
CELL: A Compositional Verification Framework*

Kun Ji1, Yang Liu2, Shang-Wei Lin1, Jun Sun3, Jin Song Dong1, and
Truong Khanh Nguyen1

1 National University of Singapore
2 Nanyang Technological University

3 Singapore University of Technology and Design

Abstract. This paper presents CELL, a comprehensive and extensible frame-
work for compositional verification of concurrent and real-time systems based
on commonly used semantic models. For each semantic model, CELL offers
three libraries, i.e., compositional verification paradigms, learning algorithms and
model checking methods to support various state-of-the-art compositional veri-
fication approaches. With well-defined APIs, the framework could be applied to
build customized model checkers. In addition, each library could be used inde-
pendently for verification and program analysis purposes. We have built three
model checkers with CELL. The experimental results show that the performance
of these model checkers can offer similar or often better performance compared
to the state-of-the-art verification tools.

1 Introduction

Compositional verification technique presents a promising way to alleviate state ex-
plosion problem associated with model checking via the “divide-and-conquer” strat-
egy. In recent years, a number of approaches have been proposed to conduct com-
positional verification automatically which are categorized as learning based assume-
guarantee reasoning (LAGR) [4], symbolic learning based assume-guarantee reason-
ing (SLAGR) [3], assume-guarantee reasoning by abstraction refinement (AGAR) [5]
and compositional abstraction refinement (CAR) [2]. Furthermore, different compo-
sitional verification paradigms may work with different learning (or abstraction re-
finement) algorithms and model checking methods (e.g., symbolic model checking,
explicit-state model checking). It is thus desirable to build a framework such that dif-
ferent approaches can be systematically experimented, compared or applied.

In this work, we propose a comprehensive and extensible framework named CELL,
which contains various state-of-the-art compositional verification approaches for con-
current and real-time systems based on commonly used semantics models (i.e., labeled
transition system (LTS) for concurrent systems and timed transition system (TTS) [6]
for real-time systems). For each semantic model, CELL offers three libraries, i.e., com-
positional verification paradigms, learning algorithms and model checking methods.
Various state-of-the-art compositional verification approaches can be constructed by

* This project is supported by project ‘IDD11100102’ from Singapore University of Technology
and Design

Timed Transition SystemLabeled Transition System

CDNF TL*

Explicit-based Model
Checker

Zone-based Model
Checker

CEGAR

Semantic Models

Learning Algorithms

Model Checking
Methods

Compositional
Verification
Paradigm

CEGARL*

Bounded
Model Checker

BDD-based
Model Checker

LAGR

Markov Decision Process

LAGR

Probabilistic L*

Explicit-based
Model Checker

AGAR

CEGAREAT

Symbolic
LAGR

LAGR CAR AGAR CAR AGAR

Fig. 1: Design of CELL

combining items from each library. For instance, the compositional verification ap-
proach proposed in [4] can be achieved by combining LAGR compositional verifica-
tion paradigm, the L∗ learning algorithm and an explicit-based model checking method
respectively from the three libraries designed for models whose semantics are LTSs.
Currently, CELL provides seven compositional verification paradigms, seven learning
algorithms, four model checking methods and ten ways of combinations to perform
automatic compositional verifications. In addition, CELL can be extended in multiple
ways, e.g., with new semantic models (e.g., Markov Decision Process), new composi-
tional verification paradigms, learning algorithms or model checking methods. Figure 1
shows the overall architecture of CELL. Notice the light-color part shows how CELL
can be (and is being) extended to support probabilistic systems.

To the best of our knowledge, CELL is the only stable and publicly available compo-
sitional verification framework. CELL is an open source project under LGPL v3 license
in the format of dynamic linked library (DLL) with no GUI. We used PAT [8, 7] frame-
work’s GUI to develop the three demonstrating model checkers. It is possible to build
new model checkers using CELL to conduct the verification tasks.

2 CELL Architecture

CELL’s architecture includes four layers. With the defined APIs from the semantic
model layer, domain experts are allowed to easily manufacture model checkers with
various compositional verification approaches to alleviate the state explosion problem.
Furthermore, the APIs of the lower layers are well defined so that they can be used
independently for various purposes.

Semantic Model Layer In this layer, we support commonly used semantic models
(i.e., LTS for concurrent systems and TTS for real-time systems). Any modelling lan-
guage whose semantic model is LTS or TTS can be verified using our framework. In
CELL, we assume for systems, which have LTS/TTS semantics, both the system and
the property are represented in LTS/TTS4. The verification problem is thus reduced to

4 For real-time system, we assume the property is determinizable.

check the language inclusive of the model and whether the model defines a language
which is a subset of that of the property.

Compositional Verification Paradigm Layer This layer contains typical patterns
of compositional verification approaches that we have categorized. As shown in the
second layer of Figure 1, we provide LAGR, AGAR and CAR for both LTS and TTS
semantics models. In addition, we provide SLAGR for LTS model, which may reduce
the state space for some models by leveraging the symbolic model checking.

Learning Algorithm Layer To construct the assumptions or model abstractions
needed by compositional verification, different learning or abstraction refinement algo-
rithms are supported in this layer. For consistency, we include the abstraction refinement
techniques (e.g., CEGAR and EAT [2]) in the set of learning algorithms. The current
implementation includes the following: L∗ learning algorithm, CDNF Boolean function
learning algorithm, CEGAR and EAT techniques for concurrent systems, TL∗ learning
algorithm and CEGAR for real-time systems. The basic idea of EAT [2] is to use evolu-
tionary algorithm to generate abstractions, which can increase the probability of finding
good abstractions.

