
REVISED AND SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING, APRIL 12 2004 1

Asymptotic Locally Optimal Detector for Large Scale

Sensor Networks under the Poisson Regime

Youngchul Sung, Lang Tong† , and Ananthram Swami

Abstract

We consider distributed detection with a large number of identical binary sensors deployed over a

region where the phenomenon of interest (POI) has spatially varying signal strength. Each sensor makes

a binary decision based on its own measurement, and the local decision of each sensor is sent to a fusion

center using a random access protocol. The fusion center decides whether the event has occurred under

a global size constraint in the Neyman-Pearson formulation. Assuming homogeneous Poisson distributed

sensors, we show that the distribution of ‘alarmed’ sensors satisfies the locally asymptotically normal

(LAN) condition. We then derive an asymptotically locally most powerful (ALMP) detector optimized

jointly over the fusion form and the local sensor threshold. We establish conditions on the the spatial

signal shape that ensure the existence of the ALMP detector. We show that the ALMP test statistic is a

weighted sum of local decisions the optimal weights being the shape of the spatial signal; the exact value

of the signal strength is not required. We also derive the optimal threshold for each sensor. For the case

of independent, identically distributed sensor observations, we show that the counting-based detector is

also ALMP under the Poisson regime. The performance of the proposed detector is evaluated through

analytic results and Monte-Carlo simulations, and compared with that of the counting-based detector.

The effect of mismatched signal shapes is also investigated.

Index Terms— Distributed detection, Spatially-varying signal, Spatial Poisson process, Locally asymp-

totically normal (LAN), Asymptotically locally most powerful (ALMP), Neyman-Pearson criterion, Fusion

rule.
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EDICS: 1-DRUS (Data fusion from multiple sensor types), 2-DETC (Detection theory and

applications).

I. Introduction

A. Detection in Large Scale Sensor Field

We consider the detection of phenomenon in a geographical area using a large number of

densely deployed microsensors. The sensors measure the phenomenon of interest (POI) and

transmit their local data (the binary decision) via a wireless channel to a central site for global

processing. A specific implementation is the Sensor Network with Mobile Access (SENMA)

architecture [30] where a mobile access point or interrogator collects local decisions from sensors

using random access schemes such as ALOHA; see Fig. 1. We assume that the number of sensors

in the field is large, which makes it necessary that each sensor is inexpensive and has limited

computation and communication capability.

PSfrag replacements

Mobile Access Points

Sensor Network

Fig. 1. Sensor Network with Mobile Access Points

Detection in a large scale sensor network faces several challenges not encountered in the classical

distributed detection problem. First, inexpensive sensors are not reliable; they have low duty

cycles and severe energy constraints. The communication link between a sensor and the central

unit is specially weak due to a variety of implementation difficulties such as synchronization,

fading, and interference from other sensors. The probability that the local decision at a particular

sensor can be successfully delivered to the central unit can be very low. Second, POI in a wide

geographic area generates spatially varying signals, which makes the observation at each sensor

location-dependent and not identically distributed. Furthermore, the strength of POI is unknown
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in many applications such as the detection of environmental hazards such as nuclear, biological,

and chemical (NBC) activities. Third, the scale of the network makes it more practical to deploy

sensors randomly without careful network layout. It is thus not possible to predict whether data

from a particular sensor can be retrieved by the central processing unit, especially when random

access protocols are used. Consequently, the decision rule for each sensor should be optimized

before deployment without knowing its exact location. In addition, because sensors may expire

and the collection process is random, the optimal decision should not critically depend on the

number of available sensors or on the collection process.

B. The Approach and Summary of Results

For large scale sensor networks, it is natural to consider asymptotic techniques, and one expects

that the central limit theorem will lead to a design under Gaussian statistics. For example, if

the measurements at the sensors are conditionally independent and identically distributed, it is

well known that the global decision is made by counting the number of alarmed sensors collected

from the sensor field, and the decision statistics will converge to a Gaussian random variable.

When the measurements are not identically distributed across sensors, it is reasonable that the

global detector should weight the decision of each sensor appropriately since sensors closer to the

source produce more reliable decisions [16]. But, what should be the optimal weighting when the

local detection probability or the signal strength for each sensor is unknown beforehand? What

are the factors affecting the weighting? Is there an assurance of asymptotic optimality?

Our approach is based on the Locally Asymptotically Normal (LAN) theory of Le Cam [1]

[2]. (A brief summary of LAN-related results pertinent to our work is given in [31].) Our goal

is to find decision rules for sensors and the central unit that are asymptotically most powerful.

Specifically, we find local and global decision rules that, for a given probability of false alarm

(PFA) for the global decision, maximize the probability of detection as the number of sensors

goes to infinity.

We model the POI over the region as a deterministic spatial signal with a known shape but

unknown signal strength. While the assumption of known signal shape is restrictive; the model

of unknown signal strength is almost necessary in practice because it is unreasonable to assume

that POI can be calibrated. From a theoretical point of view, not knowing the signal strength

makes the detection problem more difficult and also more interesting in the asymptotic regime.

For example, the direct use of error exponent to characterize performance as in [27] [28] is no
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longer valid since the number of alternative hypothesis is uncountable. Indeed, if the signal

strength is known, the error probability of any reasonable detector will always decay to zero as

the number of collected sensor detections increases.

We assume that a Medium Access Control (MAC) protocol (such as ALOHA) is used to collect

local decisions where each sensor has a probability pm to transmit its decision successfully to the

central unit. In order to exploit spatial variation of the POI, it is necessary, as we shall assume,

that each sensor knows its location through the use of a geolocation device or other methods.

We assume that randomly deployed sensors form a homogeneous spatial Poisson process. For

the model of independent additive noise at each sensor, the marking by the local decision of each

sensor is equivalent to a location-dependent thinning of the initial Poisson process: the alarmed

sensors form a nonhomogeneous Poisson process. The process of retrieving sensor decisions from

the sensor field is another thinning of the alarmed sensors. The Poisson assumption allows us

to combine the two thinning processes at the MAC layer and the physical layer, and model the

alarmed sensors at the central unit as a nonhomogeneous Poisson field with an intensity that is

a function of the POI. Hence, the distributed detection problem is converted to detection based

on the intensity of the observed alarmed sensors.

To apply the LAN theory of Le Cam, we derive (1) sufficient conditions on the spatial signal

shape that guarantees the existence of asymptotically locally most power (ALMP) detector; (2)

an asymptotic local upper bound (ALUB) on the power of any detector, and (3) an asymptotically

locally jointly optimal rule over the fusion scheme and the single sensor threshold. For the special

case that the power function of a single sensor is linear with respect to the signal strength, the

proposed detector is also asymptotically uniformly most powerful.

