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3 Dep. de Ingenieŕıa y Ciencia de la Computación, Universidad Jaime I, Castellón,
Spain, quintana@icc.uji.es

Abstract. In this paper we present new hybrid CPU-GPU routines to
accelerate the solution of linear systems, with band coefficient matrix, by
off-loading the major part of the computations to the GPU and leverag-
ing highly tuned implementations of the BLAS for the graphics processor.
Our experiments with an nVidia S2070 GPU report speed-ups up to 6×
for the hybrid band solver based on the LU factorization over analo-
gous CPU-only routines in Intel’s MKL. As a practical demonstration of
these benefits, we plug the new CPU-GPU codes into a sparse matrix
Lyapunov equation solver, showing a 3× acceleration on the solution of
a large-scale benchmark arising in model reduction.

Key words: Band linear systems, linear algebra, graphics processors (GPUs),
high performance, control theory.

1 Introduction

Linear systems with band coefficient matrix appear in a large variety of applica-
tions, including finite element analysis in structural mechanics, domain decom-
position methods for partial differential equations in civil engineering, and as
part of matrix equations solvers in control and systems theory. Exploiting the
structure of the matrix in these problems yields huge savings, both in number
of computations and storage space. This is recognized by LAPACK [1, 2] that,
when linked to a (multi-threaded) implementation of BLAS, provides an efficient
means to solve band linear systems on general-purpose (multicore) processors.

In the last few years, hybrid computer platforms consisting of multicore pro-
cessors and GPUs (graphics processing units) have evolved from being present
only in a reduced niche, to become common in many application areas with
high computational requirements [3]. A variety of reasons have contributed to
the progressive adoption of GPUs, including the introduction of nVidia’s pro-
gramming framework CUDA [4, 5] and the OpenACC application programming
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interface (API), combined with impressive raw performance, affordable price,
and an appealing power-performance ratio. In particular, in the area of dense
linear algebra many studies have now demonstrated remarkable performance
improvements by using GPUs; see e.g., among many others, [6–8].

In this paper we present new LAPACK-style routines that leverage the large-
scale hardware parallelism of hybrid CPU-GPU platforms to accelerate the so-
lution of band linear systems. In particular, the experimental results collected
on a hardware platform equipped with an Intel i7-2600 processor and an nVidia
S2070 (“Fermi”) GPU with the accelerator-enabled codes demonstrate superior
performance and scalability over the highly-tuned multithreaded band solver in
Intel MKL (Math Kernel Library). Furthermore, the integration of the GPU
solvers with Lyapack [9], a library for the solution of linear and quadratic ma-
trix equations, reveals that these benefits carry over to the solution of model
reduction problems arising in control theory.

The rest of the paper is structured as follows. In Section 2 we review the
LAPACK routines for the solution of band linear systems, while in Section 3
we introduce our new hybrid CPU-GPU routines for band matrix factorization
and the solution of triangular band systems in detail. Section 4 summarizes the
experimental evaluation of our new solvers and Section 5 analyzes the applica-
tion of the developed kernels to the solution of linear matrix equations arising
in model reduction (specifically, sparse Lyapunov equations). Finally, a few con-
cluding remarks and a discussion of open questions close the paper in Section 6.

2 Solution of Band Linear Systems with LAPACK

The solution of a linear system of the form

AX = B, (1)

where A ∈ Rn×n is a band matrix with upper and lower bandwidth ku and kl re-
spectively, B ∈ Rn×m contains a collection of m right-hand side vectors (usually
with m � n), and X ∈ Rn×m is the sought-after solution can be performed in
two steps using LAPACK. First, the coefficient matrix A is decomposed into two
triangular band factors L,U ∈ Rn×n (LU factorization) using the routine gbtrf.
Then, X is obtained by solving two triangular band systems with coefficients L
and U using the routine gbtrs. In this section we describe the process imple-
mented in LAPACK and point out some of the drawbacks of the corresponding
routines.

