.

Class Method Variable Comments p-value

Avg. time (ms) 2317.25 5701.1 3181.81 4542.41 < 0.01
Ranking 1 4 2 3 –

Table I
AVERAGE TIME ROW SHOWS AVERAGE TIME SPENT ON EACH SCE.
RANKING ROW SHOWS THE RANKING OF EACH SCE BASED ON ITS

IMPORTANCE/FIXATIONS (4 MEANS THE MOST IMPORTANT).

V. EXPERIMENT DESIGN: SE/IDF AND DOI/IDF

This section describes our proposed weighting schemes

SE/IDF and DOI/IDF to improve the accuracy of an

IR technique by integrating developers’ SCEs preferences.

We tune the proposed weighting schemes based on the

results that we achieved with our eye-tracking experiment,

Section III. We perform experiment on two datasets, i.e.,

Pooka and iTrust, to analyse how much SE/IDF and

DOI/IDF weighting schemes improve the F-measure. We

explain all the steps of the experiment in this section.

Proposed weighting schemes are supported by FacTrace4 [4].

IR techniques give importance to a term based on its

probability or frequency in the corpus. We analyse that

subjects have different preferences, for different SCEs, to

perform RT verification task. Our proposed SE/IDF and

DOI/IDF weighting schemes allow a developer to provide

extra parameters to tune the weighting scheme to increase

or decrease a term’s importance in a corpus.

Term frequency (TF) is described by a t×d matrix, where

t is the number of terms and d is the number of documents

(here document is referred to the requirement or source

code) in the corpus. The TF is often called local weight. The

most frequent term has more weight in TF but it does not

mean that it is an important term. In our proposed scheme,

we consider each source code entity as a separate entity and

assign weights according to its importance:

SCj = Cj ∪Mj ∪ Vj ∪ Cmtj

where, SCj is the source code of a classj composed of

entities that are class (Cj), method name (Mj), variable

4http://www.factrace.net

2012 28th IEEE International Conference on Software Maintenance (ICSM)

195

name (Vj), and comments (Cmtj). A source code entity

could belong to domain Dj or Aj implementation concept

of a program.

TFi,j =
ni,j

∑

k nk,j

where ni,j is the number of occurrences of a term ti in a

document dj , and
∑

k nk,j is the total number of occur-

rences of all terms in the document. The inverse document

frequency (idf) is the quantity of the term distribution in the

corpus. The common calculation method is as follows:

IDFi = log
2

(

|D|

d : |ti ∈ d|

)

where |D| is the total number of documents in the collection,

and |d : ti ∈ d| is the number of documents in which the

term ti appears. The larger d : |ti ∈ d| in documents set, the

smaller contribution of the term in the corpus.

scetfi,j =



































































tfi,j × α if ti ∈ Cj \Rj

tfi,j × (α× λ1) if ti ∈ Cj ∩Rj

tfi,j × β if ti ∈ Mj \Rj

tfi,j × (β × λ2) if ti ∈ Mj ∩Rj

tfi,j × γ if ti ∈ Vj \Rj

tfi,j × (γ × λ3) if ti ∈ Vj ∩Rj

tfi,j × δ if ti ∈ Cmtj \Rj

tfi,j × (δ × λ4) if ti ∈ Cmtj ∩Rj

tfi,j ×Ψ if Rj \ SCj

Where scetf is source code entity term frequency, α, β, γ, δ
are weights that can be tuned by a developer according to the

importance of each SCE, Rj is a jth requirement, and λk is

term weight if it appears in both SCE and requirement. For

example, if a same term appears in both class name and the

requirement then it will multiply the weights by λ1. Where

Ψ is the weight for a requirement term that does not appear

in source code. In the case, where ti appears in more than

one of the subset Cj \Rj ,Mj \Rj , Vj \Rj , Cmtj \Rj , Cj∩
Rj ,Mj ∩ Rj , Vj ∩ Rj , and Cmtj ∩ Rj , then we compute

scetfi,j for each of the subset and we chose the maximum

value. Thus, we define SE/IDF (source code entity/inverse

document frequency) as follow:

SE/IDFi,j = scetfi,j × IDFi

Now, we extend our SE/IDF to consider the domain

and implementation concepts of a program as follow:

DOITFi,j =

{

tfi,j ×Υ if ti ∈ Dj

tfi,j × Φ if ti ∈ Aj

Where DOITF is domain or implementation term

frequency, Υ and Φ are term weight. For example, if a term

belongs to domain concept of a system then we multiply

term by Υ. Thus, now we define DOI/IDF (domain or

implementation/inverse document frequency) as follows:

DOI/IDFi,j = (SE/IDFi,j +DOITFi,j) × IDFi

A. Objects

We use a criteria to select the source code that are used

in our experiment. First, we select open-source systems,

Pooka5 and iTrust 6 , because their source codes are freely

available thus other researchers can replicate our experiment.