Our numerical results are designed to answer a number of practical questions. Since the

detector is based on asymptotic techniques, one questions what the size of the network is for

which the asymptotic analysis is accurate. The simulations show that the performance of a

network of size 1000 matches well with the theoretic prediction. We will see that the proposed

ALMP detector offers a significant gain over simplistic counting schemes. Since we assume the

knowledge of signal waveform in the detector design, we also consider the case of waveform

mismatch in our simulations. The sensitivity of the mismatch, of course, depends on the specific

shape of the signal waveform. For the class of symmetric exponentially decaying waveforms, we

find that a simple step function approximation offers graceful degradation. Further, we find that

April 12 2004 DRAFT



REVISED AND SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING, APRIL 12 2004 5

the performance is robust to perturbations in the assumed locations of the sensors.

C. Related Work

Distributed detection using multiple sensors and optimal fusion rules has been extensively

investigated, see [12] [13] [14]. Many authors have derived optimal local detector and fusion rules

under various scenarios based on different sets of assumptions, e.g., [15] [17] [18]. For the fusion

scheme, Chair and Varshney [16] showed that the optimal fusion rule is a likelihood ratio test on

the decisions from the sensors and becomes a threshold detector on the weighted sum of binary

sensor decisions; the weight is obtained using the local detection and false alarm probabilities

at each sensor under each hypothesis. However, the optimal criteria are obtained under the

assumption that the hypotheses of the underlying phenomenon are simple, i.e., discrete and

finite. These approaches require the knowledge of the detection probability as well as the PFA

at each sensor under each possible hypothesis, which is not valid for the detection of unknown

signals that is the main interest in this paper.

The detection of an unknown signal or a signal with unknown amplitude has been considered

by several authors under the composite hypothesis formulation. The locally optimal detector for

centralized schemes is known [20] [21]. Poor and Thomas considered the locally optimal detector

for stochastic signals and compared the detectors using the asymptotic relative efficiency (ARE)

of the centralized detection scheme [22]. For the distributed or decentralized case, Aalo and

Viswanathan considered the detection of an unknown signal via multilevel quantization and

simple fusion rules [24]. However, no optimality for the fusion rule was considered. The works

of Fedele, Izzo, and Paura [25] and Srinivasan [26] are perhaps the closest to our approach. In

both cases, the authors considered a distributed scheme where multiple peripheral detectors or

sensors are combined at a fusion center and the number of observations per each sensor goes

to infinity. These assumptions are reasonable for the classical radar problem. For large scale

microsensor networks, however, it is reasonable to assume that each sensor has only a few chances

for observations and transmissions, due to limited battery power, and to consider the asymptotic

case where the number of sensors goes to infinity, but with a limited number of observations per

sensor as in this paper. Srinivasan derived the optimal local rule and fusion rule based on Bayes

rule and summation over all realizations of sensor decisions [26]. However, it is difficult to extend

this approach to yield explicit fusion rules for the scenario considered in this paper.

The asymptotic case where the number of sensors goes to infinity was also considered by several
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authors from different perspectives. For example, the error exponent was used as the asymptotic

performance measure to show the optimality of identical sensors when the observations are i.i.d.,

[27], [28]. In [29], the authors considered the optimality of identical binary sensors for the capacity

limited reachback channel.

D. Notation

The statistical experiment or model (Ω,X ,P) is described as follows. An event X ∈ X is

observed such that the probability distribution of X is from a parametric family of probability

measures P = {Pθ, θ ∈ Θ}, all defined on the same measurable space (Ω,X ); the true parameter θ

is unknown. The statistical experiment or model is simply denoted by {Pθ, θ ∈ Θ}. The sequence

of statistical models is denoted by (Ω(n),X (n),P(n)) where P(n) = {P (n)
θ , θ ∈ Θ}. Notice that the

parameter space Θ doesn’t change with the sequence index in our formulation and the superscript

(n) does not denote the product space or measure in general. It can be an arbitrary sequence of

measurable spaces and probability measures. For the product distribution of n i.i.d. Pθ, we use

the notation P⊗n
θ . For a sequence of random vectors xn defined on Ω(n), En,θxn is the statistical

expectation of xn under probability distribution P
(n)
θ . The notation x ∼ N (µ,Σ) means that x

is Gaussian with mean µ and covariance Σ. The set of real numbers is denoted by R. Vectors

and matrices are written in boldface. Operation (·)T indicates the matrix transpose.

II. System Model

We consider a large scale sensor network with identical binary sensors deployed over a wide

area; we want to decide whether the POI has occurred in the area. We assume that each sensor

makes a decision based on its own observation and that the local decisions are collected through

a MAC at a central unit or fusion center where the global decision is made under a size (

PFA) constraint. The POI is spatially varying, with a known1 shape function and an unknown

magnitude. As an example, in the case of NBC activity, the signal strength is expected to be

largest at the origin of the phenomenon, and to decay away from the origin. We assume that the

1We do not assume that the shape function s(x) is known a priori before sensor deployment or at the data

retrieval period. See Section III-D for the estimation of s(x) from collected binary sensor decisions and sensor

locations. This includes the case where the shape function is parameterized, with unknown parameters that must

be estimated.
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spatial signal is deterministic and denote the signal strength by

γ(x) = θs(x), (1)

where x denotes the location, θ ∈ Θ
∆
= [0,∞) is an unknown amplitude, and s(x) is a known

function which incorporates the information about the spatial variation of the underlying phe-

nomenon.

