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a b s t r a c t

This paper addresses the problems in scheduling a precedence constrained tasks of parallel application
with random tasks processing time and edges communication time on Grid computing systems so as to
minimize the makespan in stochastic environment. This is a difficult problem and few efforts have been
reported on its solution in the literature. The problem is first formulated in a form of stochastic scheduling
model on Grid systems. Then, a stochastic heterogeneous earliest finish time (SHEFT) scheduling
algorithm is developed that incorporates the expected value and variance of stochastic processing time
into scheduling. Our rigorous performance evaluation study, based on randomly generated stochastic
parallel application DAG graphs, shows that our proposed SHEFT scheduling algorithm performs much
better than the existing scheduling algorithms in terms of makespan, speedup, and makespan standard
deviation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

The popularity of the Internet and the availability of pow-
erful computers and high-speed networks as low-cost com-
modity components make it possible to construct large-scale
high-performance Grid computing systems. These technical op-
portunities enable the sharing, selection, and aggregation of
geographically distributed heterogeneous resources for solving
large-scale problems in science, engineering, and commerce [1,2].
To achieve the promising potentials of tremendous distributed
resources, effective and efficient scheduling algorithms are funda-
mentally important. The scheduling problem deals with the coor-
dination and allocation of resources so as to efficiently execute the
users’ applications. Stochastic Grid parallel applications are sub-
mitted by users and generally independent of each other, which
request systems’ services for their execution. The single parallel
application is usually consisted of precedence constrained tasks
that they generally require the use of different kinds of resources,
e.g., computation, communication (network), storage resources, or
specific instruments. A popular representation of a parallel ap-
plication is the directed acyclic graph (DAG) in which the nodes
represent application tasks and the directed arcs or edges repre-
sent inter-task dependencies, such as task’s precedence. In some
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cases, weights can be added to nodes and edges to express com-
putational costs and communicating costs, respectively. Schedul-
ing aims at meeting user demands (e.g., in terms of makespan,
sum of weighted completion times, maximum lateness, and num-
ber of tardy jobs) and the objectives represented by the resource
providers (e.g., in terms of profit and resource utilization effi-
ciency), while maintaining a good overall performance (through-
put) for the Grid computing systems [3]. It is widely known that
the problem of finding the optimal schedule is NP-complete [4]
in the general case. Therefore, heuristics can be used to obtain a
sub-optimal scheduling rather than parsing all possible schedules.
These methods may obtain suboptimal results, but they are much
computational cheaper.

List scheduling is a very popular method for precedence
constrained task scheduling based on the DAG model. The basic
idea of list scheduling is to assign priorities to the tasks of the
DAG and place the tasks in a list arranged in descending order of
priorities. A task with a higher priority is scheduled before a task
with lower priority, and ties are broken using some method. An
important issue in DAG scheduling is how to rank (or weigh) the
tasks and edges (when communication delay is considered). The
rank of a task is used as its priority in the scheduling. Once the
tasks and edges are ranked, task-to-resource assignment can be
found by considering the following two problems to minimize the
makespan: how to parallelize those tasks having no precedence
orders in the graph and how to make the time cost along with the
critical path in the DAG as small as possible.

There are several effective Grid heuristics scheduling algo-
rithms such as mapping heuristic (MH) [5], dynamic critical
path(DCP) [6], levelized-min time (LMT) algorithm [7], dynamic-
level scheduling (DLS) algorithms [8], critical-path-on-a-machine
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(CPOP) algorithms and heterogeneous earliest-finish-time (HEFT)
algorithm [9–12]. The HEFT algorithm selects the task with the
highest upward rank (an upward rank is defined as the maximum
distance from the current node to the exiting node, including the
computational cost and communication cost) at each step. The se-
lected task is then assigned to the processor which minimizes its
earliest finish time with an insertion-based approach which con-
siders the possible insertion of a task in an earliest idle time slot be-
tween two already-scheduled tasks on the same resource. The time
complexity of HEFT is O(m × v2), where m is the number of pro-
cessors and v is the number of tasks. HEFT algorithm significantly
outperforms DLS, DCP, LMT, MH, and CPOP algorithms in terms of
average makespan, speedup, etc., [9].