Second, we avoid small systems that do not represent the real

world systems usually handled by developers. We download

the source code of Pooka v2.0 and iTrust v1.0 from their

respective subversion repositories.

Pooka is an email client written in Java using the JavaMail

API. Pooka version 2.0 has 244, 870 LOC, 298 classes,

20, 868 functions, and 90 requirements. iTrust is a medical

application. iTrust is developed in Java and it has 19, 604
LOC, 526 classes, 3, 404 functions, and 35 requirements.

B. Procedure

We perform the following steps to create RT links be-

tween source code and requirements using LSITF/IDF ,

LSISE/IDF , and LSIDOI/IDF .

Gathering Requirements, Source Code and Building

Oracles: We recover 90 functional requirements for Pooka

in our previous work [4]. We use these requirements to

manually create traceability links between requirements and

source code. In the case of Pooka, two of the authors create

traceability links and the third author verifies all the links to

accept or reject them. In the case of iTrust, we use online 6

available requirements and manually built traceability links.

OracleiTrust and OraclePooka contain 546 and 183 traceability

links respectively.

Extracting Concepts: We use LDA (Latent Dirichlet Allo-

cation) to extract domain and implementation concepts from

the source code. LDA considers that documents are repre-

sented as a mixture of words acquired from different latent

topics, where each topic is characterised by a distribution of

words. More details on using LDA to extract domain concept

could be found in [8]. LDA takes three parameters α, β,
and k to create the topics. Where α is the dirichlet hyper-

parameter for topic proportions, β is the dirichlet hyper-

parameter for topic multinomials, and k is the number of

topics. In this experiment, as in previous work [7], [26],

the values for the parameters α and β are set to 25 (50/k)

and 0.1 respectively. The value assigned for k is 2. We use

MALLET7 to extract concept from source code using LDA.

Generating Corpus: To process source code, we use Java

parser [11] to extract all source code identifiers. The Java

parser builds an abstract syntax tree (AST) of source code

that can be queried to extract required identifiers, e.g., class,

method names, etc. Each Java source code file is thus divided

in four SCEs and textual information is stored in their

5http://www.suberic.net/pooka/
6http://agile.csc.ncsu.edu/iTrust
7http://mallet.cs.umass.edu

2012 28th IEEE International Conference on Software Maintenance (ICSM)

196

Technique Precision Recall F-Measure p-value

Pooka LSITF/IDF 14.71 21.07 9.52 < 0.01
LSISE/IDF 18.30 24.86 12.47
LSIDOI/IDF 25.73 26.42 14.56

iTrust LSITF/IDF 36.43 33.14 17.76 < 0.01
LSISE/IDF 38.66 33.97 18.21
LSIDOI/IDF 39.55 35.07 20.64

Table II
AVERAGE PRECISION, RECALL, AND F-MEASURE VALUES AND

WILCOXON P-VALUES.

respective source code files. We use these files to apply

proposed weighting schemes to create RT links.

Pre-processing the Corpus: We perform standard state-of-

the-art [2] pre-processing steps. We remove non-alphabetical

characters and then use the classic Camel Case and un-

derscore algorithm to split identifiers into terms. Then, we

perform the following steps to normalise requirements and

SCEs: (1) convert all upper-case letters into lower-case

and remove punctuation; (2) remove all stop words (such

as articles, numbers, and so on); and (3) perform word

stemming using the Porter Stemmer to bring back inflected

forms to their morphemes.

Experiment Settings: Proposed weighting schemes require

parameters to tune the equation. We assign weights to

SE/IDF and DOI/IDF equations’ parameters based on

subjects’ SCEs preferences during eye-tracking experiment.

We use ranking based on fixations(see Table I), observed

during eye-tracking experiment, to define the weights of

α, β, γ, and δ (see Section V). We normalise the ranking and

assign weights to SCEs. To tune parameters of SE/IDF
and DOI/IDF , we use the average fixation time that

subjects spent on each SCE, domain, and implementation

related SCEs. We assign 0.4, 0.3, 0.2, and 0.1 weight to

β, δ, γ, and α respectively. If a term appears in both require-

ment and source code, then we simply double the weight of

that term. We use lowest SCE weight and divide it by 2
to get the weight if a term only appears in requirement

but not in source code. Thus, we assign weight 2 and

0.05 to λk and Ψ respectively. We observe that 74% and

26% of time subjects looked at domain and implementation

identifiers respectively. Thus, we set 0.74 and 0.26 for Υ
and Φ respectively.