A. Single Sensor

We assume that sensors make their local decisions independently without collaborating with

other sensors. Since the exact value of the signal strength is unknown, we design each sensor to

decide between the following (composite) hypotheses

H0 : γ(x) = 0 (null hypothesis),

H1 : γ(x) > 0 (alternative hypothesis),
(2)

with local size constraint of α0. Using the amplitude parameter θ, the hypotheses (2) is equiva-

lently expressed by

H0 : θ = 0,

H1 : θ > 0.
(3)

The local decision of sensor Si located at xi is denoted by

ui =







1 if H0 is rejected,

0 otherwise.
(4)

PSfrag replacements

Ni ∼ N (0, σ0)

Yi

Si

Yi
>
< τ0

γ(xi) ui = 1 or 0

Fig. 2. Gaussian noise observation model at location xi

We consider the additive Gaussian noise model shown in Fig. 2 as the sensor observation

model, where the sensor observation Yi is given by

Yi = γ(xi) + Ni, Ni ∼ N (0, σ2
0), (5)

where Ni is the sensor noise, assumed to be independent across sensors. For the additive Gaussian

noise model, the local decision rule for (3) at each sensor is given by the uniformly most powerful

April 12 2004 DRAFT



REVISED AND SUBMITTED TO IEEE TRANS. ON SIGNAL PROCESSING, APRIL 12 2004 8

(UMP) detector described as

Yi
>H1

<H0

τ0, (6)

where τ0 = σ0Q
−1(α0), where Q(x) denotes the tail probability Q(x) = 1√

2π

∫∞
x e−

1
2
t2dt =

0.5erfc(x/
√

2). We define p(x) as the probability that a sensor located at x rejects H0. That is,

p(xi) = Pr{ui = 1}. (7)

Note that this probability is not conditioned on hypothesis H0 or H1. The probability p(x) is a

function of the local threshold and the signal strength at x, and is given by

p(x) = βτ0(γ(x)). (8)

Dependence on the pdf of the observation noise is through the threshold τo. For the additive

Gaussian observation model in (5), βτ0(γ(x)) is expressed as Q
(

τ0−γ(x)
σ0

)

.

B. Parametric Poisson Model

Consider that a large number of identical sensors designed in II-A are deployed randomly and

uniformly over a region A as shown in Fig. 3 (a). We assume that the initial distribution of

sensors over the region is a homogeneous spatial Poisson process with local intensity λh. This

is a reasonable model when the random location of each sensor is uniformly distributed over A.

Each sensor makes a local decision about the underlying phenomenon. Specifically, sensor Si

located at xi makes a binary decision ui based on its observation, encodes its decision, and then

sends its packet over the MAC to the central unit.

Since we assume that each sensor makes the decision by itself and the sensor noise is indepen-

dent, the local decision ui is independent conditioned on the signal strength γ(x). By the Poisson

assumption on the initial sensor locations, the marking by the local decision of each sensor is

equivalent to a location-dependent thinning of the original sensor distribution with thinning

probability p(x). Hence, the distribution of the alarmed sensors, i.e., sensors with ui = 1, forms

a nonhomogeneous spatial Poisson process.

During the data retrieval period, the local decisions of the sensors are collected through wireless

channel. Sensor data can be lost during the transmission due to fading as well as collisions.

We model this probabilistic loss as another thinning of the Poisson process of alarmed sensors
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Fig. 3. (a) Initial sensor deployment over space (b) Signal strength of underlying phenomenon (c)Local

decisions of sensors

(PPAS). We assume that all the sensors have the same probability of successful transmission2, and

denote it by pm. Then, the second thinning is uniform over the region with probability pm. The

distribution of alarmed sensors at the fusion center or final data collector is a nonhomogeneous

spatial Poisson process and its local intensity is given by

λ(x) = λhpmp(x) = λhpmβτ0(θs(x)), (9)

= λhpm[βτ0(0) + β′
τ0(0)θs(x) + o(θ)],

where β′
τ0(γ(x)) = ∂

∂γ(x)βτ0(γ(x)). When the function βτ0(·) is linear, or θ is in a small neigh-

borhood of θ = 0 (i.e., the signal is weak), the Poisson process of alarmed sensors is described

by a nonhomogeneous intensity model parameterized by amplitude θ given by

λ(θ,x) = θf(x) + λ0, θ ∈ Θ, (10)

where

f(x) = λhpmβ′
τ0(0)s(x), λ0 = λhpmβτ0(0), (11)

for a given τ0. Note that the intensity variation f(x) of alarmed sensors is a scaled version of

the spatial signal shape s(x).

Since the initial sensor distribution is assumed to be Poisson, we are able to convert the original

detection problem to one of detecting an inhomogeneous Poisson process whose intensity function

2The equal probability assumption for successful transmission may be restrictive. However, this gives a reasonable

approximation when the data collector has control over sensor transmissions.
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depends upon the spatial signal at the alarmed sensors. (This is what we mean by ‘Poisson

regime’ in this paper.) As we will show later, the asymptotic detector requires the knowledge of

the signal s(x), and of the location of the reporting sensors; however, the asymptotic detector

will be shown to be surprisingly robust with respect to the shape function s(x) as well as its

‘origin’.

III. Detection of Spatially-varying Signal

In the previous section, we assumed that the initial sensor distribution is Poisson, and showed

that the original detection problem using identical binary sensors is converted to the problem

(10, 11, 3) of detecting Poisson processes with different intensities.

Under asymptotic local optimality, we focus on the detection of the alternative which converges

to the null hypothesis θ = 0 where the distributions of the null and alternative hypothesis are

asymptotically nonseparable. The existence of an asymptotic locally optimal detector (ALOD)

requires some conditions on the underlying statistical models. Le Cam’s theory provides an

analytic framework for such detection problems, and gives an asymptotic optimal criterion. When

a statistical model satisfies the LAN condition [1] [2] [4], we can construct an asymptotic local

upper bound on the power of any sequence of detectors with a given asymptotic size, and we can

construct a sequence of detectors that achieves this bound.

In Appendix I, we construct a sequence of statistical models for PPAS and establish its LAN

property. Based on this, we obtain an ALUB on the power of any detector with a given size and

we derive the ALMP detector for the model (10, 11, 3) under the Poisson regime, as the number

of sensors goes to infinity.

A. ALMP detector under the Poisson regime

In Appendix I, we show that the Poisson process of the alarmed sensors, with increasing sensor

density, satisfies the LAN condition for a general family of signal shapes. The construction of an

ALMP detector is then straightforward. An ALMP detector is given by the score test using the

central sequence [4] [31].

Theorem 1: Let the conditions (C.1)-(C.3) be satisfied.

(C.1) f(x) ≥ 0, x ∈ A, (C.2) sup
x∈A f(x) < ∞, (C.3)

∫

A f(x)dx > 0,

where f(x) is defined in (11). Then, an asymptotic upper bound on the power of any sequence
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of detectors φn with size α, i.e., lim supn→∞ En,0φn ≤ α, is given by

lim sup
n→∞

sup
0<rn(0)−1θ≤M

[

En,θφn − Q(Q−1(α) − r−1
n (0)θ)

]

≤ 0 (12)

for any M > 0, where

rn(0) =

(

nλh0pm
(β′

τ0(0))
2

βτ0(0)

∫

A
s2(x)dx

)−1/2

. (13)

Furthermore, the following sequence of (nonrandomized) detectors is ALMP with size α for (10,

11, 3).

