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Abstract—Demand response programs have been considered
critical for power grid reliability and efficiency. Especially, the
demand response of datacenters has recently received encour-
aging efforts due to huge demands and flexible power control
knobs of datacenters. However, most current efforts focus on
owner-operated datacenters, omitting another critical segment
of datacenter business: multi-tenant colocation. In colocation
datacenters, while there exist multiple tenants who manage
their own servers, the colocation operator only provides facil-
ities such as cooling, reliable power, and network connectivity.
Therefore, colocation has a unique feature that challenges any
attempts to design a demand response program: uncoordinated
power management among tenants. To tackle this challenge,
two incentive mechanisms are proposed to coordinate tenant
power consumption for demand response under two different
scenarios. First, in the case of economic demand response where
the operator can adjust an elastic energy reduction target, we
show that there is an interaction between the operator and
tenant strategies, where each side maximizes its own benefit.
Hence, we apply a two-stage Stackelberg game to analyze this
scenario and derive this game’s equilibria. Second, in the case
of emergency demand response where a fixed energy reduction
target must be fulfilled, we devise two incentive schemes with
distributed algorithms that can achieve the same optimal social
cost, considering two types of tenants: price-taking and price-
anticipating tenants. Finally, trace-based simulations are also
provided to illustrate the efficacy of our proposed incentive
schemes.

I. INTRODUCTION

Demand response programs have been adopted in many
countries in order to improve the reliability and efficiency
of power grids and to incorporate renewable energy into
the power grid (see the survey [1] and references therein).
Emergency, standby and economic demand response make up
the majority of current demand response programs according
to megawatt usage, representing 87% of demand reduction
capabilities across all reliability regions [2]. In these programs,
participating customers reduce their load/energy consumption
upon requests from a load-serving entity (LSE) in order to
receive financial reimbursements. Among potential customers,
large-scale datacenters are considered vital participants due to
two essential properties: (i) their power demands are extremely
large, e.g., 91 billion kWh in 2013 in the U.S. [3], and
(ii) their energy usage is flexible with many IT computing
knobs (e.g., workload shedding/migration) as well as non-
IT knobs (e.g., cooling) [4]. The huge yet flexible energy
demands of datacenters are considered by grid operators as

a valuable energy buffer to help balance the grid’s power
supply and demand [1]. From a practical viewpoint, a field
study by Lawrence Berkeley National Laboratory showed
that dataceters can reduce their power consumption by 10-
25%, without affecting operations [5]. Recently, the U.S. EPA
has identified datacenters as a crucial component of demand
response [6], evidenced by an event on July 22, 2011 in which
hundreds of datacenters worked to prevent an emergency
blackout by cutting their electricity usage [7].

However, most of the research efforts have focused mainly
on owner-operated datacenters (e.g., Google) [1], [5], [8],
[9], while paying less attention to colocation datacenters
(e.g., Equinix), simply called colos, which represent a crucial
segment in datacenter industry. There are many reasons to ad-
vocate more research efforts on colos. First, with their critical
role in datacenter business, colos provide a universal solution
to all types of companies, especially for those who neither
want to build their own datacenters nor completely outsource
their entire computing demands to any public cloud providers.
For example, colos’ customers diversely include many popular
Internet websites such as Twitter and Wikipedia [10], [11]
and various cloud-computing services such as Salesforce and
Box [12]. Second, colos will play a critical role in network
traffic infrastructure, since they are increasingly becoming the
major physical homes for content delivery network providers
that are predicted to support half of the Internet traffic by
2018 [13]. Third, the growth of colos continues to increase
sharply: currently there are more than 1200 colos in the U.S.
alone [14], and the colos market is expected to grow from $25
billion to $43 billion in the next five years [13]. Finally, colos
are ideal contributors, at least on par with owner-operated
datacenters, to the demand response programs: (i) Colos also
have extreme power demands, e.g., colos’ demands in New
York exceed 400MW, which is comparable to Google’s global
datacenters demand [14], [15]. Moreover, while colos have
been shown to consume up to 40% of the datacenter energy in
the U.S, owner-operated datacenters like Google only consume
8% [3]; (ii) Colos are often located in urban areas, e.g., Los
Angeles [14], where demand responses are required more
often than in rural areas where owner-operated datacenters
are typically situated, e.g., Google’s datacenters [14], and (iii)
colos often have heterogeneous workloads (i.e. different delay
sensitivities, peak load, etc.) due to the diversity of tenant’s
business models, which helps colos conduct smooth demand
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response.
With those great potentials of demand response participa-