2.1 Factorization of band matrices

LAPACK includes two routines for the computation of the LU factorization of
a band matrix: gbtf2 and gbtrf, which encode, respectively, unblocked and
blocked algorithmic variants of the operation. The former performs most of the
computations in terms of BLAS-2 operations, while gbtrf is rich in BLAS-3
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Fig. 1. 6 × 6 band matrix with upper and lower bandwidths kl = 2 and ku = 1,
respectively (left); packed storage scheme used in LAPACK (center); result of the
LU factorization where µi,j and λi,j stand, respectively, for the entries of the upper
triangular factor U and the multipliers of the Gauss transforms.

operations. As a consequence, gbtrf is more efficient for large matrices, like
those appearing in our control applications. Therefore we will focus hereafter on
that particular algorithmic variant.

Routine gbtrf computes the LINPACK-style LU factorization with partial
pivoting

L−1
n−2 · Pn−2 · · ·L−1

1 · P1 · L−1
0 · P0 ·A = U (2)

where P0, P1, . . . , Pn−2 ∈ Rn×n are permutation matrices, L0, L1, . . . , Ln−2 ∈
Rn×n represent Gauss transforms, and U ∈ Rn×n is upper triangular with upper
bandwidth kl + ku. Figure 1 illustrates the packed storage scheme used for band
matrices in LAPACK and how this layout accommodates the result of the LU
factorization with pivoting. We note there that A is stored with kl additional
superdiagonals initially set to zero to make space for fill-in due to pivoting during
the factorization. Upon completion, the entries of the upper triangular factor U
overwrite the upper triangular entries of A plus these kl additional rows in the
packed array, while the strictly lower triangular entries of A are overwritten with
the multipliers which define the Gauss transforms.

Assume that the algorithmic block size, b, internally employed in the blocked
routine gbtrf, is an integer multiple of both kl and ku, and consider the parti-
tioning

A =

 ATL ATM

AML AMM AMR

ABM ABR

→

A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

 , (3)

where ATL, A00 ∈ Rk×k, (with k an integer multiple of b,) A11, A33 ∈ Rb×b, and
A22 ∈ Rl×u, with l = kl − b and u = ku + kl − b.

Routine gbtrf encodes a right-looking factorization procedure; that is, an
algorithm where, before iteration k/b commences, ATL has been already factor-
ized; AML and ATM have been overwritten, respectively, by the multipliers and
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the corresponding block of U ; AMM has been correspondingly updated; and the
rest of the blocks remain untouched. We note that, with this partitioning, A31 is
upper triangular while A33 is lower triangular. Furthermore, at this point, A13,
A23, A24, and A34 contain only zeros.

In order to move the computation forward by b rows/columns, during the
current iteration of the routine the following operations are performed (the an-
notations to the right of some of these operations correspond to the name of the
BLAS routine that is used):

1. Obtain W31 := triu(A31), a copy of the upper triangular part of A31; and
compute the LAPACK-style LU factorization with partial pivoting

P1

 A11

A21

W31

 =

L11

L21

L31

U11. (4)

The blocks of L and U overwrite the corresponding blocks of A and W31. (In
the actual implementation, the copy W31 is obtained while this factorization
is being computed.)

2. Apply the permutations in P1 to the remaining columns of the matrix:A12

A22

A32

 := P1

A12

A22

A32

 and (laswp) (5)

A13

A23

A33

 := P1

A13

A23

A33

 . (6)

A careful application of permutations is needed in (6) as only the lower
triangular part of A13 is physically stored. As a result of the application of
permutations, A13, which initially equals zero, may become lower triangular.
No fill-in occurs in the strictly upper part of this block.

3. Compute the updates:

A12(= U12) := L−1
11 A12, (trsm) (7)

A22 := A22 − L21U12, (gemm) (8)

A32 := A32 − L31U12. (gemm) (9)

4. Obtain the copy of the lower triangular part of A13, W13 := tril(A13);
compute the updates

W13(= U13) := L−1
11 W13, (trsm) (10)

A23 := A23 − L21W13, (gemm) (11)

A33 := A33 − L31W13; (gemm) (12)

and copy back A13 := tril(W13).
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5. Undo the permutations on
[
LT
11, L

T
21,W

T
31

]T
so that these blocks store the

multipliers used in the LU factorization in (6) (as corresponds to a LINPACK-
style LU factorization) and W31 is upper triangular; copy back A31 :=
triu(W31).