φn,opt =







Decide H0 if ∆n,0 ≤ Q−1(α),

Decide H1 if ∆n,0 > Q−1(α),
(14)

where the central sequence ∆n,0 is given by

∆n,0 = n−1/2λ
−1/2
0

(∫

A
s2(x)dx

)−1/2




∑

xi∈A

s(xi) − nλ0

∫

A
s(x)dx



 , (15)

and xi’s are the (random) locations of alarmed sensors in the area A.

Proof: See Appendix II.

The conditions in Theorem 1 are mild and are discussed in Appendix I. Equations (12, 13)

reveal how various factors such as sensor density nλh0, the probability of packet loss pm, the

spatial signal shape s(x), and the single sensor threshold τo, affect the asymptotic global power.

Note that as expected, the power of the detector increases monotonically with sensor density,

signal strength, and MAC transmission success rate. We observe that if the signal strength is

halved, sensor density must be quadrupled in order to maintain the asymptotic performance.

This is consistent with the notion of fusing independent signal decisions. Since the ALMP test

statistic, the central sequence ∆n,0, has a limit distribution N (0, 1) under the null distribution

P
(n)
0 by the LAN condition, it is easy to see that the detector (14) has an asymptotic size of

α. Notice that the ALMP test statistic consists of a weighted sum of binary sensor decisions,

where the optimal weight is s(x), the shape of underlying spatial signal γ(x), and the exact

planning of sensor location is irrelevant to form the statistic. Thus, the confidence in each sensor

decision is proportional to the strength of the signal (the SNR) at the sensor location. This

can be considered as matched filtering in the spatial domain although it is different from the

conventional matched filtering in that the received signal is a collection of random points with
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an intensity function determined by the input signal whereas the received signal is simply the

distorted version of the input signal for the conventional case. A related problem and approach

is in [11], where the author considered a binary on-off detection problem in optical transmissions.

The author assumed that the photon generation epochs were Poisson points and showed that

the optimal weight is the intensity of input light under a Bayesian formulation of two simple

hypotheses. However, the exact knowledge of the intensity of light was required rather than

just the relative shape. In our proposed method, the optimal test can be implemented without

obtaining the exact value of γ(x), since the optimal weight requires only the local intensity

variation s(x) of alarmed sensors and any scaling of s(x) is irrelevant in forming the statistic

(15).

An intuitive interpretation is given by a step function which is given by

s(x) =







1 x ∈ A1(∈ A),

0 x ∈ A\A1,
(16)

where A\A1 is the difference set. In this case, the local decisions from only the sensors located

within the region A1 where the phenomenon would occur are counted discarding the false alarms

from the regions of no event. For more complicated signal shapes such as (25), the local decisions

from sensors are weighted according to the relative strength of the underlying signal.

B. Optimization of Threshold for a Single Sensor

In Section III-A, we derived an ALMP detector. The optimal local threshold for a single sensor

described in Section II-A is now obtained through the asymptotic (local) upper bound (12, 13).

Since the bound is a function of the local threshold, and achieved by the proposed ALMP detector,

the optimal threshold for a single sensor is the one that maximizes the asymptotic upper bound.

In Section IV, we show that the asymptotic bound can be achieved with a reasonable number of

sensors.

Theorem 2: Suppose that the power function βτ0(γ(x)) for a single sensor is continuous and

piecewise differentiable in the variable z = γ(x). Under the Poisson regime, the following thresh-

old for a single sensor maximizes the global power for a fixed and sufficiently large number of

sensors in the region,

τopt = arg max
τ0

β′
τ0(0)

2

βτ0(0)
, (17)

where β′
τ0(γ(x)) = ∂

∂γ(x)βτ0(γ(x)).
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Proof: See Appendix II.

For the Gaussian noise model, we have βτ0(γ(x)) = Q( τ0−γ(x)
σ0

), βτ0(0) = Q(τ0/σ0) and β′
τ0(0) =

1√
2πσ0

exp(−1
2

(

τ0
σ0

)2
). The optimal local size is α0 = 0.27, and the corresponding local threshold

τo = 0.612σo (we verify this via simulations in IV). This threshold surprisingly coincides with

the one that the authors obtained for nonparametric detection of symmetric distribution using

i.i.d. observations [23]. This implies that we should design the single sensor assuming the signal

shape is uniform over the area if the information of the signal shape is not available before sensor

deployment and identical sensors are to be deployed over the field. (This is the case that we

consider in Section II-B.) Notice that under the assumption of binary decisions and Poisson

distributed sensors, the individual sensors need not be very good; a design with a PFA of 0.27

is optimal! We also note that for the AWGN model,
β′

τ0
(0)2

βτ0 (0) is fairly flat around its maximum so

that it is not critical to use the optimal τo and αo values.

Notice that the optimal fusion rule (15) and the local threshold (17) do not depend on the

parameter θ. Hence, the optimal rule is actually an asymptotically uniformly most powerful

detector when the model (10) is true, for example, when the power function for a single sensor

is linear, or the signal is weak. However, in general, our conversion to the Poisson regime is only

valid in the local neighborhood of θ = 0 for a typical power function βτ0(·).

C. Independent and Identically Distributed Observations

If the signal is constant,

s(x) ≡ 1, x ∈ A, (18)

then the sensor observations, for the model described in Section II, become i.i.d. The optimality

of the counting-based detector is given by the following corollary of Theorem 1.

Corollary 1: For i.i.d. sensor observations over A, the counting-based detector is ALMP with

size α under the Poisson regime.

Proof: In this case, the central sequence is given by (see eq. (15))

∆n,0 = (nλ0|A|)−1/2(N (n)(A) − nλ0|A|), (19)

where N (n)(A) is the number of alarmed sensors in space A and |A| is the area of A. �

Note that N (n)(A) is a Poisson random variable with mean nλ0|A| under the null hypothesis.

Since the mean and variance are equal for Poisson random variables, ∆n,0 is centered and nor-
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malized to have variance one. The Gaussian limit distribution of ∆n,0 under the null hypothesis

is explained as follows. Suppose that we partition A into n subregions with an equal area for

the nth experiment. Under the null hypothesis, we have λ(n)(0,x) = nλ0 from (34) in Appendix

I. So, the number of alarmed sensors in each subregion is a Poisson random variable with mean

λ0|A| regardless of n, and is i.i.d. over subregions under the Poisson assumption. Since N (n)(A)

is the sum of number of points in each subregion, it is a sum of n i.i.d. random variables, and ∆n,0

converges in distribution to N (0, 1) as n goes to infinity by the classical central limit theorem

(CLT).

