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Abstract— The design, development and in-vitro evaluation of 

an impedimetric neurotoxicity cell-based biosensor that is 
designed for real time monitoring of changes in 
electrophysiological behavior under the influence of neurotoxins 
is described. The electrical cell impedance sensing (ECIS) system 
[ECIS 8W1E element array of gold electrodes] is used as a 
substrate for the culture of rat pheochromocytoma (PC 12) cells. 
The neurotoxicity biosensor is a microfabricated solid state 
device that mimics the natural environment of PC 12 cells that 
are responsive to neurotoxins. The PC 12 neurotoxicity 
biosensors are complemented by artificial neural networks 
(ANNs) to recognize the impedance profiles of the cells under the 
influence of a neurotoxin. The neurotoxins were rotenone (Rot), 
okadaic acid (OA) and peroxynitrite (Per), which are all known 
to induce cell death in PC 12 cells. Three multilayer feedforward 
artificial neural network models were developed using a back-
propagation algorithm for pattern recognition of neurotoxins. 
The neurotoxin network (NTN) and the neurotoxin concentration 
network (NTCN), were trained with data from all the 
neurotoxins and the cascade network (NTN_NTCN) was 
developed by combining both the NTN and NTCN. The cascade 
network was developed to screen against false positives. The 
neurotoxicity biosensor coupled with these networks allowed for 
the action of unknown agents (neurotoxins) to be deduced by the 
measured cellular response. Using back-propagation ANNs to 
distinguish neurotoxins under the cascade network, the highest 
success recognition rate for concentration identification were 
96% for peroxynitrite, 88% for rotenone, and 96% for okadaic 
acid.  The recognition rate for neurotoxin identification was 98%. 
The ANN models required less than ten minutes to train and 
demonstrated that back-propagation ANNs can be handled by 
commercially-available computers to train and assimilate 
neurotoxin impedance information, permitting high success rates 
in the neurotoxin recognition problems. 

 
Index Terms— Artificial neural networks, cell-based 

biosensors, neurotoxicity, pattern recognition 

I. INTRODUCTION 
he principle of electric cell-substrate impedance sensing 
(ECIS), used for impedance stimulations,  has become an 

integral part of neuron-to-electrode interface technology [1]-
[8]. Electrical impedance techniques have been used to study 
the electrical properties of anchorage dependent cells in 
culture [9]. In this approach, cells were cultured on 
microelectrode arrays (MEAs) and the 
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motility/viability/electrophysiology of the cells were 
electrically detected and monitored.  

Traditionally, toxicity assessments involve animal studies, 
which are both time-intensive and costly [10]. Thus 
opportunities arise for the development of cell-based, high-
throughput screening techniques that may be used for toxicity 
assessments and drug development. Cell-based biosensors are 
a key component in the development of practical methods for 
the screening of drugs for possible toxic side effects and for 
the monitoring of the effects of biochemical warfare agents; 
thus minimizing the use of experimental animals.   

The work of Giaever et al. in 1984 [9] and Connolly et al. 
in 1990 [11] represent previous studies of the electrical 
impedance characteristics of anchorage dependent cultured 
cell lines. Many studies since Connolly et al. have investigated 
different designs pertaining to the combination of neuronal 
cells and electrodes based on contact adhesion [12]-[14]. 
Recently, other groups using different electrode structures 
have performed impedance studies of anchorage dependent 
cultured cells [15].  Slaughter et al. in 2004 focused on the 
development of a cellular measurement systems exemplified 
by the monitoring of the electrical impedance of rat 
pheochromocytoma (PC 12) cells [16] cultured on ECIS gold 
microelectrode arrays [7].  

 Currently, artificial neural networks (ANNs) have become 
the subject of study in many diverse research areas, such as 
neuroscience, medicine, engineering and economics, to solve 
problems that cannot be easily solved by other more 
established techniques. We have investigated the fundamental 
aspects of cell-neurotoxin interactions by developing 
techniques that couples the impedance responses generated 
from the PC 12 neurotoxicity biosensor with that of ANNs to 
exploit the properties of nonlinear modeling by artificial 
neural network models in order to solve the problems of 
pattern recognition of nonlinear dynamical systems. Useful 
insights into the toxin-induced cell death can be obtained 
through pattern recognition, thus increasing the speed of drug 
discovery/screening and minimizing the use of large-scale 
animal tests. 