RT Links Creation: We use LSI [2] to create LSITF/IDF ,

LSISE/IDF , and LSIDOI/IDF RT links. The processed

corpus is transformed into a term-by-document matrix,

where each requirement and source code document is rep-

resented as a vector of terms. The values of the matrix

cells represent the weights of the terms in the documents,

which are computed using the traditional TF/IDF and

proposed SE/IDF and DOI/IDF weighting schemes.

Once all the requirements and source code documents have

been represented in the LSI subspace, we compute the

similarities between requirements and source code to create

RT links. We take the cosine between their corresponding

vector representations for calculating the similarity.

C. Analysis Method

We perform the following analysis on the recovered RT

links to answer our research questions, RQ2 and RQ3, and

attempt to reject our null hypotheses. We use LSISE/IDF

, LSIDOI/IDF , and LSITF/IDF as independent variables

and F-measure as a dependent variable to empirically at-

tempt to reject the null hypotheses. We compute F-measure

[11] of the LSISE/IDF , LSIDOI/DIF , and LSITF/IDF

RT links in comparison to OraclePooka and OracleiTrust.

We use a threshold t to prune the set of traceability links,

keeping only links whose similarity values are greater than

0. We use different values of t from 0.01 to 1 per step of

0.01 to obtain different sets of traceability links with varying

precision and recall values. We use the same t number of

threshold values, for comparing two techniques, to have the

same number of data points for paired statistical test. We

use these different sets to assess which technique provides

better F-measure values. Then, we use the Wilcoxon rank

sum test to assess whether the differences in F-measure

values, in function of t, are statistically significant among the

LSISE/IDF , LSIDOI/DIF , and LSITF/IDF techniques.

D. Results

Figure 2 shows the F-measure values of LSITF/IDF ,

LSISE/IDF , and LSIDOI/IDF . It shows that LSIDOI/IDF

provides better F-measures at all the different values of

threshold t. Figure 2 shows that assigning different weights

to SCEs, depending on their role and position in source code,

provides better accuracy.

Table II shows that LSIDOI/IDF statistically improves on

average up to 11.01%, 5.35%, 5.03% for precision, recall,

and F-measure respectively. Results show that adding do-

main and implementation related SCEs information statisti-

cally improve over SE/IDF weighting. We perform Wilcoxon

rank sum test on F-measure scores to analyse if the improve-

ment is statistically significant or not.

We have statistically significant evidence to reject the

H03 and H04 hypothesis for both datasets’ results. Table

II shows that the p-values are below than the standard

significant value, i.e., α = 0.05. Thus, we answer the

RQ2 and RQ3 as follow: integrating the developers

knowledge, i.e., SCEs preferences, in the IR technique

statistically improves the accuracy. Adding the domain

and implementation related SCEs information yield better

accuracy than SE/IDF. Integrating developers’ knowledge

in the automated techniques could yield better accuracy,

thus it is important to further observe and analyse devel-

opers to find out how they perform RT tasks.

VI. DISCUSSION

In response to the research questions defined in Section

I, we analyse that developers have different preferences for

different SCEs. Mostly, developers read method names to

2012 28th IEEE International Conference on Software Maintenance (ICSM)

197

search for the specific implementation of a requirement. We

observe that as soon as developers read a requirement they

start looking for specific methods of interest and read the

comments. Developers least bother with the class names

because one class may contain several functionalities [11].

This is also the case for variable names because variable

names could be object names of other classes. To avoid

the bias of eye-tracking observations, we asked our subjects

through a post-experiment questionnaire about the source

code entities that help them to verify RT links. The results

of cross verification questions are in agreement with the

observations that we made with the eye-tracking system.

This step gives us confidence in our findings and mitigates

the threats to validity.

In regular document zoning, researchers mentioned that

the title of a document is important [12], [13], [14]. If we

map a document structure into source code structure then

class name is equal to a document title. In our experiment,

we analyse that developers do not give preference to class

name. We assigned more weight to class name and observed

that it decreases the F-measure value. Thus, we conclude that

a document is not same as source code. In addition, Figure

2 shows that if we only consider SCEs and assign weights,

it does not improve as much as if we integrate the domain

and implementation related SCEs information.