A different counting-based detector can be constructed for the i.i.d. case based on the Binomial

distribution [19]. Let the number of sensors in A be K. Under H0, γ(x) = 0 for all x and

ui
i.i.d.∼ B(1, p0), p0 = Pr{ui = 1|γ(x) = 0} = βτ0(0). (20)

Recall that the ui are the binary sensor decisions. Using the CLT, the asymptotic distribution

of
∑K

i=1 ui is given by

1
√

Kp0(1 − p0)

(

K
∑

i=1

ui − Kp0

)

D⇒ N (0, 1), (21)

as the number of sensors K goes to infinity. Hence, the detector is given by

Reject H0 if

K
∑

i=1

ui > Kp0 + Q−1(α)
√

Kp0(1 − p0). (22)

The distributions for the number of alarmed sensors in (19) and (21) have different variances

for the same mean (i.e., nλ0|A| = Kp0), under two different models. It is well known that the

binomial distribution converges to Poisson distribution with mean Λ when K goes to infinity

with constraint Kp0 = Λ. So, when p0 is small, the two distributions are almost equivalent.

D. Discussion

The construction of the ALMP test statistic ∆n,0 in (15) requires the knowledge of several

parameters such as the null intensity λ0, the sensor locations, and the shape of the underlying

spatial signal. But the null intensity can be obtained from the known or controllable parameters

such as the density of the initial sensor distribution, the local PFA α0, and the probability of

successful transmission through the MAC, pm. Here, we briefly discuss the estimation of s(x).

As shown in Theorem 1, the ALMP weight is the spatial signal shape s(x) under the Poisson

regime. We consider an estimation method based on the collected sensor data. One simple way
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is to utilize the Poisson assumption itself. Equation (10) reveals that f(x) is the local intensity

variation of alarmed sensor distribution over space. Hence, the weight can be estimated from the

alarmed sensors and their location directly. For example, we can use a nonparametric intensity

model

f(x) =
∑

j

fjIAj ,
⋃

j

Aj = A, Ai ∩ Aj = φ. (23)

Assuming that λ0 is known, the maximum likelihood estimator of θf(x) for the model (23) is

given by

θ̂f(x) =
∑

j

N(Aj)

|Aj |
IAj − λ0. (24)

Since any scaling of s(x) doesn’t matter for obtaining ∆n,0, θ̂f(x) can be used as an estimate

ŝ(x) for the optimal weight function. However, for this estimation method, several independent

measurements by sensors are required, and this method is useful only when θ is fairly large. We

are currently investigating more efficient methods to estimate the signal variation based only

on the binary sensor decisions and sensor locations. The performance degradation due to an

incorrectly assumed signal shape is investigated in Section IV-B.

IV. Numerical Results

In this section, we present some simulation results. We used the receiver operating charac-

teristics (ROC) as the performance criterion. The power of the proposed ALMP detector was

evaluated via the analytic results in (12, 13) and by Monte Carlo simulations. The PFA was also

estimated to check the validity of detector design in the Neyman-Pearson context. The power of

the proposed detector (Theorem 1) was compared with that of the counting-based detector (22)

which also has an asymptotic size of α, but does not exploit the spatial information. Performance

degradation due to mismatched signal shapes was also investigated.

A. Setup

We considered a two dimensional space A which is circular with unit radius. The spatial signal

shape was the symmetric exponential given by

s(x, y) = e−ηr, r =
√

x2 + y2, (25)

with a decay rate η > 0. The average number of sensors in A was chosen to be 1,000. For the

local sensor function, we used the additive Gaussian noise model and the UMP detector with
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several local sizes (see Section II-A).

For the simulation of power and PFA, 10,000 Monte Carlo runs were executed. For each run,

the following procedures were performed. The locations of the sensors were randomly generated

according to a homogeneous Poisson process with the given mean intensity. We implemented the

UMP detector of (6) for the AWGN model in (5), with noise variance σ2
o = 1. Global decision

statistics are given by (15) for the ALMP detector, and by (19) for the counting-based detector.

The global thresholds for both detectors were determined via the Gaussian limit distribution.

Throughout the simulations, the probability of successful data collection from each sensor was

set to pm = 0.9. The initial homogeneous density λh and the local PFA were assumed to be

known and the true values were used for the simulation.

B. Receiver Operating Characteristics
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Fig. 4. (a) upperbound on power vs. average number of sensors (global size PF = 0.1), (b) ROC -

analytic and simulation curves.

Fig. 4 shows the analytic results, corresponding to a decay rate η = 3 in (25). Fig. 4 (a) shows

the analytic upperbound on the power vs. the number of sensors, for for global size 0.1. It also

depicts the expected behavior, that if the signal strength θ decreases, we need more sensors to

achieve the same performance. Fig. 4 (b) shows the analytic bound and simulated power with

respect to the PFA. For the simulation curve, the actual PFA was used rather than the design

size. As shown in the figure, the power of ALMP detector achieves the asymptotic upper bound

with a network size of 1000. Notice that the simulated power is slightly larger than the bound.

This is because the Gaussian power function βτ0(·) is convex in the range α0 ≤ 0.5 and larger
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than the linear approximation at θ = 0. But, the figure shows that the difference is negligible

and that the linear modeling (10) is valid in this range of θ.
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Fig. 5. (a) actual false alarm probability vs. the designed size, (b) ROC with different local sizes(θ = 0.5)

One important feature of the proposed detector is that the test statistic ∆n,0 has a Gaussian

limit distribution and the global threshold is based on it. Fig. 5 (a) shows the actual PFA

obtained by simulation versus the design size for the additive Gaussian noise model, with local

size 0.1 and verifies the convergence in distribution of the test statistic with a network size of

1000 sensors. As shown, the actual PFAs closely follow the design size. Notice that the actual

PFA of the ALMP detector, for decay rate η = 6, deviates more than that for the case of η = 3

whereas the deviations are almost the same for the counting-based detector. This is because the

test statistic ∆n,0 for the ALMP detector is the sum of local decisions weighted by the spatial

signal shape while the weight is uniform over the space for the counting-based detector. For the

exponential with a large decay rate in (25), the sensor decisions around the origin dominate the

overall distribution. Hence, the distribution is concentrated around the mean and deviates more

from the Gaussian, which is clearly seen by the maximum deviation around α = 0.5. This effect

is more severe with a larger decay rate such as η = 6.