In this paper, we focused on the utilization of the laminin 
derivatized CA SAM [7] to monitor the impedance 
measurements of PC 12 in the presence of  neurotoxins. A 
thorough toxicity evaluation is a vital step in the development 
of many products in the pharmaceutical industry and in the 
chemical industry. We report on the overall performance rates 
of three feedforward network models; (i) a neurotoxin network 
(NTN), (ii) a neurotoxin concentration network (NTCN), and 
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(iii) a cascade network (NTN_NTCN). We address the 
neurotoxin network performance by increasing the training 
size, which was discovered to enhance the recognition rates. 
We also describe the design and development of the cascade 
network. We demonstrate the development of a PC 12 
neurotoxicity biosensor that has the ability to detect and/or 
classify unanticipated threats (e.g. novel pathogens) with high 
success recognition rates and establish the principle that it is 
possible to recognize and differentiate between neurotoxins in 
real time utilizing temporal impedance signals and ANNs. Our 
ultimate goal is the development of techniques to allow the 
action of unknown agents (neurotoxins) to be deduced by the 
measured cellular response pattern. 

 

II. PATTERN RECOGNITION 

A. Basic Biosensor Paradigm 
To date, many toxin recognition strategies have been 

proposed, however many methodologies including signal 
processing, artificial neural networks, artificial intelligence, 
statistics, probability theory have not been extensively 
examined [17]. Toxin recognition and detection has been an 
area of significant interest, and an active research topic at 
many institutions. The aim is to predetermine the impact 
neurotoxins will have on humans before human exposure.  

Currently, neurotoxicity cell-based biosensor test only 
contribute in a small way to this “risk assessment” process, 
where they are only used to reduce the amount of animal 
testing. However, the possibility that a neurotoxicity cell-
based biosensor data processed using ANN will eventually 
make a significant contribution to, and perhaps improve, our 
determination of human risk. Ideally, this process must occur 
in a rapid, reliable, and cost-effective manner. 

At present, there is no universal assay that is reliable and 
accurate for all agents or capable of functioning as an 
alternative to the animal model. By incorporating ANN, 
neurotoxin recognition will be based on a continuous decision-
making process that will evaluate all relevant information 
about the agent impedance signature in the present of PC 12 
cells. Since the PC 12 neurotoxicity biosensor is in its early 
stage of development, there must be a strategy that will allow 
us to learn from both our successes and our failures. This 
strategy is aim at evaluating the possibility of developing 
ANNs to satisfy the neurotoxin recognition and serve as a tool 
for refining our ability to predict neurotoxin impedance 
signatures. 

The diagram in Fig. 1 shows the general structure of a 
typical biosensor paradigm. The digitized signal first 
transformed into a set of useful measurements or features at a 
fixed frequency and sine wave voltage of 4kHz and 50 mV p-
t-p, respectively. The instrumentation used for monitoring the 
impedance profiles of cells has been programmed to select a 
suitable sampling rate for monitoring anchorage dependent 
cells. The impedance measurements were collected, typically 
once every 1-4 minute (15 points/hr). Moreover, several 
sampling rates (i.e., 60 points/hr and 120 points/hr) were 

examined and no significant changes were observed from one 
point to the next compared to using the sampling rate 
generated by the instrument (15 points/hr). The selected 
frequency (4kHz) is adequate for the detection of the activities 
of anchored cells, since the real impedance of the electrode 
and the faradaic resistance is several times larger than the 
constriction resistance. Thus, under these conditions, the 
activities of anchored cells are clearly revealed [4]. These 
measurements are used to identify the profile of the test agent 
(neurotoxin), making use of positive, negative, and blank 
controls. These samples are then processed to produce a 
representation of the profile as a sequence vector containing 
different parameters. The parameters are usually measured 
every 1-4 minute, resulting in a frame. Consecutive frames 
overlaps to insure “data” continuity, i.e. any such sharp 
change in the data are preserved. This data is then analyzed 
using statistical data analysis and ANN. 

 
Fig. 1. Schematic illustration of the basic biosensor paradigm. 

 

B. Data Analysis 
There are two types of mathematical methods that can be 

used to analyze the impedance data obtained: one is the 
statistical data analysis to determine the robustness of the data 
and the other is the connectionist using ANN to identify the 
patterns generated from the measurement data. In the 
statistical approach, analysis of sample mean and variance 
(ANOVA) with multiple comparison tests is utilized for the 
recognition of neurotoxin patterns. This allows for the 
comparison of all possible pair-wise arrangement of the 
neurotoxin concentrations.  