We integrated our eye-tracking observations in an IR-

based technique, to analyse if it helps, to improve its

accuracy when compared to LSITF/IDF . Our results show

that observing how developers perform RT tasks and inte-

grating those observations in an automated RT technique can

improve its accuracy. This is the first step towards using eye-

tracking systems to learn how developers perform RT tasks.

Results are promising and exploring more into previously

mentioned direction (observing developers) can improve the

accuracy of automated techniques.

We analyse less effectiveness of SE/IDF and

DOI/IDF on iTrust than on Pooka. We investigate

the reason, we find that in iTrust, many classes do not

contain all the SCEs, i.e., class, method, variable name,

and comments. In addition, we observe that iTrust contains

more implementation related SCEs than domain. In the case

of Pooka, we observe that it contains more domain related

SCEs than implementation. We observe that if a dataset

contains all the SCEs and more domain related identifiers

then proposed SE/IDF and DOI/IDF weighting

schemes perform better accuracy in terms of F-measure.

However, even in the case of iTrust, it has less domain

related SCEs and fewer classes containing all the SCEs;

the proposed weighting schemes provide better accuracy.

We observe that as the dataset size increases, SE/IDF
and DOI/IDF provide much better results. For example,

Pooka is ten times bigger than iTrust dataset and Pooka

provides better results than iTrust. Our conjecture is that on

bigger datasets SE/IDF and DOI/IDF would provide

better results. However, we need more empirical studies to

support this claim.

We set the weights of our weighting schemes based on the

observations we made during our eye-tracking experiment. It

is quite possible that using other weights may yield different

results. However, with the current parameters, we observe

that proposed weighting schemes outperform traditional

TF/IDF . We will perform more case studies in future to

analyse the impact of current static weight on other datasets.

VII. THREATS TO VALIDITY

Several threats limit the validity of our experiments. We

now discuss these potential threats and how we control or

mitigate them.

Construct validity: Construct validity concerns the relation

between theory and observations. In our empirical study,

they could be due to measurement errors. We use time spent

on each AOI and percentages of correct answer to measure

the subjects’ performances. These measures are objective,

even if small variations due to external factors, such as

fatigue, could impact their values. We minimise this factor

by using small source code and all the subjects finished the

whole experiment within 20 minutes. In our empirical study,

we use the widely-adopted metric F-measure to assess the

IR technique as well as its improvement. The oracle used to

evaluate the tracing accuracy could also impact our results.

To mitigate such a threat, two authors manually created

traceability links for Pooka and then the third author verified

the links. In addition, Pooka oracle was not specifically

built for this empirical study. We used it in our previous

studies [4], [11]. We use iTrust traceability oracle developed

independently by the developers who did not know the goal

of our empirical study.

Internal Validity: The internal validity of a study is the

extent to which a treatment affects change in the dependent

variables. Learning threats do not affect our study for a

specific experiment because we provide six different source

codes and the subjects did not know the experiment goal.

Selection of subject threats could impact our study due to the

natural difference among the subjects’ abilities. We analysed

24 out of 26 subjects with various experience to mitigate

this threat. For our proposed technique, individual subjects’

Java experience can cause some fluctuation in fixation that

may lead to biased results. However, we minimised this

threat by asking all subjects for their general source code

comprehension preference at the end of the experiment.

The results of our post-experiment questionnaire are in

agreement with our eye-tracking experiment findings.

External Validity: The external validity of a study relates

to the extent to which we can generalise its results. The

issue of whether students as subjects are representative of

software professionals is one of the threats to generalise our

2012 28th IEEE International Conference on Software Maintenance (ICSM)

198

iTrust Pooka

Figure 2. LSITF/IDF , LSISE/IDF , and LSIDOI/IDF F-measure values of iTrust and Pooka

result. However, our subjects are graduate students with the

average 3.39 years of Java experience and they have good

knowledge of Java programming. In addition, some of the

subjects have industrial experience. We use small source

code to perform the eye-tracking experiment and in some

development environment, e.g., Eclipse, developers’ source

code preferences could be different. Using development

environment with eye-tracking system could weaken the

control over the experiment and increase fixation offsets.

Therefore, we use post experiment question to ask subjects

about their general source code comprehension preference to

avoid bias. Our empirical study is limited to two systems,

Pooka and iTrust. They are not comparable to industrial

projects, but the datasets used by other authors [2], [3],

[9] to compare different IR techniques have a comparable

size. However, we cannot claim that we would achieve

same results with other systems. Different systems with

different identifiers’ quality, reverse engineering techniques,

requirements, using different software artifacts and other

internal or external factors [5] may lead to different results.