Most of the above researches assume that parameters such as
task processing time and communication time between prece-
dence constrained tasks are fixed and deterministic which are
known advance. However, in real-world problems, it usually does
not suffice to find good schedules for fixed deterministic pro-
cessing time, since tasks usually contain conditional instructions
and/or operations that could have different execution times for dif-
ferent inputs [13–16]. A natural step to tackle this problem is to
consider stochastic scheduling, that is, to interpret processing time
and communication time as random variables and to measure the
performance of an algorithmby its expected objective value. In this
paper, let V {v1, . . . , vn} be a set of tasks of a parallel application
that have to be scheduled on heterogeneous Grid systems with m
heterogeneous machines (or unrelated parallel machines) so as to
minimize the schedule length (makespan). Any machine can pro-
cess at most one job at a time, and every job has to be processed on
one of themmachines. In contrast to the deterministic version, the
crucial assumption is that the task processing timew(vi) and com-
munication timew(ei,j) are not known in advance. Instead, one as-
sumes that the task processing time and communication time are
random variables from which we are just given their distribution
function. Throughout the paper, task durations are supposed to be
stochastically independent.

Since there are a number of scheduling models with different
conditions considered in stochastic scheduling [17–19,13,20,14,
21–24], it is convenient to refer to them in the notation of Graham
et al. [23] and Allahverdi et al. [24]. Each problem is denoted by the
standard three-field notation α|β|γ with the following intended
meaning.

• The field α specifies the machine environment. For instance,
α = P denotes the model with identical parallel machines,
α = Q denotes the problem where machines have different
speeds sk, and the processing time of task vi on machine k is
w(vi)/sk, and α = 1 is used for problemswith a singlemachine.

• The field β contains the task characteristics. It can be empty,
which implies the default of non-preemptive, precedence
constrained tasks. Possible entries are, amongmanyothers, prec
for precedence constrained tasks, or pmtn for preemptive tasks.

• The field γ denotes the objective function. It is generally a
function of the completion times of the tasks. For the total
weighted completion time, we write γ = ΣwiCi. For the
makespan γ = Cmax.

As an example, Q |vi ∼ stoch, prec|E[Cmax] is the stochastic
scheduling problem to minimize the makespan of precedence
constrained tasks on Grid heterogeneous parallel machines.

Precedence constraints between tasks play a particularly im-
portant role in most real-world parallel applications. Therefore,
it would be both of theoretical and of practical interest to in-
corporate those constraints into stochastic scheduling. Consid-
ering stochastic tasks with precedence constraints, such as the
stochastic DAG model, Skutella and Uetz obtained a performance
guarantee of (1 + ε)


1 +

m−1
mε

+ max

1, m−1

m ∆


for P|vi ∼
stoch, prec|E[wiCi] (here, ε is an arbitrary constant) [21], where
they assume that the squared coefficients of variation of all pro-
cessing time w(v) are bounded by some constant ∆ that is ex-
pressed as Var(w(v))/E[w(v)]2 ≤ ∆, for all v ∈ V . For∆ ≤ 1, the
performance guarantees canbe simplified to 3+2

√
2−(1+

√
2)/m.

In most case, the schedule length (makespan) is the key objective
of stochastic scheduling. If all tasks are identically and exponen-
tially distributed, Chandy and Reynolds show that a highest level
first policy minimizes the expected makespan E[Cmax] for the spe-
cial case of two machines and in-tree precedence constraints [22].
Here, the level of a task simply denotes the number of succes-
sors in the precedence graph. They also give counterexamples for
the case of more than two machines. Bruno extends this result
by proving that highest level first even minimizes the makespan
stochastically [25]. Pinedo andWeiss extend Chandy and Reynolds
result to the case where the exponential processing time distribu-
tions of tasks of different levels may be different [26]. For the case
of more than two machines, Papadimitriou and Tsitsiklis prove
asymptotic optimality of a highest level first policy [27]. Their as-
sumptions are that all processing times are independent and iden-
tically distributed, and this distribution has finite moments of any
order. This is particularly true for the exponential distribution.
Although somewhat counter-intuitive, results for out-trees (out-
forests) seem to be much more difficult to obtain: Coffman and
Liu show that a preemptive highest level first policy is optimal to
minimize the expected makespan for some rather restricted sce-
narios [28]. These results, however, are restricted to somewhat ar-
tificial precedence constrained tasks (such as in-tree precedence
constraints) and execution on identical machines.