C. Artificial Neural Network 
Recent research shows that an ANN has some advantages 

over the statistical data analysis, thus justifying its application 
for chemical recognition and toxin recognition [18], since it 
can be used for feature extraction and pattern recognition. 
These new, biologically motivated modeling approaches show 
promise for extending the traditional analysis of chemical 
sensor results into the realm of neurotoxicity cell based 
biosensors. Fig. 2 shows the general framework of a training 
process and a validation process for a neural network 
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classifier. 
A three layer fully interconnected feed-forward ANN with a 

back-propagation algorithm is used to update the weights 
during training to map the input patterns to the corresponding 
target output. It is a specific technique for implementing the 
gradient descent method to minimize the error for a multilayer 
feedforward network. There are three layers in this network. 
The first one is the input layer, whose number of neurons is 
the same as the number of the elements of the features set 
(sensors). The second layer is the hidden layer, where the 
number of neurons is adjusted accordingly to achieve better 
classification (fixed by trial). The third layer is the output 
layer, and the number of neurons equals the number of unit 
categories of neurotoxin requiring discrimination.  

 

 
Fig. 2. A three layer feedforward network is used. There are 346 nodes in 
input layer, the number of nodes in output layer is equal to number of 
neurotoxins or neurotoxin concentrations requiring discrimination, and 
number of nodes in hidden layer is determined by optimization trials.   

 
The impedance results were then extracted into Microsoft 

Excel and preprocessed by normalizing the data. The ANN 
development and simulation were carried out on a PC with a 
Pentium IV 1.8Ghz processor, 256MB of RAM, and the 
Windows 98 operating system. Impedance profiles were 
processed by the Neural Networks Toolbox in Matlab of 
Matlab v5.3. The impedance data were stored on hard disk as 
excel files in text format. The system is coded and integrated 
using Matlab 5.3, which is a powerful tool for scientific 
modeling and experiments. Three toxins were used, rotenone, 
okadaic acid, and peroxynitrite, which were conducted in 6-
replicates at three concentration levels each. A total of 346 
input features for each neurotoxin were recorded. For each 
toxin, two samples were used for training, and the other four 
samples were used for testing. So among 6 sample replicates, 
2 sample replicates were used for training, and the other 4 
sample replicates for testing. As mentioned, the training data 
required formatting to make it usable to the network. It was 
formatted into input vectors and output targets, using hand 
labeling of each sample in order to construct the target for the 
network. Thus, each individual neurotoxin was labeled with a 
unique category. The target file is used to record the labeling 
information and to be read by the program to create the output 

target for training. 
For the input vectors, the training file is read as a vector, 

which contains 346 input elements. For the output targets, the 
corresponding target file is read in while the input training file 
is processed. The labeling information is also stored in a 
vector. While the input vector is processed, its location can be 
calculated and compared to the labeling information.  Then, 
the input sample can be placed in a category to obtain the 
output target vector. A typical training set, input vector and 
output target, might appear as follows:  
Input vector: [1  0.97512692  0.954564322  0.942463042  
0.931830518  0.921197995 0.911204061…0.816756601  
0.815255915 0.814329959  0.81528784  0.814393818  
0.813882946  0.81618187  0.815287844  0.816628883  
0.817012037 0.817107826 0.81618187  0.816756601  
0.814745043….] 
Output target: [0 0 0 1] 
These two vectors are extracted from the training the file 
“Rot”. This input has 346 elements, and the output target has 
four elements. The forth element of the output target is 1, 
which shows that this sample belongs to category Rotenone. 

The transfer functions of different layers are the logarithmic 
sigmoid transfer function. Two recognition problems were 
attempted as objectives. The first objective required that the 
ANN classify and recognize neurotoxins as “Rot”, “OA” or 
“Per”. This ability is sufficient in areas that have one distinct 
neurotoxin or neurotoxins with similar impedance signatures. 
The second objective required that specific neurotoxin and its 
concentration levels be recognized and identified. An ANN 
with this ability is clearly applicable to a wider range of 
neurotoxins. The neurotoxin network is trained with data from 
all the neurotoxins. 