However, the two selected systems have different source

code quality and requirements. Our choice reduces this threat

to validity.

Conclusion validity: Conclusion validity threats deal with

the relation between the treatment and the outcome. We

pay attention not to violate assumptions of the performed

statistical tests. In addition, we use non-parametric tests that

do not make any assumption on the data distribution.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we conjecture that understanding how de-

velopers verify RT links could help improving the accuracy

of IR-based techniques to recover RT links. To support this

conjecture, we ask three research questions pertaining to (1)

important source code entities (SCEs) used by developers

to verify RT links; (2) domain vs. implementation-related

entities; and (3) the use of SCEs to propose the new

weighting schemes, SE/IDF and DOI/IDF , and to build

a LSI-based technique to recover RT links.

We answer these RQs as follows: first, we analysed the

eye movements of 24 subjects to identify their preferred

SCEs when they read source code to verify RT links using

an eye-tracker. Results show that subjects have different

preferences for class names, method names, variable names,

and comments. They search/comprehend source code by

reading method names and comments mostly. We reported

that, as soon as developers read a requirement, they pay

immediately attention to method names and then comments.

We analysed that subjects gives more importance to a SCE

if it appears in domain concept of a program.

Second, we propose two new weighting schemes namely

SE/IDF and DOI/IDF , to assign different weights to

each SCE. For DOI/IDF , we need domain and imple-

mentation SCEs for each class. In this paper, we use LDA

to distinguish domain concepts from implementation. More

advance and complex techniques [7] could be used to

separate domain and implementation concepts.

Third, using developers’ preferred SCEs and their belong-

ing to either domain or implementation, we then propose

SE/IDF and DOI/IDF , new weighting schemes based

on the results of the two previous RQs. SE/IDF and

DOI/IDF replace the usual TF/IDF weighting scheme

so that we could integrate the observations about the sub-

jects’ preferred SCEs ranked list into TF/IDF . We use a

LSI that uses SE/IDF and DOI/IDF , on two datasets,

iTrust and Pooka to show that, in general, the proposed

schemes have a better accuracy than TF/IDF in terms of

F-measure. In both systems, proposed weighting schemes

statistically improve the accuracy of the IR-based technique.

We analyse that assigning more weight to domain concepts

yields better accuracy.

There are several ways in which we are planning to

continue this work. First, we will apply SE/IDF and

DOI/IDF on more datasets. Second, we will analyse in

2012 28th IEEE International Conference on Software Maintenance (ICSM)

199

which SCE a requirement term plays a more important role.

Third, we will apply proposed weighting schemes on hetero-

geneous software artifacts to analyse the improvement of the

accuracy. Fourth, we will apply SE/IDF and DOI/IDF
on feature location techniques. Lastly, we will use some

automated techniques to tune SE/IDF and DOI/IDF
parameters to improve its accuracy.

ACKNOWLEDGMENT

The authors would like to thank the participants of the

study as this work would not be possible without their

collaboration. This work has been partially supported by the

NSERC Research Chairs on Software Cost-effective Change,

Evolution and on Software Patterns and Patterns of Software.

REFERENCES

[1] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the
requirements traceability problem,” 1st International Confer-
ence on Requirements Engineering, pp. 94–101, April 1994.

[2] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic indexing,”
in Proceedings of the 25th International Conference on Soft-
ware Engineering. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 125–135.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and
E. Merlo, “Recovering traceability links between code and
documentation,” IEEE Transactions on Software Engineering,
vol. 28, no. 10, pp. 970–983, 2002.

[4] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Trust-based
requirements traceability,” in Proceedings of the 19

th Inter-
national Conference on Program Comprehension, S. E. Sim
and F. Ricca, Eds. IEEE Computer Society Press, June 2011,
10 pages.

[5] ——, “Factors impacting the inputs of traceability recovery
approaches,” in Software and Systems Traceability, A. Zis-
man, J. Cleland-Huang, and O. Gotel, Eds. New York:
Springer-Verlag, 2011, ch. 7.

[6] J. Wang, X. Peng, Z. Xing, and W. Zhao, “An exploratory
study of feature location process: Distinct phases, recurring
patterns, and elementary actions,” in Proceedings of 27th
IEEE International Conference on Software Maintenance
(ICSM), 2011, pp. 213 –222.