Fig. 5 (b) shows the ROC of the ALMP detector using different local thresholds for a single

sensor. The additive Gaussian input model was used and the average number of sensors in A

was kept the same at 1000 for all four cases in the figure. As shown, the global power changes

with the local size of each sensor and the maximum is achieved between the local sizes of 0.2 and

0.3 as predicted in Section III-B
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Fig. 6. ROC - additive Gaussian sensor model (solid line - ALMP detector, dashed line - counting-based

detector) : (a) η = 6, (b) η = 3

Fig. 6 show the ROC’s of the proposed ALMP and counting-based detector for the additive

Gaussian sensor model with local size 0.1. Fig. 6 (a) shows the case where the spatial signal

changes quickly within the region A. The ALMP detector exploits spatial information and

performs significantly better than the counting-based approach. Fig. 6 (b) shows the ROC’s for

a smaller decay rate. As the decay rate becomes small or the signal becomes more uniform over

the space, the performance gained by utilizing the spatial information becomes less significant.

The meaning of asymptotic local optimality is clearly evident from Fig. 6 (b). In this case,

we have a larger overall power in the space than the cases in Fig. 6 (a), since the signal decays

slowly over the space with the same peak at the origin. Since the peak value of s(x) in (25) is one

and the variance for sensor input noise is chosen to be one, the maximum signal-to-noise ratio

(SNR) for a sensor located at the origin is 0 dB when the amplitude parameter θ is one in the

figure. Even though the SNR of 0 dB is very small for a single sensor, we have a large number of

observations for the entire sensor field. (The average number is 1000 sensors.) Hence, the global

power for θ = 1 already reaches almost unity for both the ALMP and counting-based detector

and the comparison above θ = 1 is less meaningful in this case. However, the performance within

the local neighborhood of the null hypothesis is clearly distinguishable in all the figures.

Up to now, the true signal shape was used to obtain the ROC of ALMP detectors. Fig. 7

(a) shows the ROC of the proposed detector with mismatched signal shapes. The true signal

shape of POI was the symmetric exponential with η = 6. We used two mismatched shapes as

the weighting function to construct the central sequence. First, we considered the symmetric
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Fig. 7. ROC with mismatched signal shapes: (a) mismatched rate, (b) mismatched center, (c) perturbed

sensor location(α0 = 0.27, θ = 0.75)

exponential s1(x, y) with a different decay rate η = 9. As expected, the proposed detector with

the mismatched shape performs worse than the true ALMP detector. However, for the case of

s1(x, y), the performance almost approaches the ALMP detector since s1(x, y) is quite similar to

the original shape. So, we further approximated the signal shape by a step function

s2(x, y) =







1
√

x2 + y2 ≤ r0

0 otherwise
, (26)

where r0 was determined such that the spatial ‘power’ of s2(x, y) covers 90 % of that of the original

signal, i.e.,
∫

A s2
2(x, y)dxdy = 0.9

∫

A s2(x, y)dxdy. In this case, even though the degradation from

the true ALMP becomes larger, it still shows good performance compared with the true ALMP

detector. It is seen that rough knowledge of the signal shape is enough to get most of the

advantage of the ALMP detector. Fig. 7 (b) shows the ROC of the ALMP detector using the

same signal shape, but with mismatched centers. The same parameters were used as Fig.7 (a)

for the true signal. The displacements of the center correspond to the positions of 80, 60, 40%

from the amplitude of the true center. As shown, even with a rough estimate of the center,

performance degradation is not severe compared with the perfectly matched case. Finally, the

effect of inaccurate sensor locations was investigated. Fig. 7 (c) shows the performance with the

perturbed sensor locations. The same signal shape with η = 6 was used for all ALMP detectors

but the perturbed locations of the sensors were used at the fusion center, i.e., ŝ(x) = s(x + ∆x)

where the perturbation ∆x was generated independently for each sensor and was Gaussian

distributed with standard deviations 1 %, 5 %, 10 % of the radius of the total space. As
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shown by the figure, the ALMP detector is robust with respect to the sensor location errors and

a rough estimate of the sensor location is enough.

V. Conclusion

We considered a global detection problem based on (inaccurate) binary decisions from local

threshold sensors. The local ‘alarm’ probability is described by a generic function βτ0(θs(x)),

where τ0 is the local threshold, s(x) is the known underlying signal shape, and θ is the unknown

amplitude. By assuming a homogeneous Poisson distribution of the sensors, we mapped the

global detection problem to one of detecting Poisson processes with different intensities. Under a

small signal strength assumption, asymptotically (in the number of sensors in a fixed area) locally

most powerful (ALMP) detector was derived using LAN theory. It was shown that the conditions

for applying LAN theory lead to reasonable restrictions on the underlying spatial signal. The

ALMP fusion rule is a threshold detector for the weighted sum of local decisions, where the

weight is proportional to the signal strength. The ALMP detector requires knowledge of the

sensor locations, the signal shape, and a parameter which is the product of the local detector

function βτ0(0), the MAC success probability, and the average density of the sensor locations.

We have also shown (Theorem 3) how to optimize the local threshold so as to maximize the

global power function. The asymptotic local optimality of the counting-based detector was

established for the case of constant spatial signals. Numerical examples were provided to verify

the theoretical results. Several of these examples also demonstrate that the proposed detector

is robust under conditions of signal mismatch, including wrong signal shape, translated signal

shape, and location calibration errors. Efficient estimators of s(x), or its parameters, based on

the binary sensor decisions, is currently under investigation.

Appendix I: Locally Asymptotically Normal (LAN) Condition for

the Model in Section II

A. Review of Poisson Processes

The Poisson process XA in a metric space A with a σ-field B is expressed in a simple manner

by a counting measure notation as [9]

XA(B) =
∑

i: xi∈A

εxi(B), ∀B ∈ B, (27)
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where xi’s are random points in A and

εxi(B)
∆
=







1, xi ∈ B

0, xi /∈ B
. (28)

The Poisson process has the following properties.

(i) for every B ∈ B, XA(B) is a Poisson random variable with mean Λ(B) < ∞,

(ii) for every finite collection of disjoint sets B1, . . . , Bk ∈ B, the random variables XA(B1), . . . , XA(Bk)

are independent.