D. Training of Network 
After the setup, the network was initialized. The purpose of 

initialization is to randomly choose the value of weights, 
otherwise the weights equal zero and the initial error is too 
large, and thus, it will take a longer time to train the network. 

The training algorithm used in this experiment is the back-
propagation with Levenberg-Marquardt optimization, updates 
the network weights and biases in the direction in which the 
negative gradient of the performance function (steepest decent 
training): 

)()1( kWoutkW ijjiij ∆+−=+∆ αηδ  (1) 
where )(kWij is the current weights and biases, α is a small 

positive constant selected by the user, jioutδ is the current 
gradient and η  is the learning rate. The learning rate 
multiplies the negative of the gradient, to determine the 
changes to the weights and biases. The larger the learning rate 
is, the bigger the step and if the learning rate is too large, the 
algorithm becomes unstable. However, if the learning rate is 
too small, the algorithm takes a long time to converge.  Thus, 
a value of 0.01 was used. The training is done in a batch 
mode, where the weights and biases of the network are 
updated only after the entire training set has been applied to 
the network. The gradients calculated at each training example 
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are added together to determine the change in the weights and 
biases.  

The Levenberg-Marquardt algorithm is a pseudo-second 
order method, like the quasi-Newton methods, which 
estimates the Hessian matrix using the sum of the outer 
products of the gradient. Levenberg-Marquardt method 
therefore uses a search direction that is a cross between the 
Gauss-Newton direction and the steepest descent and 
significantly outperforms the gradient descent and conjugate 
gradient method. This training algorithm gave a reasonable 
convergent speed during the experiment. 

The training data are based on normalized impedance data 
for three neurotoxins at three different concentrations, 
therefore input vector and output targets are generated 
neurotoxin by neurotoxin and concentration by concentration. 
Two types of neural networks were created, one to identify 
neurotoxins, and the other to identified concentrations of 
neurotoxin. For the neurotoxin networks, examples of each 
neurotoxin are used in the training sets. A maximum of 4000 
epoch and a maximum error of 0.0000001 were used when 
training this network. For the neurotoxin concentration 
network, examples of each concentration were used in the 
training sets. The maximum epoch of 20000 and a maximum 
error of 0.0000001 were used when training this network. The 
Neurotoxin Network and the Neurotoxin Concentration 
Network were combined to form the Cascade Network.   

 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Statistical Data Analysis 
The impedance obtained from all three neurotoxins at three 

different concentration levels on separate ECIS chips were 
used to determine the differences between the impedance 
signatures generated by these neurotoxins. Table I shows a 
comparison of all the measured neurotoxin-induced apoptosis 
impedances for the first four hours of data sampling. Using 
ANOVA at a significance of P < 0.05, with Tukey-Kramer 
Multiple-Comparison procedure [19], it is shows that rotenone 
(Rot), okadaic acid (OA) and peroxynitrite (Per), are 
significantly different from each other, thus resulting in three 
groups. And the assertion that all the neurotoxins generate the 
same impedance response was rejected decisively at level 
0.05. 

The differences in impedance responses among the 
neurotoxins at different concentration levels were then 
identified using Tukey-Kramer Multiple-Comparison 
procedure. For the first four hours, the neurotoxin 
concentrations seem to divide into five groups rather than nine 
as inferred from for the impedance profile generated (55.56% 
recognition); with no significant differences within each 
group, but with all “between-group” differences being 
significant. Thus, all the three peroxynitrite concentrations 
(3mM, 1mM & 650µM) are significantly different from each 
other and the other neurotoxins; 80µM rotenone is 
significantly different from 20µM rotenone, 100µM rotenone, 
and all the three okadaic acid concentrations (1µM, 250nM & 

10nM). Thus, 20µM rotenone, 100µM rotenone, and all the 
three okadaic acid concentrations (1µM, 250nM & 10nM) are 
not significantly different from one another, but are 
significantly different from the other neurotoxin 
concentrations in their true content. A comparison of all the 
measured neurotoxin-induced apoptosis impedances for the 
first eight, twelve, and sixteen hours of data sampling, using 
ANOVA at a significance of P < 0.05, with Tukey-Kramer 
Multiple-Comparison procedure were also conducted and 
similar results as to the ones seen during the first four hours 
are shown in Table I. Thus, from neurotoxin to neurotoxin the 
pattern in impedance profile does not remains the same, where 
all peroxynitrite concentrations are significantly different than 
the other neurotoxin concentration in their impedance 
signature. 