[7] S. Abebe and P. Tonella, “Towards the extraction of domain
concepts from the identifiers,” in 18th Working Conference
on Reverse Engineering (WCRE), 2011, pp. 77 –86.

[8] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business
topics in source code using latent dirichlet allocation,” in
Proceedings of the 1st India software engineering conference.
New York, NY, USA: ACM, 2008, pp. 113–120.

[9] D. Poshyvanyk, Y.-G. Guéhéneuc, A. Marcus, G. Antoniol,
and V. Rajlich, “Feature location using probabilistic ranking
of methods based on execution scenarios and information re-
trieval,” IEEE Transactions on Software Engineering, vol. 33,
no. 6, pp. 420–432, 2007.

[10] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-
code traceability for object-oriented systems,” Annals of Soft-
ware Engineering, vol. 9, no. 1, pp. 35–58, 2000.

[11] N. Ali, Y.-G. Guéhéneuc, and G. Antoniol, “Requirements
traceability for object oriented systems by partitioning source
code,” in 18th Working Conference on Reverse Engineering
(WCRE), oct. 2011, pp. 45 –54.

[12] G. Kowalski, Information retrieval architecture and algo-
rithms. Springer-Verlag New York Inc, 2010.

[13] B. Erol, K. Berkner, and S. Joshi, “Multimedia thumbnails
for documents,” in Proceedings of the 14th annual ACM
international conference on Multimedia, ser. MULTIMEDIA
’06. New York, NY, USA: ACM, 2006, pp. 231–240.

[14] Y. Sun, P. He, and Z. Chen, “An improved term weighting
scheme for vector space model,” in Proceedings of 2004 Inter-
national Conference on Machine Learning and Cybernetics,
vol. 3. IEEE, 2004, pp. 1692–1695.

[15] B. De Smet, L. Lempereur, Z. Sharafi, Y.-G. Guéhéneuc,
G. Antoniol, and N. Habra, “Taupe: Visualising and analysing
eye-tracking data,” System for Science of Computer Program-
ming, 2011.

[16] S. Yusuf, H. Kagdi, and J. Maletic, “Assessing the comprehen-
sion of uml class diagrams via eye tracking,” in Proceedings
of 15th IEEE International Conference on Program Compre-
hension (ICPC). IEEE, 2007, pp. 113–122.

[17] H. Uwano, M. Nakamura, A. Monden, and K.-i. Matsumoto,
“Analyzing individual performance of source code review
using reviewers’ eye movement,” in Proceedings of the 2006
symposium on Eye tracking research & applications (ETRA).
New York, NY, USA: ACM, 2006, pp. 133–140.

[18] B. Sharif and J. Maletic, “An eye tracking study on camelcase
and under score identifier styles,” in Proceedings of 18th In-
ternational Conference on Program Comprehension (ICPC).
IEEE, 2010, pp. 196–205.

[19] B. Sharif and H. Kagdi, “On the use of eye tracking in
software traceability,” in Proceedings of the 6th International
Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE), NY, USA, 2011, pp. 67–70.

[20] A. Duchowski, “A breadth-first survey of eye-tracking ap-
plications,” Behavior Research Methods, vol. 34, no. 4, pp.
455–470, 2002.

[21] K. Rayner, “Eye movements in reading and information
processing: 20 years of research.” Psychological bulletin, vol.
124, no. 3, p. 372, 1998.

[22] A. Duchowski, Eye tracking methodology: Theory and prac-
tice. Springer-Verlag New York Inc, 2007.

[23] Seeing Machine, “Seeing Machine’s website - FaceLAB,”
http://www.seeingmachines.com/product/facelab/, 2012, ac-
cessed July 13 in 2012.

[24] B. Sharif, M. Falcone, and J. I. Maletic, “An eye-tracking
study on the role of scan time in finding source code defects,”
in Proceedings of the Symposium on Eye Tracking Research
and Applications. New York, NY, USA: ACM, 2012.

[25] R. Bednarik and M. Tukiainen, “An eye-tracking methodol-
ogy for characterizing program comprehension processes,” in
Proceedings of the 2006 symposium on Eye tracking research
& applications. New York, NY, USA: ACM, 2006, pp. 125–
132.

[26] T. Griffiths and M. Steyvers, “Finding scientific topics,”
Proceedings of the National Academy of Sciences of the
United States of America, vol. 101, no. Suppl 1, pp. 5228–
5235, 2004.

2012 28th IEEE International Conference on Software Maintenance (ICSM)

200