tion, colos, however, have their unique challenges that invali-
date existing demand response methods proposed for owner-
operated datacenters [4], [5], [8], [16]–[18]. Instead of fully
controlling all IT and non-IT facilities like owner-operated
datacenters, a colo is a shared multi-tenant datacenter where
multiple tenants house and fully control their servers, while
the colo’s operator is mainly responsible for facility support
such as power, cooling, and network access. Thus, there exists
a split-incentive hindrance for colos’ demand response: the
operator may need to reduce energy usage upon the request
of an LSE in order to receive financial reimbursement, while
tenants have little intention to cut down their power demand
because their billings are based mainly on peak-power sub-
scription with fixed rates, which is independent of actual usage
[19]. Even if tenants have incentives to reduce demand (e.g.,
by the operator directly passing down the LSE’s incentives
to tenants), they lack coordination to systematically achieve
this. Therefore, operator incentives for tenants to coordinate
in demand response poses a significant challenge.

Incentive mechanisms have been widely employed for
demand-side management in smart grids [20], [21]. However,
datacenter demand response is different from that of smart
grids due to various control knobs such as cooling, IT load,
renewable and/or backup power, etc., requiring a holistic
optimization approach. Furthermore, very little effort is fo-
cused on colos, which significantly limits the applicability of
datacenter demand response because of the colos’ importance
and suitability for demand response. Therefore, in this study,
we attempt to break the uncoordinated tenants for colos’
demand response based on incentive mechanism design. In
the proposed mechanisms, the operator actively and wisely
chooses its monetary reward rate and/or demand allocation
rules to incentivize tenants to coordinately reduce their energy
consumption. Based on reward information, tenants will decide
to participate by bidding/announcing their reduced energy
to maximize their benefit-minus-cost problems. Specifically,
we propose two incentive mechanisms for different demand
response scenarios as follows.
• We first examine colos’ economic demand response,

where the operator has full control over an adjustable
(elastic) demand response target for its own benefit. In
this case, the operator will reward tenants with mon-
etary incentives to perform demand response up to a
level that can maximize the operator benefit, which can
be financial compensation from the LSE or receipt of
green certificates. Consequently, upon receiving the an-
nounced reward from the operator, self-optimized tenants
will individually maximize their net utility. We model
this mechanism as a Stackelberg game and analyze its
equilibrium. We also propose an algorithm to obtain
the optimal solutions of the operator’s mixed-boolean
nonlinear problem.

• We next study colos’ emergency demand response. In
this scenario, there is a fixed (inelastic) demand target
requested by the LSE, and the operator has to solicit the
tenants’ demand response to exactly match that target. We

first present a dual-based distributed algorithm for price-
taking tenants. Then, we propose an incentive mechanism
to deal with price-anticipating (strategic) tenants. Both
proposals are designed to achieve colo-wide social cost
minimization.

• In the above scenarios, our key contributions are not
only reflected in the efficient performance guarantee, but
also validated by trace-based simulations. In the former
case, a wide range of numerical case studies demonstrate
that our linear-complexity scheme can achieve the same
performance as the exhaustive search method for the
mixed-boolean programming problem. In the latter case,
we show that our mechanisms designed for price-taking
and strategic tenants can achieve the optimal social cost,
which outperforms a random incentive scheme in a 12-
hour emergency demand response case study.