To the best of our knowledge, no results of scheduling algorithm
were previously known forQ |vi ∼ stoch, prec|E[Cmax] onGridwith
m heterogeneous machines. In recognition of this, we drive
a stochastic scheduling model for this problem. In order to
effectively scheduling precedence constrained stochastic tasks, we
propose a stochastic heterogeneous earliest finish time (SHEFT)
scheduling algorithm, which incorporate the stochastic attribute,
such as expected value and variance, of task processing time and
edge communication time into scheduling. At last, we establish
a stochastic scheduling simulation experiment platform and
compare SHEFTwith twowell-known scheduling algorithms HEFT
and DCP.

The rest of the paper is organized as follows: In Section 2, we
describe the definitions and background of stochastic scheduling
problem on Grid computing systems. In Section 3, we propose
a SHEFT scheduling algorithm. In Section 4, we verify the
performance of the proposed algorithm by comparing the results
obtained from performance evaluation and conclude the paper in
Section 5.

2. Definitions and background

2.1. The Grid scheduling architecture

A Grid is a system of high diversity, which geographically
distributed sites interconnect through WAN. We define a site as
a location that contains many computing resources of different
processing capabilities. Heterogeneity and dynamicity cause
resources in grids to be distributed or in clusters rather than
uniformly. We can also generalize a scheduling process in the Grid
into two stages: resource discovering and filtering and resource
selecting and scheduling according to certain objectives. As a study
of scheduling algorithms is our primary concern here, we focus on
the second step. Based on these observations, Fig. 1 depicts amodel
of Grid scheduling systems.

As Grid resources are under the control of local schedulers,
which provide access point to the resources, the central Grid
scheduler must be built on top of the existing local schedulers.
Basically, a central Grid scheduler (GS) receives applications
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Fig. 1. Grid scheduling architecture.

from Grid users, selects feasible resources for these applications
according to acquired information from the Grid Information
Service module, and finally generates application-to-resource
mappings, based on certain objective functions and predicted
resource performance [29]. The central Grid scheduler is simpler
to implement, easier to manage, and quicker to repair in case of
a failure. Information about the status of available resources is
very important for a Grid scheduler to make a proper schedule,
especiallywhen the heterogeneous and dynamic nature of the Grid
is taken into account. The role of the Grid information service (GIS)
is to provide such information toGrid schedulers. GIS is responsible
for collecting and predicting the resource state information, such
as CPU capacities, memory size, communication capacity, software
availabilities, and load of a site in a particular period [29]. The
launching and monitoring (LM) module implements a finally-
determined schedule by submitting applications to selected
resources, staging input data and executables if necessary, and
monitoring the execution of the applications [29].

In our scheduling model, the Grid system is modeled as an
undirected graph GT = ⟨R, L⟩, R is a finite set of p vertices,
and L is a finite set of virtual fully connected undirected edges
or arcs [11]. A vertex pk represents the machine k with different
processing capabilities, such as computation capacity sk (measured
in millions instruction per second, MIPS), and also includes
storages, programs, etc. An undirected edge ln,k represents a
bidirectional communication link between the incident machines
pn and pk, which represents not only a physical connection, but
also a logical link. The advantage of virtualization is to simplify
the graph model for Grid computing systems. The weight w(ln,k)
assigned to a link ln,k stands for its communication capacity (the
amount of data that can go through the link in a unit time).
We further assume that all inter-machine communications are
performed without contention, and the communication overhead
between two tasks scheduled on the samemachine is taken as zero.
This assumption holds since our computing environment consists
of machines connected with wide area network links as pointed
out in the literature [11,30].