In our notation, after these operations are carried out, ATL (the part that
has been already factorized) grows by b rows/columns so that

A =

 ATL ATM

AML AMM AMR

ABM ABR

←

A00 A01 A02

A10 A11 A12 A13

A20 A21 A22 A23 A24

A31 A32 A33 A34

A42 A43 A44

 , (13)

i.e., ATL ∈ R(k+b)×(k+b), in preparation for the next iteration.
Provided b � ku, kl (in practice, to optimize cache usage, b ≈ 32 or 64) the

update of A22 involves most of the floating-point arithmetic operations (flops).
This operation can be cast in terms of the matrix-matrix product, a computation
that features an ample degree of parallelism and, therefore, we can expect high
performance from gbtrf provided a tuned implementation of gemm is used.

On the other hand, the algorithm presents also two important drawbacks
regarding its implementation in parallel architectures:

– The triangular structure of block A13/U13 is not exploited in computa-
tions (10)–(12) as there exists no kernel in BLAS to perform such a spe-
cialized operation. Consequently, an additional storage is required, as well
as two extra copies, and a non-negligible amount of useless flops that involve
null elements are performed in these operations.

– Forced by the storage scheme and the lack of specialized BLAS kernels,
the updates to be performed during an iteration are split into several small
operations with reduced inner parallelism.

2.2 Solution of triangular systems

Given the LU factorization computed by gbtrf in (2), routine gbtrs from
LAPACK tackles the subsequent band triangular systems to obtain the solution
of (1). For this purpose, the routine proceeds as follows:

1. For i = 0, 1, . . . , n−2, (in that strict order,) apply the permutation matrix Pi

to the right-hand side termB, and update this matrix with the corresponding
multipliers in Li:

B := PiB, (swap)
B := L−1

i B. (ger)
(14)

2. For j = 1, 2, . . . ,m solve a triangular system with coefficient matrix U and
the right-hand side vector given by the j-th column of B (denoted as Bj)

Bj := U−1Bj . (tbsv) (15)
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Despite the operation tackled by gbtrs belongs, by definition, to the Level-3
BLAS, in this implementation it is entirely cast in terms of less efficient BLAS-2
kernels. This is due to the adoption of the packed storage scheme, the decision
of not forming the triangular factor L explicitly (to save storage space), and the
lack of a routine in the BLAS specification to solve a triangular system with
multiple right-hand sides when the coefficient matrix presents a triangular band
structure. We note that routine getrs, which performs the analogous operation
in the non-banded case, does not suffer from these shortcomings.

3 New Hybrid CPU-GPU Band Solvers

The algorithm underlying the routine gbtrf invokes, at each iteration, routine
trsm twice and routine gemm four times (steps 3 and 4). This partitioning
of the work is due to the particular storage scheme adopted for band matrices
in LAPACK. However, since in LAPACK, concurrency is extracted from the
usage of multithreaded implementations of the BLAS kernels, the fragmentation
of the computations into small operations potentially limits the performance
of the codes. This feature is specially harmful when the algorithm is executed
on many-core architectures, like the GPUs, where computations involving large
data sets and many flops are mandatory to exploit the capabilities of this type
of architectures.

Similarly, routine gbtrs casts its computations in terms of BLAS-2 kernels,
e.g. solving for every column of the right-hand side independently. Again, the
computations are fragmented, and consequently, their inner concurrency is re-
duced.

In this section we present GPU-friendly implementations for the routines
gbtrf and gbtrs. To adapt their execution to the target platforms, we perform
a reordering of the computations and minimum changes in the data storage
scheme that permit to merge computations, the use of BLAS-3 kernels (instead
of BLAS-2), and improve the inner concurrency of some kernels. Therefore, the
new method is more suitable for architectures with a medium to large number of
computational units, like current multi-core processors and GPUs. The drawback
of the proposal is that the new storage format implies a moderate increment in
the memory requirements but, as will be demonstrated later, at the same time
it also yields important gains in terms of performance.

3.1 Routine gbtrf+M

Assume the packed data structure containing A (see Figure 1-center) is padded
with b extra rows at the bottom, with all the entries in this additional space
initially set to zero. Then, steps 1–4 in the original implementation of gbtrf
can be transformed as follows:
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1. In the first step, the LU factorization with partial pivoting

P1

A11

A21

A31

 =

L11

L21

L31

U11 (16)

is computed and the blocks of L and U overwrite the corresponding blocks
of A. There is no longer need for workspace W31 nor copies to/from it as the
additional rows at the bottom accommodate the elements in the strictly lower
triangle of L31. Although gbtf2 can be used to complete this computation,
it will still require to undo the permutations performed by gbtf2 to keep
the upper triangular structure of the block L31.