The rest of this paper is organized as follows. In Section II,
we review the related work. Section III presents the system
model. We provide the proposed mechanisms for economic
and emergency demand response in Section IV and Section V,
respectively. Section VII demonstrates the trace-based simula-
tion results, and Section VIII concludes our work.

II. RELATED WORK

In this section, we first concentrate on the demand response
of datacenters. We then discuss how our work contributes to
the recent trends in colo demand response.

Demand response is identified as a high-prioritized area,
with its potential to reduce up to 20% of the total peak elec-
tricity demand of the U.S. [22]. Most initial demand response
proposals targeted residential customers [20], [23]. However,
demand response of datacenters has recently received signifi-
cant attention, with various approaches for different types of
demand response being considered, such as price response
of datacenters to grid operator [24] for economic demand
response, or controlling the IT (e.g., turning servers on/off) and
non-IT (e.g., cooling) knobs for ancillary and/or emergency
demand responses [1], [4], [5], [25]–[27].

While most of the mentioned results focus on owner-
operated datacenters, studies on colo demand response are very
limited in number. The first study of colos’ economic demand
response is [12], though its mechanism is simple and relies on
the tenants’ best-effort, which cannot assure the truthfulness of
strategic tenants. In terms of emergency demand response, the
work in [28] proposes a randomized auction mechanism that
can guarantee a 2-approximation of social welfare cost and
is approximately truthful. While both are based on a reverse
auction where tenants must voluntarily submit bids first, and
the operator will decide winning bids as well as reward
amount later. Tenants at first are not concerned with power
reduction, so treating their bids as voluntary tasks can lead
to pessimistic results on the number of participating tenants.
Hence, it is expected that an upfront incentive by the operator
will effectively increase tenant participation. Furthermore, in
the reverse auction, tenants need to first calculate and disclose
complex bids (e.g., cost functions), which might leak their
private information. In contrast, we take a forward-mechanism
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approach, where the energy reduction and reward allocation
rules are announced in advance in order to align tenants’
interests to the socially optimal performance. A recent work
[29] also studies emergency demand response using supply
function bidding. However, while the supply function bidding
approach is restricted to a particular “parameterized” function
that inherently suffers from social welfare loss, our mechanism
aims to achieve the optimal social welfare.

III. SYSTEM MODEL

We consider a colo-datacenter in which a set of I =
{1, . . . , I} tenants house their servers. Tenant i has Mi homo-
geneous servers. A tenant with heterogeneous servers can be
viewed as multiple virtual tenants, each having homogeneous
servers. We consider a one-period demand response, as in [8],
[12], [17], [28], where its duration T is controlled by an LSE,
e.g., 15 minutes or 1 hour. During a period, the workload
arrival rate to tenant i is denoted by λi.

Even though tenants may use various control knobs (e.g.,
scaling down CPU frequencies, migrating loads to other
places) for energy saving, the simple yet widely-studied ap-
proach that our study adopts as an example is turning off idle
servers [12], [28], [30]. If tenant i has no intention to partici-
pate in demand response, all of its servers are active, and the
workload will be evenly distributed to all servers to optimize
performance [30]; hence, the energy consumption of this case
is ei = Mi(pi,s+pi,d

λi
Miµi

)T [12], where pi,s and pi,a are the
static and active powers of each server, respectively, µi is a
server’s service rate measured in terms of the amount of work-
load processed per unit time, and λi

Miµi
is the server utilization

with Mi active servers. In contrast, when performing demand
response by turning off mi servers, the energy consumption of
tenant i is e′i = (Mi−mi)

(
pi,s+pi,d

λi
(Mi−mi)µi

)
T . Therefore,

IT-only (e.g., not including cooling) energy reduction by tenant
i is

∆ei = ei − e′i = mi
pi,s · T
PUE

, (1)

where PUE is the power usage effectiveness measuring the
energy efficiency of the colo. In the sequel, we assume
pi,s·T
PUE = 1 without loss of generality (w.l.o.g.); hence, we
will use ∆ei and mi interchangeably.