2.2. Stochastic parallel application model

Task graphs are encountered inmanymodels used in operations
research and resourcemanagement, such as scheduling, computer,
and network models. Graph models are often used also to study
activities that contain some concurrency. For example, a DAG can
describe parallel applications where nodes represent tasks and di-
rected arcs represent synchronization constraints and communi-
cation among tasks. Generally, a stochastic parallel application is
Fig. 2. An example of stochastic parallel application with exponential distribution.

represented by a DAG G = ⟨V , E⟩, where V is the set of v tasks
that can be executed on any of the available machines; E ∈ V × V
is the set of directed arcs or edges between the tasks to repre-
sent the dependencies. For example, edge ei,j ∈ E represents the
precedence constraint such that task vi should complete its ex-
ecution before task vj starts its execution. A task may have one
or more inputs. When all its inputs are available, the task is trig-
gered to execute. After its execution, it generates its outputs. The
weight w(vi) assigned to task vi represents its processing time
and the weight w(ei,j) assigned to edge ei,j represents its commu-
nication time. In our stochastic setting, the processing time and
communication time are random, assumed to be independent and
exponentially distribution or normal distribution [20,14,26,27].
For each application submission, the user needs to estimate these
probabilities or distributions, which can be obtained by building a
historic table and using statistical profiling [14,16]. We think that
statistical profiling can be used to determine probabilities in many
applications in the Grid area.

The set {vj ∈ V : ej,i ∈ E} of all direct predecessors of vi is
denoted by pred(vi) and the set {vj ∈ V : ei,j ∈ E} of all direct
successors of vi is denoted by succ(vi). A node v ∈ V without pre-
decessors, pred(vi) = φ, is called an entry task and if it is without
successors, succ(vi) = φ, it is named exit task. Without losing of
generality, we assumed that the DAG has exactly one entry task
ventry and one exit task vexit . If multiple exit tasks or entry tasks ex-
ist, theymay be connected with zero time-weight edges to a single
pseudo-exit task or a single entry task that has zero time-weight.
Fig. 2 shows an example DAG with assigned task and edge which
is exponential distribution.

2.3. Scheduling attributes

The main difference between stochastic scheduling and deter-
ministic scheduling is that processing time and communication
time are deterministic or random. Thus, how to compute the prob-
ability distribution of tasks in the DAG graph is the key technique
to stochastic scheduling. In this paper, the processing time and
communication time are assumed to followexponentially distribu-
tions, which is reasonable to most real-world problems [14,26,27].
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In probability theory, the expected value of a random variable
indicates its average or central value and reflects its most
important attribute. However, the real value of random variable
does not equal to its expected value in most case. The other
important attribute of a random variable is variance, which is the
expected value of the square of the deviation of that variable from
its expected value. Thus, the variance is an important measure
of the amount of variation within the values of that variable,
taking account of all possible values and their probabilities. The
variance is first examined by Möring and Schulz in stochastic
scheduling problem and got a good performance approximation
in paper [23]. At the same time, Skutella and Uetz pointed out
that the real processing time of stochastic task is affected by
the standard deviation of random variable. They prove that the
system scheduling performance are bounded by some constant ∆

that is expressed as Var(X)/E[X]
2

≤ ∆ [26]. For ∆ ≤ 1, the
scheduling performance are mostly affected by sum of the random
variable’s expected value and square of variance. For others, the
scheduling performance increases as random variable’s variance
decreases. Thus, we take the variance of random variable into
account and the approximate weight of random variable Aw(X) is
defined as

Aw(X) =

E[X] +


Var(X) Var(X)/E[X]

2
≤ 1

E[X]


1 +

1
√
Var(X)


Others.