2. Apply the permutations in P1 to the remaining columns of the matrix:A12 A13

A22 A23

A32 A33

 := P1

A12 A13

A22 A23

A32 A33

 (laswp). (17)

A single call to laswp suffices now as the zeros at the bottom of the data
structure and the additional kl superdiagonal set to zero in the structure
ensure that fill-in may only occur in the elements in the lower triangular
part of A13.

3. Compute the updates:

(A12, A13) (= (U12, U13)) := L−1
11 (A12, A13) (trsm), (18)(

A22 A23

A32 A33

)
:=

(
A22 A23

A32 A33

)
−
(
L21

L31

)
(U12, U13)

(gemm). (19)

The lower triangular system in (18) returns a lower triangular block in A13.

4. Undo the permutations on
[
LT
11, L

T
21, L

T
31

]T
so that these blocks store the

multipliers used in the LU factorization in (6) and L31 is upper triangular.

This reorganization of the algorithm is rich in matrix-matrix products, and
hence, it is suitable for massively parallel architectures. The implementation
in gbtrf+M takes profit of this enhanced concurrency with the purpose of
efficiently exploiting the capabilities of the CPU-GPU platform. In particular,
the factorization of the narrow panel (16), which presents a fine-grain parallelism
and a modest computational cost, is executed in the CPU. On the other hand, the
application of the permutations (17) and the updates (18)–(19) are performed
in the GPU, in order to reduce the CPU-GPU communications and exploit the
massively parallel architecture of the graphics accelerator.

This implementation executes each operation in the most convenient device
while incurring into a moderate number of data transfers between CPU and
GPU. In particular, it requires an initialization phase where the matrix A is
moved to the GPU before the factorization commences. Then, during the fac-
torization, two copies must be performed per iteration:
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1. The entries of [AT
11, A

T
21, A

T
31]T are transferred to the GPU after the factor-

ization of this block in (16).
2. The entries that will form [AT

11, A
T
21, A

T
31]T during the next iteration are

transferred to the CPU after their update as part of (19).

Note that the amount of data transferred at each iteration is moderate in
relation to the number of flops, since the number of rows and columns of the
block [AT

11A
T
21A

T
31]T are (ku + kl + kl) and b, respectively. Furthermore, upon

completion of the algorithm, the resulting matrix is replicated in the CPU and
GPU, so it can be used during subsequent computations in both devices.

3.2 Routine gbtrf+LA

Routine gbtrf+LA is an improved variant of routine gbtrf+M which incorpo-
rates look-ahead [10] to further overlap the computations performed by CPU and
GPU. Concretely, gbtrf+LA reorders the computations as follows: the updates
in (17)–(19), which involve ku +kl columns of the matrix, are split column-wise,
such that the first b columns are computed first. Then, the updated elements
that form the block [AT

11, A
T
21, A31]T of the next iteration (b columns), are sent

to the CPU, where the factorization of this block can be performed in parallel
with the updates of the remaining ku+kl−b columns corresponding to (17)–(19)
in the GPU.

This variant requires minimal changes to the codes. Despite it demands the
execution in the GPU of kernels with a moderate number of flops, it permits
that computations proceed concurrently in both devices, reporting higher per-
formance whenever b� ku + kl.

3.3 Routine gbtrs+M

The main drawback of LAPACK routine gbtrs is the absence of BLAS-3 kernels
in its implementation. This is due to the adoption of the packed storage format
and the lack of the appropiate BLAS routines. Unfortunately, the modifications
introduced in the storage scheme still limit the use of BLAS-3 kernels. In par-
ticular, as the matrix L is not explicitly formed, in principle the update in (14)
must be performed by means of a rank-1 update operation (routine ger from
BLAS). However, it is possible to employ BLAS-3 in the solution of the systems
in (15). For this purpose, we developed a new routine, named tbsm following the
LAPACK convention, that performs this operation via BLAS-3 kernels (mainly
matrix-matrix products). Thus, gbtrs presents two parts, the first one is a loop
that updates B as in (14). Afterwards, a single call to tbsm solves (15) for all j,
as described in Section 3.4.