 
TABLE I 

MULTIPLE COMPARISON ENGINEERING PLOT 
THE UNDERLINING OF HOMOGENEOUS SUBSETS 

 
B. Performance of Neurotoxin Identification Network 
In the first approach used, an ANN was trained to 

distinguish neurotoxins from each other. The architecture of 
the ANN was (346, 6, 4). During training, the outputs, 
specified for each neurotoxin, were in binary format as 
follows: if the neurotoxin was of “Rot”, the target output was 
set to [0 0 0 1], “OA”, the target output was set to [0 0 1 1], 
for “Per” the target output was set to [0 1 1 1] and for the 
unknown (UNK) the target output was set to [0 0 0 0]. This 
coding mechanism was chosen to improve the training speed 
and accuracy of the network.  Initial coding methods used just 
two outputs to encode the four choices; however this did not 
yield suitable results.  Thus, the new coding method was 
derived utilizing the mild correlation between Rot [0 0 0 1] 
and OA [0 0 1 1] and OA [0 0 1 1] and Per [ 0 1 1 1] and as 
seen in the Tukey-Kramer multiple comparison engineering 
plots.  Testing was performed by selecting and presenting the 
remainder four set of neurotoxins impedance data of all 
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neurotoxins in question. The neurotoxins used for validation 
were different from the neurotoxins used for training. The 
testing outputs ranged from zero to one, and the classification 
criterion was based on the relative values of the four outputs.   

The possibility of developing an ANN that could correctly 
classify the concentration levels of the three specific 
neurotoxins was also explored. There were three outputs in 
this ANN instead of four, with definitions analogous to those 
in the previous section: i.e., the expected outputs in the 
training file were [1 0 0] for 100µM rotenone, [1 1 0] for 
80µM rotenone, [1 1 1] for 20µM rotenone and [0 0 0] for 
UNK. The same four set of impedance data for each 
neurotoxin used in the previous model validation were used to 
test the ANN. Because this problem was several times more 
complex due to the lack of data diversification, the number of 
processing elements (PEs) in the hidden layer was 16. When 
the neurotoxins were used to validate the ANNs, each 
neurotoxin was recognized by its concentration level. 
Validation is generally used to ensure full and thorough 
training of the ANN model; therefore it was attempted for all 
the case where the neurotoxins were to be recognized by the 
ANN model. The validation was done and the success 
recognition rates and the corresponding 95% confidence 
intervals were computed.  

The criterion of the performance is the identification rate 
defined below. This criterion is also applied to the NTCN and 
NTN_NTCN networks. 

urotoxinsmber of ne  total nu

toxinsfied neurotly identi of correcnumbertion rateIdentifica

 

    =   (2) 

The testing results for Neurotoxin Network 1 (NTN1) 
neurotoxin identification are shown in Fig. 3 along with the 
completed training module. 

 
Fig. 3. The testing results for (NTN1) neurotoxin identification: (a) 3-Layer 
structure (346:18:4) training simulation result (trained on one data set), (b) 
training module output for NTN1, and (c) testing NTN1on five data sets. 

 
The overall performance accuracy is 91.667% (P<0.05). 

Several misclassifications where observed when training with 
one data set and testing on five. The firing of the neurons was 
strong for these misclassifications. The misclassifications were 
observed in the testing of data set 4W [OA was misclassified 
as Rot, and Per was misclassified as an unknown (UNK)], 5W 

[OA was misclassified as Rot, and UNK was misclassified as 
Per], and 6W [UNK was misclassified as Per]. Moreover, we 
are 95% confident that the true proportion of correct 
classifications is between 0.847 and 0.987. 

The accuracy of the NTN1 system was increased 
appreciably upon incrementing the training data from using 
one training set to two training sets and testing on four 
(NTN2).  In addition, fewer misclassifications were observed 
for NTN2. The trained network was applied to the four sets of 
neurotoxin test patterns.  The results are shown in Fig. 4. 

 

 
Fig. 4. The testing results for (NTN2) neurotoxin identification: (a) 3-Layer 
structure (346:6:4) training simulation result (trained on two data set), (b) 
training module output for NTN2, and (c) testing NTN2on four data sets. 