Turning servers off can have negative effects on tenant
performance, inducing tenant costs. We rely on two typical
costs that are widely used for tenants: the wear-and-tear cost
and Service Level Agreement (SLA) cost [12], [30].

Wear-and-tear cost: This cost, which occurs when tenants
switch/toggle servers between active and idle states in every
period, is linear with the number of turned-off servers and so
can be modeled as ωi,1 ·mi, where ωi,1 is a monetary weight
(i.e., $/server.)

SLA cost: Since many Internet services hosted in datacen-
ters are sensitive to response/delay time, the SLA cost can be
viewed proportionally to tenant average response time. Using
the M/M/1 queue, the average response time of each tenant i’s
workload is 1

µi−
λi

Mi−mi

. We note that the queueing model has

been widely used as a reasonable approximation for the actual
service process [31], [32]. The total SLA cost of a tenant can

be modeled as ωi,2 · di(mi), where di(mi) = λi
µi−

λi
Mi−mi

, and

ωi,2 is a monetary weight (i.e., $/delay.)
Therefore, tenant i’s total cost when turning off mi servers

is

Ci(mi) = ωi,1 ·mi + ωi,2 · di(mi). (2)

IV. INCENTIVE MECHANISM FOR COLOS’ ECONOMIC
DEMAND RESPONSES

In this section, we first present the motivation for studying
the economic demand response of colos using a two-stage
Stackelberg game between the operator (leaders) and tenants
(followers). We then analyze this game’s equilibria using
backward induction method, and propose an algorithm to
achieve equilibria. Finally, we discuss about the practical
implementations of the proposed algorithm.

A. Economic Demand Response: A Two-stage Stackelberg
Game Approach

Economic demand response programs generally indicate
how customers can actively respond to price signals [33]. For
example, during peak times with high wholesale prices, the
customers (i.e., colos), who receive signals from the LSE, can
reduce their consumption to receive some economic benefits
corresponding to the amount of energy reduction. Since the
reduction volume is not necessarily fixed, many customers find
this program appealing due to its flexibility.

In this scenario, even though a colo can freely determine
a desired reduction volume, its operator cannot directly con-
trol the tenants’ servers to proceed the demand response.
Therefore, the operator’s purpose is to incentivize tenants to
reduce their energy to a level that can maximize the operator’s
benefit. Consequently, upon receiving the announced reward
from the operator, rational tenants will individually maximize
their own profits. Observing this hierarchical structure between
the operator and tenants, we study this economic demand
response for colos by using a Stackelberg game approach. The
strategies of players in each stage of this game are presented
sequentially.

Tenants (Stage II). Since the operator is the leader with
a first-move advantage, it will first announce a reward rate
r (e.g., $/kWh) that it is willing to pay tenants for turning
off their servers. Given r, at Stage II, each rational tenant i’s
strategy is to choose a number of turned-off servers mi that
will maximize its net utility as follows

maximize
mi

ui(mi, r) = rmi − Ci(mi) (3)

s.t. mi ≥ 0. (4)

Since the number of servers can be very large, e.g., thousands,
we can relax mi as a continuous variable [8]. We have

C
′′

i (mi) =
2λ2

iµiωi,2(
(Mi −mi)µi − λi

)3 , (5)

which means Ci(mi) is a strictly convex function when tenant
i’s server workload is less than its service rate, i.e., C

′′

i (mi) >
0 when λi

Mi−mi < µi. We further relax the feasible constraint
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0 ≤ mi ≤ Mi to (4), which has no effect on problem (3)
since its feasible solutions are always strictly less than Mi

(i.e., Ci(m′i) = ∞, m′i ≥ Mi). Then, since ui(mi) is strictly
concave, there exists a unique solution m∗i (r), ∀i, for a given
r in Stage II.