We provide two implementations for this routine, a CPU and a GPU variant.
The convenience of these implementations depends on the coefficient matrix
dimension (n) and in the number of columns of B (m). But as usually m � n,
we can focus our analysis on the coefficient matrix dimension. The CPU variant
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is suitable for medium to small values of n, since it does not require any CPU-
GPU data-transfer and the computational cost of the operation is moderate.
On the contrary, when n is large, the GPU implementation is more suitable
due to the large computational cost and the inner concurrency of the operations
involved. Note that the GPU implementation only requires to transfer the matrix
B to/from the GPU, as the use of the routines gbtrf+M or gbtrf+LA ensures
that the factors L and U are already stored in the GPU memory. Additionally, as
all the computations are performed in the GPU, no CPU-GPU synchronizations
are required.

3.4 Routine tbsm

Consider the row partitioning of the right-hand side matrix B, to be overwritten
with the solution X to (1),

B =

 BT

BM

BB

→

B0

B1

B2

B3

B4

 , (20)

where BB , B4 have both k rows (with k an integer multiple of b), B1, B3 have
b rows each, and B2 has u = ku + kl − b rows. Here, BB represents the part of
the right-hand side which has already been overwritten with the corresponding
entries of the solution X.

Consider also the following conformal partitioning for the upper triangular
factor U resulting from the factorization

U =

UTL UTM

UMM UMR

UBR

→

U00 U01 U02

U11 U12 U13

U22 U23 U24

U33 U34

U44

 , (21)

where UBR, U44 ∈ Rk×k; U13, U33 ∈ Rb×b are lower and upper triangular, re-
spectively; and U22 ∈ Ru×u.

Then, in order to proceed forward, the following operations are required at
this iteration:

B3 := U−1
33 B3, (trsm) (22)

B2 := B2 − U23B3, (gemm) (23)

B1 := B1 − U13B3. (24)

The last update involves a triangular matrix (U13) and can be performed by
means of the BLAS routine trmm. However, this requires an auxiliary storage,
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W13 ∈ Rb×m, since this BLAS kernel only performs a product of the form M :=
U13 M . Therefore, we perform the next operations for (24):

W13 := B3, (25)

W13 := U13W13, (trmm) (26)

B1 := B1 −W13. (27)

After these operations are completed, in preparation for the next iteration,
the boundaries in B and U are simply shifted as

B =

 BT

BM

BB

←

B0

B1

B2

B3

B4



U =

UTL UTM

UMM UMR

UBR

←

U00 U01 U02

U11 U12 U13

U22 U23 U24

U33 U34

U44

 .

(28)

4 Experimental Evaluation

In this section we analyze the computational performance of the new routines
for the band LU factorization (gbtrf+M and gbtrf+LA) as well as two im-
plementations of the triangular band solvers that follow the algorithm for this
phase described in the previous section, but differ in the target architecture:
CPU or GPU (denoted as gbtrs+MCPU and gbtrs+MGPU hereafter). Their
performances are compared with that of the analogous routines in release 11.1
of Intel MKL (denoted hereafter as gbtrfIntel and gbtrsIntel).

Platform Processors
#cores Frequency L3 cache Memory

(GHz) (MB) (GB)

Enrico
intel i7-2600 4 3.4 8 16
nVidia S2070 448 1.15 – 6

Table 1. Hardware platform employed in the experimental evaluation.

The performance evaluation was carried out using a hardware platform, En-
rico, equipped with an nVidia S2070 (“Fermi”) GPU and an Intel four-core
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processor; see Table 1. All experiments reported next were performed using ieee
double-precision real arithmetic. We employed band linear systems with 6 dif-
ferent coefficient matrix dimensions n =12,800, 25,600, 38,400, 51,200, 64,000
and 76,800. For each dimension, we generated 3 instances which varied in the
bandwidth, kb = ku = kl =1%, 2% and 4% of n. We evaluated several algorith-
mic block sizes (b) for each kernel, but for brevity, we only include the results
corresponding to the best block size tested.