 
From Fig. 4, it is apparent that differentiation between 

neurotoxins and the unknown was the most successful in this 
test with an overall performance accuracy of 98.33% 
(P<0.05), identifying 59 of 60 test vectors correctly. The 
misclassification rate was low enough to be insignificant from 
the point of view of decision-making. The misclassifications 
were observed in the testing of data set 4W [UNK was 
misclassified as Rot]. Moreover, there was a strong firing of 
the neuron to classify UNK as rotenone. Thus, this shows that 
increasing training sample size results in better performance 
accuracy of the network. The high success recognition rates 
for the three neurotoxins may have been the result of sufficient 
training of the ANNs. We are highly confident that at least 
95% of the true proportions of correct classifications are 
between 0.95 and 1.02. Compared to the NTN1, whose 
interval was wider, NTN2 narrow interval indicates substantial 
certainty about correct classifications than NTN1.  The 
difference in performance accuracy between the two networks 
as measured was statistically significant (P<0.05).  

The initial results using ANN for the performance of 
neurotoxin identification network were sufficiently successful 
with an overall performance accuracy of 98.33% (P<0.05). 
Thus, ANN was used to determine the performance of 
neurotoxin concentration recognition networks and the 
cascade network. The combination of neurotoxin recognition 
and concentration identification implements the function of 
the general trained network (NTN2) with an additional class 
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identified as “unknown” for unknown agents. These unknown 
agents can then be trained by the network into a know class, 
thus creating an updated database of neurotoxins. When the 
testing data comes in, the neurotoxin network recognizes the 
neurotoxin, and selects the corresponding neurotoxin for 
concentration identification.  

C. Performance of Neurotoxin Concentration Network  
For NTCN, the results are shown in Fig. 5-7, which depict 

the trained network that was applied to the 4 sets of neurotoxin 
test patterns for rotenone, okadaic acids and peroxynitrite 
respectively.  The overall recognition rate for these three 
networks is 93.06% (identifying 67 of 72 test vectors 
correctly) and it is shown in Fig. 8. It is apparent that the 
overall performance of concentration dependent networks has 
a lower recognition rate than the neurotoxin trained networks. 
This is evident because it is difficult for the network to 
discriminate between the narrow concentration range given by 
the impedance data generated due to lack of diversification in 
the concentration data set and visual plots indicates that there 
are similarities between the concentrations.  

These results from training the ANN with 16 PEs in the 
hidden layer to classify each neurotoxin by its concentration 
levels are clearly satisfactory. The best recognition rate for 
rotenone concentration identification is 87.50%, the best 
recognition rate for okadaic acid is 95.83% and the best 
recognition rate for peroxynitrite is approximately 96.83%. In 
other words, the system would recognize approximately 88% 
of rotenone concentrations, 96% of both okadaic acid 
concentrations and peroxynitrite concentrations.  

The relatively low performance rate observed for rotenone 
in regards to the other performance rates indicates the high 
difficulty for the ANNs to recognize this neurotoxin and its 
concentration levels when compared to okadaic acid. This 
problem may be caused by high similarity of impedance 
profiles between these two neurotoxins, thereby impeding the 
ANNs ability to distinguish between these two neurotoxin 
concentration levels and resulting in false positives. However, 
these false positives were eliminated with the use of the 
cascading network, thus implying that a properly trained ANN 
model is ideally suited for real time neurotoxin applications in 
toxin detection which requires very fast execution times. 

 

 
Fig. 5. Neurotoxin concentration network (NTCN_ROT). The testing 
results for (NTCN_ROT) neurotoxin concentration level identification: (a) 3-
Layer structure (346:16:3) training simulation result (trained on two data set), 
(b) training module output for NTCN_ROT, and (c) testing NTCN_ROT on 
four data sets. 
 
 

 
Fig. 6. Neurotoxin concentration network (NTCN_OA). The testing results 
for (NTCN_OA) neurotoxin concentration level identification: (a) 3-Layer 
structure (346:16:3) training simulation result (trained on two data set), (b) 
training module output for NTCN_OA, and (c) testing NTCN_OA on four 
data sets. 

 
Fig. 7. Neurotoxin concentration network (NTCN_PER). The testing results 
for (NTCN_PER) neurotoxin concentration level identification: (a) 3-Layer 
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structure (346:16:3) training simulation result (trained on two data set), (b) 
training module output for NTCN_PER, and (c) testing NTCN_PER on four 
data sets. 
 

 
Fig. 8. Schematic representation of the overall performance of NTCN. 