Here, Λ(·) is called the intensity measure and its density3 λ(x), i.e., Λ(dx) = λ(x)dx, is called

the (local) intensity. We define the stochastic integral for a given function g as [7]

I(g)
∆
=

∫

A
g(x)XA(dx) =

∑

i: xi∈A

g(xi). (29)

The probability distribution of the Poisson process XA is determined by the local intensity. For

the case of a parametric family of intensities such as (10), the probability distribution is also

parameterized by the same parameter and given by [10]

dPθ(XA) = exp

(∫

A
log λ(θ,x)XA(dx) −

∫

A
λ(θ,x)dx

)

,

=
∏

i:xi∈A

λ(θ,xi) exp

(

−
∫

A
λ(θ,x)dx

)

. (30)

The likelihood ratio between two distributions Pθ0 and Pθ1 is given by [7]

dPθ1

dPθ0

(XA) = exp(

∫

A
log

λ(θ1,x)

λ(θ0,x)
XA(dx) −

∫

A
[λ(θ1,x) − λ(θ0,x)]dx). (31)

B. Construction of a Sequence of Statistical Models

We construct a sequence of statistical models (Ω(n),X (n),P(n)) where (Ω(n),X (n)) is the mea-

surable space of all possible realizations of the Poisson process X
(n)
An

of the alarmed sensors on

space An and P(n) is the corresponding family of probability distributions. Let λ(n)(θ,x) be

the local intensity of the Poisson process X
(n)
An

. Then, the family of probability distributions

P(n) = {P (n)
θ (X

(n)
An

), θ ∈ Θ} is given by (30). We are interested in the asymptotic scenario where

the number of sensors deployed over a finite area goes to infinity. The model of increasing sensors

in a finite area is described by increasing the initial intensity λh of sensor deployment.

3For convenience, we assume that Λ(·) is differentiable.
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Model 1 (Finite area and infinite sensor model) We distribute sensors over space An according

to a homogeneous Poisson process with intensity λ
(n)
h independently for each n ≥ 1. We set

An = A, such that |A| < ∞, for all n = 1, 2, . . . , (32)

and choose the local intensity of initial sensor distribution over the space A as

λ
(n)
h = nλh0. (33)

Then, we collect the local decision of each sensor, and observe the realization X
(n)
A of the alarmed

sensor distribution. For each n ≥ 1, the local intensity of X
(n)
A is given, using (10, 11), by

λ(n)(θ,x) = θnf(x) + nλ0, θ ∈ Θ (34)

where

f(x) = λh0pmβ′
τ0(0)s(x), λ0 = λh0pmβτ0(0), (35)

and the sequence of probability distributions {P (n)
θ , θ ∈ Θ} is given, using (30), by

dP
(n)
θ

(X
(n)
A

) = exp

(∫

A

log λ(n)(θ,x)X
(n)
A

(dx) −
∫

A

λ(n)(θ,x)dx

)

. (36)

The LAN property of distributions of Poisson processes has been investigated by several au-

thors [6], [7], [8] who derived the conditions in terms of the local intensity for LAN. However, the

authors considered a sequence of models where the observation area An(⊂ An+1) goes to infinity

for a fixed local intensity for all n, which is different from Model 1. We derive new conditions in

terms of the spatial signal shape for the LAN property of the model with increasing sensors in a

finite area.

Theorem 3: For Model 1, suppose that f(x) satisfies the following conditions

(C.1) f(x) ≥ 0, x ∈ A, (C.2) sup
x∈A f(x) < ∞, (C.3)

∫

A f(x)dx > 0.

Then, the statistical model {P (n)
θ , θ ∈ Θ} of the alarmed sensor distribution X

(n)
A is LAN at

θ = 0; i.e., for every h ≥ 0,

log
dP

(n)
rn(0)h

dP
(n)
0

(X
(n)
A ) = h∆n,0 −

1

2
h2 + o

P
(n)
0

(1), (37)

where the central sequence ∆n,0 and normalizing sequence rn(0) are given by

∆n,0 =

∫

An

rn(0)

(

λ̇(n)(0,x)

λ(n)(0,x)

)

[

X
(n)
A (dx) − Λ

(n)
0 (dx)

]

, (38)
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rn(0) = Jn(0)−1/2, Jn(0) =

∫

A

(

λ̇(n)(0,x)

λ(n)(0,x)

)2

Λ
(n)
0 (dx), (39)

λ̇(n)(θ,x) =
∂

∂θ
λ(n)(θ,x), Λ

(n)
0 (dx) = λ(n)(0,x)dx = nλh0dx,

and L(∆n,0|P (n)
0 ) ⇒ N (0, 1).

Proof: See Appendix II.

Here, the integration with random point measure in (38) is defined in (29). Condition (C.1)

requires that the single sensor power function βτ0(·) must be a nondecreasing function at the

origin θ = 0 for a given τ0 and that s(x) be nonnegative; (C.2) is satisfied by any bounded s(x),

and (C.3) says that s(x) is not identically zero over the sensor field. The conditions (C.1)-(C.3)

are general enough to include most interesting cases. Examples of allowed 2-D signal shapes

for any region with a finite area, include: constant f(x) or s(x), a step function, Gaussian, or

exponentially decaying signal; indeed, any bounded non-negative function.

Appendix II: Proofs

Lemma 1: Let X
(n)
An

be the sequence of Poisson processes (or corresponding statistical models)

with probability distribution {P (n)
θ , θ ∈ Θ = [0,∞)} induced by the intensity measure Λ

(n)
θ (dx)

∆
=

λ(n)(θ,x)dx, x ∈ An. Let the conditions (B.1)-(B.3) below be satisfied. Then, the statistical

model {P (n)
θ , θ ∈ Θ} is LAN at θ0 ∈ Θ with central sequence ∆n,θ0 and normalizing sequence

rn(θ0) defined in (38) and (39), respectively.

(B.1) All intensity measures {Λ(n)
θ (dx), θ ∈ Θ}, n = 1, 2, . . . are equivalent or mutually abso-

lutely continuous for all θ ∈ Θ and Λ
(n)
θ (An) < ∞ for all n. We define

Sn(θ, θ0;x)
∆
=

Λ
(n)
θ (dx)

Λ
(n)
θ0

(dx)
=

λ(n)(θ,x)

λ(n)(θ0,x)
.