(1)

As the processing time of tasks and communication time of
edges in stochastic DAGare assumed to followexponentially distri-
butions, each random variable are satisfied with Var(X)/E[X]

2
=

1. Thus, the approximateweight of randomvariablewith exponen-
tial distribution is Aw(X) = E[X] +

√
Var(X). For example, the

approximate weight of task v2 in Fig. 1 is Aw(v2) = 0.67.
Before presenting the objective function, it is necessary to

define the approximate earliest execution start time AS(vi, pk) and
the approximate earliest execution finish time AF(vi, pk) of task vi
on machine pk. For the entry task ventry

AS(ventry, pk) = 0. (2)

For the other tasks in the graph, the approximate earliest start
time and earliest finish time are computed recursively, starting
from the entry task, as shown in (3) and (4), respectively. In order
to compute the approximate earliest start time for a task vi, all
immediate predecessor tasks of vi must have been scheduled:

AS(vi, pk)
= max{Available(pk), max

vj∈pred(vi)
{AF(vj, pn) + Aw(ej,i)}} (3)

AF(vi, pk) = AS(vi, pk) +
Aw(vi)

sk
(4)

where Aw(ej,i) is the approximate weight of edge ej,i’s commu-
nication time which transferring data from task vj (scheduled on
pn) to task vi(scheduled on pk) and is computed by Eq. (1). When
both vj and vi are scheduled on the same machine, Aw(ej,i) be-
comes zero, since we assume that the intramachine communica-
tion cost is negligible when it is compared with the intermachine
communication cost. The pred(vi) is the set of immediate predeces-
sor tasks to task vi, and Available(pk) is the expected earliest time
at which machine pk is ready for task execution. After all tasks in
a graph are scheduled, the schedule length (i.e., overall comple-
tion time) will be the actual finish time of the exit task vexit ; thus,
the schedule length (which is also called makespan) is defined as
follows:

makespan = EFF(vexit) (5)
Table 1
Definitions of notations.

Notation Definition

V A set of v stochastic tasks in the application
vi The ith stochastic task in the application
w(vi) The probability distribution of task vi processing time
E A set of directed edges representing communication among tasks

in V
ei,j The directed edge from ith task to jth task
w(ei,j) The probability distribution of edge ei,j communication time
P A set of mmachines
pk The kth machine in Grid
sk The kth machine computation capacity
w(ln,k) The direct communication capacity between machines pn and pk
succ(vi) A set of immediate successors of task vi
pred(vi) A set of immediate predecessors of task vi
AS(vi, pk) The expected earliest execution start time of task vi on machine pk
AF(vi, pk) The expected earliest execution finish time of task vi on machine pk
Aw(X) The approximate weight of random variable X

where the EFF(vexit) is the earliest actual execution finish time of
task vexit and different from the approximate earliest finish time
AF(vexit). The objective function of the task-scheduling problem
is to determine the assignment of tasks of a given application to
machines such that its scheduling length is minimized. For ease of
understanding, we summarize the notations and their meanings
used throughout this paper in Table 1.

3. The proposed stochastic list scheduling

This section presents an algorithm for list scheduling on Grid
called SHEFT, which aims to achieve high performance and low
complexity. The algorithm consists of two mechanisms, a list-
ing mechanism, which is a modified version of the HEFT [9–11]
heuristic scheduling algorithm and a machine assignment mech-
anismwhich each task (in order of its priority) is assigned to a ma-
chine that minimizes themakespan. The pseudo code of the SHEFT
algorithm is shown in Algorithm 1. First, we outline the concept of
stochastic task priority. Then, we propose and analyze the stochas-
tic list scheduling algorithm.

Compute Srank value for all tasks use Eq. (6) by traversing1
application graph, starting from the exit task
Sort the tasks in a scheduling list by non-increasing order of2
Srank value
while there are unscheduled tasks in the list do3

Remove the first task vi from the scheduling list4
for each machine pk in the machine set (pk ∈ P) do5

Compute the approximate earliest start time use6
Eq. (3)
Compute the approximate earliest finish time by7
Eq. (4)

end8
find the minimum approximate earliest finish time9
machine pn
Assign task vi to machine pn with minimize AF(vi, pn)10

end11

Algorithm 1: The pseudo code for SHEFT algorithm.