Table 2 compares the three codes for the band LU factorization: the two new
hybrid CPU-GPU implementations, gbtrf+M and gbtrf+LA, and MKL’s
gbtrfIntel. These results demonstrate the superior performance of the new im-
plementations when the volume of computations is large. Concretely, both hybrid
codes outperform the MKL routine for large matrices while they are still com-
petitive for relatively small matrices. This was expected, as the hybrid routines
incur a communication overhead that can be compensated only when the prob-
lem is considerably large. In summary, gbtrf+M and gbtrf+LA are superior
to MKL for the factorization of matrices with n >25,600 and kb =2% of n.
When n >51,200, the new variants are faster than MKL even when kb =1% of
n. For the largest problem tested, n =76,800, the acceleration factors obtained
by gbtrf+LA with respect to the MKL code are 2.0, 3.9 and 5.5× for kb =1,
2 and 4% of n respectively. The performance obtained by gbtrf+M is slightly
lower, reporting acceleration factors of 1.9, 3.5 and 5.0× for the same problems.

Additionally, we compared MKL’s triangular band solver gbtrsIntel against
both alternative codes proposed in this work (gbtrs+MCPU and gbtrs+MGPU ),
on the solution of a linear system with a single right-hand side (m = 1). In this
scenario, the execution times were comparable though, in general, the perfor-
mance of the MKL implementation was slightly higher than that of our routines.
It is important to note that the new optimizations should be more beneficial
when several systems are solved for the same coefficient matrix (i.e., m > 1).
This is the case in several engineering applications and, in particular, in our tar-
get control application. We also remark that MKL is not an open source library,
so its implementation may differ from that described in Section 2. In particular,
it is likely that MKL also uses BLAS-3 kernels for the triangular band solver,
which could explain the similarities between its performance and that of the new
implementations.

Considering the results and the reduced impact of gbtrs in the total runtime
of the solver, we decided to use the MKL implementation for the solution of the
triangular band linear systems. Figure 2 illustrates the speed-up achieved by the
best CPU-GPU routine for LU factorization (left) and for the complete band
system solver (right). In both cases the reference to compute the acceleration is
the solver provided by the MKL library (i.e., routines gbtrfIntel and gbtrsIntel).
As most of the flops correspond to the computation of the LU factorization, the
speed-ups obtained for the complete solver are similar to those for the LU.
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Matrix Bandwidth
gbtrfIntel gbtrf+M gbtrf+LA

Dimension kb = ku = kl

12,800
1% 0.066 0.174 0.180
2% 0.142 0.240 0.245
4% 0.385 0.358 0.341

25,600
1% 0.313 0.482 0.493
2% 0.786 0.701 0.691
4% 3.397 1.339 1.231

38,400
1% 0.684 0.867 0.844
2% 2.588 1.502 1.393
4% 11.742 3.517 3.407

51,200
1% 1.898 1.537 1.399
2% 6.989 3.131 2.496
4% 31.745 7.217 6.627

64,000
1% 3.104 2.175 2.029
2% 12.241 4.465 4.053
4% 52.701 12.796 11.660

76,800
1% 5.749 3.044 2.808
2% 24.490 6.914 6.286
4% 103.264 20.462 18.769

Table 2. Execution time (in seconds) for the LU factorization of band matrices in
Enrico.

5 Application to Model Reduction

In this section we evaluate the impact of the new CPU-GPU banded solvers on
the solution of Lyapunov equations of the form

AX +XAT +BBT = 0, (29)

where A ∈ Rn×n is sparse, B ∈ Rn×m, with m� n, and X ∈ Rn×n is the sought-
after solution. This linear matrix equation has important applications, among
others, in model reduction and linear-quadratic optimal control problems; see,
e.g., [11].