D. Performance of Cascade Neurotoxin Network  
As mentioned, the combination of NTN and NTCN 

implements the function of a general trained network NTN2. 
When testing data comes in, the neurotoxin network 
recognizes the neurotoxin, and then selects the corresponding 
neurotoxin concentration network for concentration 
recognition. The testing results are given in Fig. 9. 

 
Fig. 9. Identification rate of the cascade network (NTN_NTCN). 

 
The overall performance accuracy of the cascade network is 

93.06%, P<0.05 (identifying 67 of 72 test vectors correctly). 
Fig. 10-11 are  schematic depiction of the comparison of 
testing results as well as the misclassification of the cascade 
combination network, respectively. The 95% confidence 
intervals are also given in the table enabling classification to 
be made with a known level of confidence. Therefore, if the 
confidence bounds are tight, there is little uncertainty in the 
prediction and vice versa.   

 

 
Fig. 10. Comparison of recognition rates of all networks, training set (−), 
testing set ( ), and overall performance (♦). 

 

 
Fig. 11.  Classification and misclassification in cascade network. 

 
The cascade network correctly classified neurotoxins and 

selected the appropriate neurotoxin concentration network for 
concentration recognition. For the concentration level of 
rotenone, the network correctly classified 88% of the 
concentration levels presented, for okadaic acid concentration 
levels, they are correctly classified at a rate of 96%, and 
similarly, peroxynitrite concentration levels are also correctly 
classified at a rate of 96%. As mentioned previously, NTN2 
misclassified unknown as rotenone, however when this 
information was analyzed using the cascade network, the 
misclassified unknown was classified as an UNK at the 
rotenone concentration level. This is perhaps the most 
encouraging case to prove ANN’s ability for neurotoxin and 
concentration level recognition, because it is equally important 
to recognize a neurotoxin and its concentration level as such. 

In Fig. 3-9, the 95% confidence intervals are provided for 
comparison. These statistics are all based on the network’s 
output. Generally, it can be said that there is a 95 percent 
probability of the error values falling within two standard 
deviations of the mean. Therefore, the larger the standard 
deviation, a greater range of error will be observed. The NTN2 
is the most accurate classifier of the neurotoxins, therefore 
supporting the theory that identifying a neurotoxin is more 
accurate than identifying a concentration level of a given 
neurotoxin, due to diversification in the NTN data sets.   

Visually examining Fig. 3-9, all network statistic charts, 
clearly shows the NTCN for rotenone has the greatest standard 
deviation. Differentiation between the three individual NTCNs 
is easily attainable by looking at the overall performance of 
the networks, suggesting that both the statistics and the 
identification rates provide the true ranking. 

An attempt was made to see whether the introduction of a 
new class of impedance data (forskolin) to the trained general 
network and the neurotoxin concentration network will result 
in false positives. As shown in Fig. 12, the ANNs correctly 
classified forskolin as UNKs and unknown to the network for 
all networks developed in this study.   
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Fig. 12.  Classification and misclassification: false positives. 

IV. CONCLUSION 
We describe the design and development of a PC 12 

neurotoxicity biosensor coupled with ANNs that can 
successfully discriminate between different neurotoxin 
impedance patterns. This neurotoxicity biosensor serves as a 
reliable method for rapid screening of unknown agents 
(neurotoxins), which significantly increase the efficiency of 
the drug development process and minimize the use of 
experimental animals. This work demonstrates the feasibility 
and practicality of using neural networks as a classification 
tool for neurotoxins and validates the development of a 
neurotoxin network that achieved a 98.33 percent performance 
rate for identifying a neurotoxin, and a 93.06 percent 
performance rate for identifying a neurotoxin concentration. It 
is concluded that neural networks do have the capability to 
classify neurotoxins if properly trained. 

This work also shows that the properties of nonlinear 
modeling and adaptability exhibited by artificial neural 
network models can offer effective solutions to problems that 
may be very difficult or intractable by other approaches. The 
use of such ANNs as an intermediate step between 
biochemical analysis and animal experiments holds the 
promise of great research efficiency through a rapid 
recognition and quantification of physiological tissue 
response. Several applications of this research involve 
implantable functional electrodes (retinal and cochlear 
implants), environmental monitoring, chemical and biological 
warfare detection, toxin detection and drug discovery, neural 
cell regeneration, and chemotherapy.   
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