3.1. Stochastic task priorities phase

Our stochastic list scheduling algorithm will use stochastic
upward rank (Srank) attribution to compute tasks priorities. The
Srank is explained in Definition 1.

Definition 1. Given a stochastic parallel application DAG with
v tasks and e edges and Grid computing system with m
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heterogeneous machines, the Srank during a particular scheduling
step is a rank of task, from an exit task to itself, which has the sum
of approximate task processing time and approximate edge com-
munication time over all machines. Approximate communication
time between tasks scheduled on the same machine are assumed
to be zero.

The Srank is recursively defined as follows:

Srank(vi) =

m∑
k=1

Aw(vi)
sk

m
+ max

vj∈succ(vi)


Aw(ei,j)

w(l)
+ Srank(vj)


(6)

where succ(vi) is the set of immediate successors of task

vi,

∑m
k=1

Aw(vi)
sk

m is the approximate mean stochastic rank of task vi
in Grid which take the expected value and variance of task vi into
account, w(l) is the mean communication capacity in the Grid
system. The rank is computed recursively by traversing the task
graph upward, starting from the exit task. For the exit task vexit ,
the Srank value is equal to

Srank(vexit) =

m∑
k=1

Aw(vexit )
sk

m
. (7)

Basically, Srank(vi) is the length of the stochastic critical path from
task vi to the exit task, including the approximate mean stochastic
rank of task vi.

3.2. Machine selection phase

In machine selection phase, unscheduled task in the task
sequence is selected and scheduled on a machine that can
complete its execution with minimize approximate earliest
finish time AF(vi, pn). To achieve this goal, SHEFT arranges task
scheduling sequence by Srank that takes the attributes of random
variable into account. For each stochastic task, SHEFT computes
AF(vi, pn) by using Eqs. (3) and (4). These ideas are implemented
from step 5 to 8. In step 9, SHEFT finds a machine with minimize
approximate earliest finish time AF(vi, pn) and assigns task vi to
this machine pn in step 10. It is to be noted that this machine may
or may not be its best-suited machine due to the stochastic of task.
This type of heuristic automatically takes into consideration the
computing power of the candidate machine.

3.3. Algorithm complexity analysis

The time complexity of scheduling algorithms for parallel
application DAG is usually expressed in terms of number of task
v, number of edges e, and number of machines m. The time-
complexity of SHEFT is analyzed as follows. Computing the Srank of
task can be done in timemax{O(ve),O(vm)}, and sorting the tasks
can be done in time O(v log v). The machine selection for all tasks
can be done in time O(v|v|m), and |v| is the max degree of vi in
application DAG. In Grid systems, the number of machines may be
larger than the number of application’s edges in most case. Thus,
the complexity of the algorithm SHEFT is O(v|v|m).

4. Performance evaluation

In this section, we compare the performance of the SHEFT
algorithm with two well-known scheduling algorithms in Grid
systems: the HEFT [9] and DCP [6] algorithms. To make the
comparison efficient, we turn the stochastic scheduling problem
into deterministic one by giving the expected value as the weight
of task for HEFT and DCP algorithms. The comparison is intended
not only to present quantitative results, but also to qualitatively
analyze the results and to suggest explanations, for a better insight
in the overall scheduling problem.
To test the performance of these algorithms, we have built
an extensive simulation environment of Grid systems with 16
heterogeneous machines that computation capacities varies from
Pentium II to Pentium IV. In order to interconnect thesemachines, a
network with switches is employed, where the network topology
is randomly generated and each machine is randomly connected
to a switch. The communication capacity of links are assumed to
be uniformly distributed between 10 and 100 Mbits/s. Stochastic
parallel application graphs are based on randomly generator by
varying parameters such as DAG size and height of the DAG (h). The
performance metrics chosen for the comparison are the schedule
length (makespan Eq. (5)), the speedup, and themakespan standard
deviation. The speedup is computed by dividing the sequential
execution time (i.e., cumulative execution time) by the parallel
execution time (i.e., the makespan of the output schedule) as
shown in Eq. (8):

Speedup =

∑
vi∈V

ET (vi)

makespan
(8)

where ET (vi) is the actual execution time of task vi. The sequential
execution time is computed by assigning all tasks to a single
machine that minimizes the cumulative of the computation costs.
If the sum of the computational costs is maximized, it results a
higher speedup, but ends up with the same rank of the scheduling
algorithms.