Operator (Stage I). Knowing that each tenant i’s strategy
will be m∗i (r), the operator’s strategy is to choose an optimal
r? of the following profit maximization problem

max.
r≥0

U(r, {m∗i }) = U
(∑

i∈I
m∗i (r)

)
− r

∑
i∈I

m∗i (r),

(6)

where U(·) is the colo utility, which represents a financial
compensation from the LSE or a green certificate achieved
with respect to energy reduction, balanced with the cost spent
for incentiving tenants r

∑
i∈Im

∗
i (r). Even though we have

no assumption on a specific utility function, some typical
candidates are provided for case studies in Section VII.

Stackelberg Equilibrium. Denoting a solution to the op-
erator’s profit maximization by r?, we have the following
definition.

Definition 1. (r?, {m?
i }) is a Stackelberg equilibrium if it

satisfies the following conditions for any values of r and {mi}

U(r?, {m?
i }) ≥ U(r, {m?

i }), (7)
ui(m

?
i , r

?) ≥ ui(mi, r
?),∀i. (8)

Next, we use the backward-induction method to analyze the
Stackelberg equilibria: the Stage-II problem is first solved to
obtain {m∗i }, which is then used to solve the Stage-I problem
to obtain r?.

B. Stackelberg Equilibrium: Analysis and Algorithm

By the first-order condition ∂ui
∂mi

= r−C ′i(mi) = 0, we have
the unique solution m∗i of tenant i for a given r as follows

m∗i (r) = [fi(r)]
+ :=

[
Mi − ρi

(
1 +

√
ωi,2

r − ωi,1

)]+

,∀i,

(9)

where [x]+ = max{x, 0}, and ρi := λi
µi

.
Then, by substituting (9) into (6), the operator’s problem is

formulated as follows

maximize
r

U
(∑

i∈I
[fi(r)]

+
)
− r

∑
i∈I

[fi(r)]
+ (10)

s.t. r ≥ 0.

Due to the operator [.]+, problem (10) is non-convex. Specif-
ically, if we define a new variable

zi =

{
1, r > κi;

0, otherwise,
(11)

where

κi := ωi,1 +
ωi,2ρ

2
i

(Mi − ρi)2
, (12)

Algorithm 1 Operator’s Revenue Maximizer

1: Sort tenants according to κ1 < κ2 < . . . < κI .
2: A = {}, B = I, j = I;
3: while j > 0 do
4: Find the solutions rj to the following problem

max.
r≥κ1

U
(∑

i∈B
fi(r)

)
− r

∑
i∈B

fi(r) (14)

5: if rj > κj , then A = A ∪ {rj};
6: end if
7: B = B \ j;
8: j = j − 1;
9: end while

10: Return rj ∈ A with highest optimal values of (14).

then m∗i (r) > 0 when zi = 1, and m∗i (r) = 0 when zi = 0.
Therefore, problem (10) is equivalent to

maximize
r,{zi}i∈I

U
(∑

i∈I
zi · fi(r)

)
− r

∑
i∈I

zi · fi(r) (13)

s.t. r ≥ 0,

zi ∈ {0, 1},∀i.

We see that problem (13) is a mixed-boolean programming,
for which we may acquire an exponential-complexity effort
(i.e., 2I configurations of {zi}i∈I) to solve by the exhaustive
search. However, by unveiling its special structure, we propose
an algorithm, namely Algorithm 1, that can find the solutions
of problem (13) with linear complexity as follows.

Proposition 1. Algorithm 1 can solve the Stage-I equivalent
problem (13) with linear complexity.

Proof: Please see Appendix A.
Denoting the Algorithm 1’ outputs as r? (which can be

multiple values) and m?
i := m∗i (r

?), we have the following
result.

Theorem 1. The Stackelberg equilibria of colos’ economic
demand response are the set of pairs (r?, {m?

i }).

Proof: Please see Appendix B.
Based on this equilibria analysis, we next examine the im-

plementation of the Stackelberg game-based incentive mecha-
nism.

C. Implementation Operations

The main operations of colos’ economic demand response
can be implemented in the following order:

Step 1: Each self-optimized tenant submits its best response
(9) to the operator.