The Lyapunov solver employed in our approach consists in a modified version
of the low-rank Cholesky factor - alternating directions implicit (LRCF-ADI)
method [12]. This iterative solver benefits from the frequently encountered low-
rank property of the BBT factor in (29) to deliver a low-rank approximation
to a Cholesky or full-rank factor of the solution matrix. Specifically, given an
“l–cyclic” set of complex shift parameters {p1, p2, . . .}, pk = αk + βk ı, with
ı =
√
−1 and pk = pk+l, the cyclic low-rank alternating directions implicit (LR-

ADI) iteration can be formulated as follows:

V0 = (A+ p1In)−1B, Ŝ0 =
√
−2 α1 V0,

Vk+1 = Vk − δk(A+ pk+1In)−1Vk, Ŝk+1 =
[
Ŝk , γkVk+1

]
,

(30)
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Fig. 2. Speed-ups of the new hybrid CPU-GPU solvers against their MKL counterparts
for the factorization (left) and the complete solver (right).

where γk =
√
αk+1/αk, δk = pk+1 + pk, with pk the conjugate of pk, and In

denotes the identity matrix of order n. On convergence, after k̂ iterations, a

low-rank matrix Ŝk̂ ∈ Rn×k̂m is computed such that Ŝk̂Ŝ
T
k̂
≈ X.

It should be observed that the main computations in (30) consist in solving
linear systems with multiple (m) right-hand sides. Therefore the application of
our new solver should significantly accelerate the ADI iteration.

Our approach to tackle the sparse structure of the coefficient matrix A in (29)
applies a reordering based on the Reverse Cuthill-McKee algorithm [13] to trans-
form the sparse linear systems in the expressions for V0 and Vk+1 in (30) into
analogous problems with band coefficient matrix. In particular, we evaluated
this approach using the Lyapunov equations associated with two instances of
the RAIL model reduction problem from the Oberwolfach benchmark collec-
tion [14]; see Table 3.

Problem n ku = kl # nonzeros m

RAILS 5,177 139 35,185 7

RAILL 20,209 276 139,233 7
Table 3. Instances of the RAIL example from the Oberwolfach model reduction col-
lection employed in the evaluation.

Table 4 reports the execution times obtained with the Lyapunov MKL-based
band solver and the new hybrid CPU-GPU band solver. The results show that
the new hybrid Lyapunov solver outperforms its MKL counterpart in both prob-
lems, with speed-ups varying between 2.23× for the small instance and 3.14×
for the large case.
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Problem MKL solver GPU-based solver Speed-up

RAILS 2.34 1.05 2.23

RAILL 17.71 5.65 3.14

Table 4. Execution time (in seconds) and speed-up obtained with the hybrid CPU-
GPU variant using Lyapack.

It is also worth to point out that the new solver not only outperforms MKL
during the LU factorization phase, but also for the subsequent solution of tri-
angular band linear systems. The reason in this case is that the linear systems
in (30) involve m =7 right-hand side vectors which renders the superior perfor-
mance of the routine gbtrs+MCPU over MKL for this problem range.

6 Concluding Remarks

We have presented new hybrid CPU-GPU routines that accelerate the LU fac-
torization and the subsequent triangular solves for band linear systems, by off-
loading the computationally expensive operations to the GPU. Our first CPU-
GPU implementation for the LU factorization stage computes the BLAS-3 oper-
ation on the hardware accelerator by invoking appropriate kernels from nVidia
CUBLAS while reducing the amount of CPU-GPU communication. The second
GPU variant for this operation incorporates a look-ahead strategy to overlap
the update in the GPU with the factorization of the next panel in the CPU.

The experimental results obtained using several band test cases (with di-
mensions between 12,800 and 76,800 and a bandwidth of 1%, 2% and 4% of the
problem size), in a platform equipped with an nVidia 2070, reveals speed-ups
for the CPU-GPU LU factorization of up to 6×, when compared with the cor-
responding factorization routine from Intel MKL. The advantages of the hybrid
band routines carry over to the solution of sparse Lyapunov solvers, with an
acceleration factor around 2-3× with respect to the analogous solver based on
MKL.

As part of future work, we plan to enhance the performance of the Lyapunov
solver by off-loading to the GPU other band linear algebra operations present
in the LR-ADI method as, e.g., the band matrix-vector product. Furthermore,
we plan to study the impact of the new GPU-accelerated algorithms on energy
consumption.

Acknowledgements

Ernesto Dufrechou, Pablo Ezzatti and Pablo Igounet acknowledge support from
Programa de Desarrollo de las Ciencias Básicas, and Agencia Nacional de In-
vestigación e Innovación, Uruguay. Enrique S. Quintana-Ort́ı was supported by
project TIN2011-23283 of the Ministry of Science and Competitiveness (MINECO)
and EU FEDER, and project P1-1B2013-20 of the Fundació Caixa Castelló-
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