Model Checking Method Layer In this layer, we provide various model check-
ing methods. We provide explicit-state model checking and symbolic model checking
for LTS, and zone-based model checking for TTS. For symbolic model checking, we
provide both SAT-based bounded model checking and BDD-based model checking.

Under each semantic model, compositional verification paradigms, learning algo-
rithms and model checking methods can be mix-and-match to construct compositional
verification approaches. Notice that not every combination is effective. The arrows in
Fig. 1 show the relationship. Currently, CELL supports seven different verification ap-
proaches for LTS and three for TTS. All these combinations and their features are sum-
marized in our website [1]. A technical report that explains more details about each
component in CELL can be also found there.

3 Implementation and Evaluation

CELL is implemented on Microsoft .NET framework via C# language. Starting from
2011, the latest version 0.3 of CELL has 54K LOC. CELL is a stand-alone library in
the format of DLL and can be used by calling its APIs.

To prove the capability of CELL framework, we developed three compositional
model checkers adopting the GUI from PAT framework [8]. The model checkers in-
clude CLTS that is used to verify concurrent systems modelled by finite state machines,
CERA to verify real-time systems modelled by event-recording automata (ERAs) and
CTA to verify real-time systems modelled by timed automata (TAs). It is non-trivial to
measure how easy to use CELL. However, we have built those model checkers within
one month, which shows that our design is promising. The CELL DLL binary file to-
gether with the source code, complete APIs description document, user manual and
three aforementioned model checkers are available in [1].

With CLTS and CEAR, we modelled a bunch of concurrent and real-time systems
which include the AIP manufacturing system, Dinner Philosopher problems (DP) and

Table 1: Running time (in seconds), the number of highest visited locations in all the verification
rounds | L |, | P | means number of processes and ROM means running out of memory.

LTS Monolithic AGAR LAGR CAR SLAGR
Case | P | Valid? | L | Time | L | Time | L | Time | L | Time Time
AIP 10 Yes 104,650 7.86 2,745 0.44 2,745 0.29 2,878 0.98 0.90
DP 30 Yes ROM ROM 20,824 11.95 20,824 7.03 1,500 3.32 11.19

FMS-3 11 Yes 312,064 12.77 1,920 0.11 1,260 0.08 20 0.17 0.12
FMS-4 14 Yes ROM ROM 24,744 6.93 26,320 2.61 530 0.22 0.14

TTS Monolithic AGAR LAGR CAR
FMS-1 6 Yes 212 0.13 36 0.02 36 0.01 36 0.02
FMS-2 10 Yes 97,136 7.49 1,260 0.29 1,260 0.13 1,260 0.02
FMS-3 11 Yes 312,064 23.39 1,920 0.35 1,528 0.19 3,936 1.42
FMS-4 14 Yes ROM ROM 24,744 30.93 26,320 5.13 24,744 12.81

various versions of flexible manufacturing systems (FMSs) that differ by complexi-
ties for both concurrent and real-time versions (FMS-4 is the most complex one). We
did not compare with other model checkers such as NuSMV or Uppaal because of
the different modelling languages and supported properties. In addition, it is unfair
to compare with these monolithic model checkers since CELL adopts compositional
technique, and NuSMV and Uppaal may have advanced reduction techniques that are
not available in CELL. Table 1 shows the verification results. For the concurrent sys-
tems, due to the limited space, we show results collected from subset of the verifica-
tion approaches, which are CEGAR-based AGAR, L∗-based LAGR, EAT-based CAR,
CDNF-based (with BDD) SLAGR. It can be obversed that all the compositional ver-
ification approaches outperform the monolithic approach. CDNF-based SLAGR has
better performance since it takes advantages of symbolic model checking. EAT-based
CAR outperforms CEGAR-based CAR as EAT can find better abstractions [2]. For the
real-time experiments, we show results from all the three approaches, which respec-
tively are CEGAR-based AGAR, TL∗-based LAGR and CEGAR-based CAR. Observe
that all the compositional verification approaches outperform the monolithic one. More
detailed results are available with our technical report [1].

References

1. CELL website, http://www.comp.nus.edu.sg/~pat/cell/.
2. EAT: Evolutionary abstraction technique, https://sites.google.com/site/shangweilin/eat.
3. Y. Chen, E. Clarke, A. Farzan, M. Tsai, Y. Tsay, and B. Wang. Automated assume-guarantee

reasoning through implicit learning. In CAV, pages 511–526, 2010.
4. J. Cobleigh, D. Giannakopoulou, and C. Păsăreanu. Learning assumptions for compositional

verification. In TACAS, pages 331–346, 2003.
5. M. Gheorghiu Bobaru, C. Păsăreanu, and D. Giannakopoulou. Automated assume-guarantee

reasoning by abstraction refinement. In CAV, pages 135–148, 2008.
6. T. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Real-Time: Theory in

Practice, pages 226–251, 1992.
7. Y. Liu, J. Sun, and J. S. Dong. Pat 3: An extensible architecture for building multi-domain

model checkers. In ISSRE, pages 190–199, 2011.

8. J. Sun, Y. Liu, J. Dong, and J. Pang. PAT: Towards flexible verification under fairness. In
CAV, pages 709–714, 2009.