Step 2: After collecting all of these best responses, the op-
erator determines its profit maximization (6) using Algorithm
1 to achieve r? and broadcasts this r? to all tenants.

Step 3: Based on this r?, each tenant will correspondingly
turn off m?

i servers.
We have further remarks for the scheme’s operation as

follows
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• The incentive mechanism with Algorithm 1 is one-round
and is centralized: the operator needs to know the values
ωi,1, ωi,2, Mi, and ρi of all tenants. In practice, the
operator may have no such information, which inspires
the distributed approaches in the following sections.

• A uniform reward rate r is applied to all tenants, which
is meaningful in terms of fairness.

V. INCENTIVE MECHANISM FOR COLOS’ EMERGENCY
DEMAND RESPONSE

In this section, we first present the motivations for colos’
emergency demand response with social welfare maximiza-
tion. We then study this scenario for price-taking and price-
anticipating tenants.

A. Emergency Demand Response: A Social Welfare Optimiza-
tion

Emergency (or reliability) demand response indicates that
the response is mandatory (with penalty for non-compliance)
for the participants, who are not only compensated for their
reduction during emergency events, but are also paid for their
availability (i.e., even when no emergent signal is triggered)
[33]. Such programs are currently employed by many Inde-
pendent System Operators (ISO) such as New England or
PJM, where the customers’ contracts can be established three
years in advanced [34]. In detail, if there are some reliability
issues (e.g., forecast capacity shortages), the LSE will trigger
a signal to customers from at least 10 minutes to one day
in advance, and customers must comply with the notified
reduction volume. In current practice, colos often participate
in emergency demand response using onsite backup diesel
generators. However, relying totally on diesel generators is
not cost effective. Furthermore, frequently using diesel can be
environmentally dirty, while datacenters are well motivated to
reduce dirty energy for green certificate pursuit (e.g., LEED
program [35]). Therefore, it is critical for colos to extract
energy reduction from tenants.

In this scenario, the main concern of the operator is how
to solicit the tenants to reduce their energy usage in order to
satisfy at least a fixed demand target requested by the LSE
[28]. Consequently, we consider a social welfare optimization
problem (SWO) in a colo system such that the sum of tenant
reductions is at least an amount D requested by the LSE as
follows

SWO : minimize
∆ei≥0,∀i

∑
i∈I

Ci(∆ei) (15)

s.t.
∑

i∈I
∆ei ≥ D. (16)

In this problem, we implicitly assume that tenant’s power
reduction is sufficient to satisfy the target D. If not, we use
diesel generation to make up the shortfall in Section VI.

We see that the operator’s benefit (i.e., LSE payment for
colos) is not included in problem SWO since this benefit (as
well as penalty for non-compliance) is often pre-determined
via contracts and has no impact on how the operator achieves
reduction D. In other words, the operator benefit from the
LSE is independent of the reward that the operator grants to

tenants for emergency response. Clearly, it is different from
the economic demand response where the operator’s benefit,
encoded by a utility function, flexibly depends on the LSE
conditions (e.g., wholesale prices). Furthermore, the objective
of SWO is only to minimize the total tenant costs since
the internal reward transfer between the operator and tenants
cancels and has no effect on the social cost. We note that
several works also study the SWO of emergency demand
response for non-colos contexts [36] or for colos with different
approaches [28].

Since SWO is a convex problem, its optimal primal and
dual variables (∆e∗i , ν

∗) can be characterized by the KKT
condition as follows




ν∗ = C ′i(∆e
∗
i ), if ∆e∗i > 0;

ν∗ ≤ C ′i(0), if ∆e∗i = 0,∀i;∑
i∈I ∆e∗i = D.

(17)

Because the objective of SWO is strictly convex, if (∆e∗i , ν
∗)

exists, then it is unique. We note that, if D is too large, there
are no feasible solutions of SWO; therefore, we additionally
consider this case in Section VI.