The other performance metric is makespan standard deviation.
Intuitively, the standard deviation of the makespan distribution
tells how narrow the makespan distribution is. The narrower the
distribution, the smaller the standard deviation is. This metric is
examined in this paper because when you are given two schedules
the one for which the standard deviation is smaller is the one for
which realizations are more likely to have a stable performance in
the Grid system.

4.1. Randomly generated application graphs

In our study, we considered the randomly generated stochastic
application graphs. A randomgraph generatorwas implemented to
generates stochastic application DAGs with various characteristics
that depend on serval input parameters given below. Our
simulation-based framework allows assigning sets of values
to the parameters used by the random graph generator. This
framework first executes the random graph generator program
to construct the stochastic application DAGs, which is followed
by the execution of the scheduling algorithms to generate output
schedules, and, finally, it computes the performancemetrics based
on the schedules. For the generation of random graphs, which
are commonly used to compare scheduling algorithms [8,9], three
fundamental characteristics of DAG are considered:

• DAG size, v: The number of tasks in the application DAG.
• Height of the DAG(h): The v tasks are randomly partitioned into

h levels.
• The maximum and minimum λ value (λmax, λmin) of task

processing time and communication time between tasks with
exponentially distribution: The λ value is a uniform random
variable on the interval (λmax, λmin).

In our simulation experiments, graphs are generated for all
combinations of the above parameters with number of tasks
ranged between 50 and 300. Every possible edge (DAGs are acyclic)
is created with the same probability, which is calculated based on
the average number of edges per task node. Every set of the above
parameters are used to generate several random graphs in order
to avoid scattering effects. The results presented below are the
average of the results obtained for these graphs.
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Fig. 3. Performance impact of 100 tasks: (a) makespan in seconds; (b) speedup; (c) makespan standard deviation.
Fig. 4. Performance impact of 200 tasks: (a) makespan in seconds; (b) speedup; (c) makespan standard deviation.
4.2. Experimental results

The goal of the experiments is to compare the proposed SHEFT
algorithm with HEFT and DCP. In order to effective simulate the
real-world stochastic environment, the actually execution time of
task is evaluated by giving their random probability distribution.
To make the comparison fair, each schedule of scheduling strategy
has the same task random probability.

For the first set of simulation studies, we compare and
analyse the sensitivity of machine number with 100, 200, and
300 tasks respectively. The results are shown in Figs. 3–5. For
performance metrics of makespan and speedup, each data point
is the average of the data obtained in 500 experiments, and
for the makespan standard deviation metric, the data are from
these 500 experiments. Fig. 3 shows the simulation results of the
SHEFT, HEFT, and DCP algorithms on Grid system for stochastic
parallel application DAG with 100 tasks. We observe from Fig. 3
that the SHEFT outperforms HEFT and DCP by (10.7%, 16.1%)
in terms of the average makespan, (19.7%, 26.1%) in terms of
the average speedup, and (21.3%, 9.97%) in terms of makespan
standard deviation, respectively. This is mainly due to the fact
that the SHEFT algorithm is a stochastic scheduling strategy and
considers the stochastic attribute, such as expected value and
variance, in scheduling algorithm, which produce a good schedule
for stochastic scheduling problem Q |vi ∼ stoch, prec|E[Cmax].
However, the HEFT and DCP algorithms are deterministic and
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Fig. 5. Performance impact of 300 tasks: (a) makespan in seconds; (b) speedup; (c) makespan standard deviation.
ignore the available stochastic information about task processing
time and communication time among tasks, which merely select
a machine for a task with the expected value of variables.
For example, the task processing time follows exponentially
distribution as f (t) = 0.1e−0.1t , the expected value is 10, and
the variance is 100. In this situation, the scheduling selections of
HEFT and DCP are according to the value of 10, which is far from
the actual execution time of task. However, the SHEFT schedules
the task according to the value of 20, which is close to the actual
execution time.