(B.2) The function Sn(θ, θ0;x), θ, θ0 ∈ Θ, x ∈ An is continuously differentiable with respect to

θ at θ0. We define

Ψn(θ, θ0;x)
∆
= 2
√

Sn(θ, θ0;x), Ψ̇n(θ, θ0;x)
∆
=

∂

∂θ
Ψn(θ, θ0;x)

Ψ̇n(θ0, θ0; x) =
λ̇(n)(θ0,x)

λ(n)(θ0,x)

Then, the quantity

Jn(θ0)
∆
=

∫

An

|Ψ̇n(θ0, θ0;x)|2Λ(n)
θ0

(dx) (40)
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is positive ( > 0) at θ0 ∈ Θ and

rn(θ0)
∆
= Jn(θ0)

−1/2 → 0 as n → ∞. (41)

(B.3)

lim
n→∞

∫

An

|rn(θ0)Ψ̇n(θ0, θ0;x)|3Λ(n)
θ0

(dx) → 0, (42)

and for every C > 0,

lim
n→∞

r2
n(θ0) sup

|θ−y|+|θ−z|<rn(θ0)C

∫

An

[

λ̇(n)(z,x)

λ(n)(y,x)
− λ̇(n)(θ0,x)

λ(n)(θ0,x)

]2

Λ
(n)
θ0

(dx) = 0. (43)

Proof: In [31], [6], [7].

Proof of Theorem 3

Since

λ(n)(θ,x) = θnf(x) + nλ0, x ∈ A, λ0 > 0

for Model 1 and f(x) ≥ 0, x ∈ A by the condition (C.1), the family of intensity measures

{Λ(n)
θ (dx)} are equivalent for θ ≥ 0 and all n. Hence, (B.1) is satisfied and Ψn(θ, θ0;x) is well

defined and its derivative is given by

Ψ̇n(θ, θ0;x) =
nf(x)

θnf(x) + nλ0
/

√

θnf(x) + nλ0

θ0nf(x) + nλ0

and at θ0 = 0,

Ψ̇n(0, 0;x) = λ−1
0 f(x).

Jn(0) =

∫

An

|Ψ̇n(0, 0;x)|2Λ(n)
0 (dx) =

∫

A
λ−2

0 f2(x)nλ0dx = nλ−1
0

∫

A
f2(x)dx, (44)

since

An = A for all n, |A| < ∞.

By (C.2) and (C.3),

0 < C0 :=

∫

A
f2(x)dx < ∞ ⇒ 0 < Jn(0) < ∞ for all n,

and limn→∞ Jn(0) = ∞. Hence, (B.2) is satisfied.

Define

rn(0)
∆
= Jn(0)−1/2 = n−1/2λ

1/2
0

[∫

A
f2(x)dx

]−1/2

= n−1/2λ
1/2
0 C

−1/2
0 . (45)
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Now check (42).

∫

An

|rn(0)Ψ̇n(0, 0;x)|3Λ(n)
0 (dx) =

∫

A
n−3/2λ

3/2
0 [

∫

A
f2(x)dx]−3/2λ−3

0 f3(x)nλ0dx

= n−1/2λ
−1/2
0 [

∫

A
f2(x)dx]−3/2

∫

A
f3(x)dx .

Since f(x) ≥ 0,
∫

A f(x) > 0, and sup
x∈A f(x) = M < ∞,

0 <

∫

A
f3(x)dx < ∞.

We have
∫

An

|rn(0)Ψ̇n(0, 0;x)|3Λ0(dx) → 0 as n → ∞.

Hence, the Lindeberg condition (42) is satisfied.

For given C > 0,

sup
|y|+|z|<rn(0)C

∫

An

r2
n(0)

[

λ̇(n)(z,x)

λ(n)(y,x)
− λ̇(n)(0,x)

λ(n)(0,x)

]2

Λ
(n)
0 (dx)

= sup
0≤y<n−1/2C′

∫

A
n−1λ2

0C
−1
0

[

f(x)

yf(x) + λ0
− f(x)

λ0

]2

nλ0dx

= sup
0≤y<n−1/2C′

λ3
0C

−1
0

∫

A

[

f(x)

yf(x) + λ0
− f(x)

λ0

]2

dx

= sup
0≤y<n−1/2C′

λ3
0C

−1
0

∫

A

[

f(x)

λ0

]2 [ 1

yf(x)/λ0 + 1
− 1

]2

dx

≤ sup
0≤y<n−1/2C′

λ3
0C

−1
0

[

1

yM/λ0 + 1
− 1

]2 ∫

A

[

f(x)

λ0

]2

dx

≤ λ3
0C

−1
0

[

1

n−1/2C ′M/λ0 + 1
− 1

]2 ∫

A

[

f(x)

λ0

]2

dx

→ 0 as n → ∞.

where C ′ = λ
1/2
0 C

−1/2
0 C. Here, we used the fact that h(x) defined in (46) is monotone increasing

for x ≥ 0.

h(x) =

(

1

ax + 1
− 1

)2

, for any a > 0. (46)

Hence, (B.3) is satisfied. �

Proof of Theorem 1

λ̇(n)(0,x)

λ(n)(0,x)
=

nf(x)

θnf(x) + nλ0
|θ=0 = λ−1

0 f(x),
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rn(0) =





∫

A

(

λ̇(n)(0,x)

λ(n)(0,x)

)2

λ(n)(0,x)dx





−1/2

= n−1/2λ
1/2
0

(∫

A
f2(x)dx

)−1/2

, (47)

∆n,0 = rn(0)

∫

A
f(x)[X(n)(dx) − Λ

(n)
0 (dx)],

= n−1/2λ
−1/2
0

(∫

A
c2s2(x)dx

)−1/2(∫

A
cs(x)X(n)(dx) − nλ0

∫

A
cs(x)dx

)

,

= n−1/2λ
−1/2
0

(∫

A
s2(x)dx

)−1/2

(
∑

i: xi∈A

s(xi) − nλ0

∫

A
s(x)dx ). (48)

Here, we used the fact that f(x) is a scaled version of s(x) (f(x) = cs(x), c > 0). The last step

is by the definition of stochastic integral. The ALMP detector is obtained by the score test [4].

�

Proof of Theorem 2

By Theorem 1, the asymptotic local upper bound for the global power is given by

Q(Q−1(α) − r−1
n (0)θ).

Since Q(·) is a monotone decreasing function, the maximum upper bound for a fixed θ is achieved

by maximizing r−1
n (0) for a given n. Since rn(0) is given, using (35), by

rn(0) = n−1/2λ
1/2
0

[∫

A
f2(x)dx

]−1/2

=

(

nλh0pm
(β′

τ0(0))
2

βτ0(0)

∫

A
s2(x)dx

)−1/2

, (49)

the theorem follows. �
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