The main purpose of the operator is to set a reward rate that
aligns the self-optimized tenants’ interests to the solution of
SWO characterized in (17). However, the operator’s incentive
mechanism should take into account whether tenants are
price-taking users who just accept the reward rate, or they
are price-anticipating on how their actions impact the rate.
While the price-taking assumption justifies the large number
of users where no one has a market power to alter the price,
price-anticipating is more likely in wholesale colo-datacenters,
where there are typically only a few large tenants, each having
a large power demand. In the next section, we will design two
different incentive schemes that can solve SWO for these two
types of tenants.

B. SWO for Price-taking Tenants

We propose an incentive scheme for emergency demand
response that can align the price-taking tenants’ strategies to
the solutions of SWO in Algorithm 2, which is an iterative and
distributed algorithm based on dual-decomposition methods
[37], [38].

The operations of Algorithm 2 can be explained as follows.
According to dual methods, the Lagrangian variable ν plays
the role of the reward rate (e.g., $/kWh) that the operator is
willing to pay tenants to reduce the energy usage. Therefore,
given this reward rate announced by the operator at each
iteration k, each tenant will submit to the operator a reduction
volume that maximizes the following tenant’s net utility

max
∆ei≥0

ν(k)∆ei − Ci(∆ei),∀i, (20)

and the solution to this problem is given in line 3 of Algo-
rithm 2, where C ′−1

i (·) is the inverse of the derivative of cost
function Ci(·). Then, after collecting all tenants’ submitted
reduction levels, the operator will adjust the reward rate as in
line 4 of Algorithm 2 with an appropriate step side rule γ(k)

to balance the total reduced energy with target D: decrease the
reward rate if over-provision (

∑
i∈I ∆ei > D) and vice versa.
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Algorithm 2 Distributed Algorithm for Price-taking Tenants

1: Operator initializes and broadcasts a random reward rate
ν(0) > 0 to all tenants, k = 0;

2: repeat
3: Tenant i submits its reduced energy level

∆e
(k)
i =

[
C ′−1
i

(
ν(k)

)]+
; (18)

4: Operator updates its reward rate as follows

ν(k+1) =

[
ν(k) − γ(k)

(∑
i∈I

∆e
(k)
i −D

)]+

, (19)

then broadcasts ν(k+1) to all tenants;
5: k = k + 1;
6: until

∣∣ν(k+1) − ν(k)
∣∣ < ε.

When the algorithm converges with a number of iterations, i.e.,
ν(k+1) ≈ ν(k), with a sufficiently small ε at line 6, we see that
(18) and (19) will satisfy the KKT condition (17) of SWO,
inducing the optimal solutions. We next provide the optimal
performance of Algorithm 2.

Proposition 2. Algorithm 2 converges to the unique solution
of SWO with an appropriate step-side rule.

The proof of Proposition 2 follows the lines of a similar
technique in [37] so that it is omitted due to limited space.

We have some further remarks for Algorithm 2 as follows:
• In contrast to Algorithm 1 of economic demand response,

tenants are not required to reveal their private information
to the operator.

• However, similar to Algorithm 1, the operator can use a
uniform reward rate ν for fairness.

C. SWO for Strategic Tenants

In this subsection, based on a formulated bidding game, we
will design an incentive mechanism for this game to handle
the operator’s concern of how to align the strategic tenants’
incentives to the social optimum point for emergency demand
response.

Bidding game. We consider I strategic tenants bidding for
a finite amount of D energy reduction to receive compensation
rewards from the operator. Each tenant i is encouraged to bid
θi, representing its aggressiveness of energy reduction. We
denote the bid vector of all tenants by θ = (θ1, · · · , θI). We
also denote θ−i = (θ1, · · · , θi−1, θi+1, · · · , θI) the bid vector
of all tenants excluding i. We further denote Θ =

∑
i∈I θi,

Θ−i =
∑
j 6=i θj . Based on the bids of tenants, the provider

will reward tenant i an amount Ri(θi, θ−i) for reducing a
quantity ∆ei(θi, θ−i). Hence, the payoff function of tenant
i with bid θi is given as the following

ui(θi, θ−i) = Ri(θi, θ−i)− Ci(∆ei(θi, θ−i)). (21)