As the comparison betweenHEFT andDCP of simulation results,
we find that HEFT is better than DCP in terms of makespan
and speedup. This is mainly due to the fact that HEFT can more
effectively compute the critical task than DCP in DAG. However,
for makespan standard deviation, DCP is better than HEFT. This
phenomena can attribute to the fact that the variance of DCP is
better than HEFT. As themachine number increases, themakespan
and makespan standard deviation of three algorithms decreases,
and the speedup of them increases.

Fig. 4 shows the simulation results for stochastic parallel
application DAG with 200 tasks. We observe from Fig. 4 that
the SHEFT significantly outperforms HEFT by (30.7%, 39.05%,
9.8%) and DCP by (46.2%, 49.96%, 12.5%) in terms of the
average makespan, speedup, and makespan standard deviation,
respectively. However, the improvements of SHEFT over HEFT
and DCP are almost at the same level except that the machine
number is 14, which reflect the intricacy of stochastic scheduling
problem. The improvements of SHEFT over HEFT and DCP could
also be concluded from Fig. 5. Fig. 5 shows the simulation results
for stochastic parallel application DAG with 300 tasks, SHEFT
outperforms HEFT by (32%, 21.6%, 18.6%), and DCP by (34.3%,
29.1%, 9.7%) in terms of averagemakespan, speedup, andmakespan
standard deviation, respectively.

To examine the performance sensitivity of the three scheduling
algorithms SHEFT, HEFT, and DCP to the stochastic parallel
application DAG size, in this set of experiments, we vary DAG size
from 50 to 300 with step 50. The results reported in Fig. 6 for 10
machines and Fig. 7 for 16 machines reveal that SHEFT outperform
HEFT and DCP in terms of makespan, speedup, and makespan
standard deviation. As the DAG size increases, the improvement
becomes more significant. The above simulation results also show
a fact that the deterministic scheduling algorithm (such as HEFT
and DCP) is not suitable for stochastic scheduling problem Q |vi ∼

stoch, prec|E[Cmax].

5. Conclusions and future work

In this paper, we attempt to incorporate stochastic parallel ap-
plication into task scheduling on Grid systems.We believe that it is
mandatory to design and implement stochastic scheduling tomeet
the random of task processing time and edge communication time,
which is a key attribute to the performance of stochastic schedul-
ing problem Q |vi ∼ stoch, prec|E[Cmax]. The problem is first for-
mulated in a form of Grid system model and stochastic parallel
application DAG. To solve the problem efficiently, a stochastic het-
erogeneous earliest finish time (SHEFT) scheduling algorithm is
proposed that is a modified version of the deterministic schedul-
ing algorithm (HEFT) and incorporate the stochastic attribute of
task processing time and edge communication time into schedul-
ing. The performance of stochastic heterogeneous earliest finish
time scheduling algorithmwas compared with deterministic HEFT
and DCP. The comparisons were based on randomly generated
application DAGs. The simulation experimental results clearly
demonstrate that our proposed algorithm SHEFT outperforms the
existingwell-known scheduling algorithmsHEFT andDCP in terms
of minimizing the makespan, makespan standard deviation, and
improving the speedup.

This work is one of the first attempts to investigate scheduling
precedence constrained stochastic tasks problem into Grid system.
Future studies in this domain are threefold: first, it will be
interesting to extend our stochastic scheduling algorithm to
consider more other constraints, such as deadline, release time
etc.; second, it will be interesting to study the problem context
under large-scale heterogeneous distributed computing systems
with security and reliability requirements; third, how the average
execution time and standard deviation of tasks are obtained is a
challenging and interesting problem, we plan to study it in our
future work.
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Fig. 6. Performance impact of 10 machines: (a) makespan in seconds; (b) speedup; (c) makespan standard deviation.
Fig. 7. Performance impact of 16 machines: (a) makespan in seconds; (b) speedup; (c) makespan standard deviation.
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