Since the tenants unilaterally maximize their own payoff by
adjusting their bids, we have a bidding game:
• Players: tenants in the set I;
• Strategy: θi ≥ 0, ∀i ∈ I;

• Payoff function: ui(θi, θ−i), ∀i ∈ I.
For this game, a bidding profile θne is called a Nash Equilib-
rium (NE) if and only if

θnei = arg max
θi≥0

ui(θi, θ
ne
−i), ∀i. (22)

Efficient Mechanism Design. The existence of a NE of
the bidding game is not obvious, and if it exists, it may not
be unique. Therefore, the challenge boils down to how the
operator designs its reward and energy reduction rules such
that the result of the tenants’ bidding game is the existence
and uniqueness of an efficient NE (i.e., the same as SWO
solutions). To do that, we design an Efficient and Proportional
Mechanism (EPM) as follows.

EPM: Operator
Energy reduction rule:

∆ei(θi,Θ−i) =

{
θi

θi+Θ−i
D, θi 6= 0;

0, θi = 0.
(23)

Reward rule:

Ri(θi,Θ−i) =
Θ−iD

α+ 1

(
Θ−α−1
−i − (θi + Θ−i)

−α−1
)
. (24)

Tenants
Bidding Strategy:

θi = arg max
x≥0

[
Ri(x,Θ−i)− Ci

(
∆ei(x,Θ−i)

)]
,∀i. (25)

The basic operation of EPM in a demand response period
can be described as follows.

Step 1: First, after receiving an emergency signal from LSE
with a specific reduction amount D, the operator will announce
the parameters, i.e, D, α, and Θ−i, of energy reduction and
reward rules as in (23) and (24), respectively, to tenant i, ∀i.

Step 2: Then, each rational tenant will strategically choose
a bid to maximize its net utility according to (25).

Step 3: When an equilibrium θne is reached, the emergency
demand response proceeds: tenant i reduces energy usage by
an amount ∆ei(θ

ne
i , θne−i) and receives its reward Ri(θnei , θne−i).

We notice that EPM is different from recent related in-
centive mechanisms proposed for colos [12], [28] based on
the combinatorial reverse auction method where tenants first
submit their bids and costs, and the operator then decides
which bids to accept and how much money to reward tenants.
The design of EPM is based on the principle of g-mechanism
[39]. In these rules, while tenants are allocated their reduction
proportional to their bids, the reward rule is designed to align
tenant’s interests with the social welfare. This mechanism can
be briefly described with a proportional allocation rule similar
to (23), where the payment of buyers to sellers is as follows

Ri(θi,Θ−i) =

{
Θ−i

∫ θi
0

g(t+Θ−i)

(t+Θ−i)
2 dt, θi > 0;

0, θi = 0.
(26)

The simple g-mechanism is proposed in the context of al-
locating a divisible network resource to finite users. This
mechanism is flexible in that we can choose a function g(·)
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Algorithm 3 Distributed Algorithm for EPM

1: k = 0, the operator set a random ν̃(0) > 0 and broadcasts
Θ

(0)
−i = g−1(ν̃(0)), D, and α to all tenants;

2: repeat
3: Tenant i submits θ(k)

i ≥ 0 that satisfies

θ
(k)
i D

θ
(k)
i + Θ

(k)
−i

= C ′i
−1
((
θ

(k)
i + Θ

(k)
−i
)−α)

,∀i; (27)

4: Operator updates its virtual reward rate as follows

ν̃(k+1) =

[
ν̃(k) − γ(k)

(∑
i∈I

θ
(k)
i D

θ
(k)
i + Θ

(k)
−i

−D
)]+

(28)

and sends Θ
(k+1)
−i = g−1(ν̃(k+1))− θ(k)

i to tenant i, ∀i;
5: k = k + 1;
6: until

∣∣ν̃(k+1) − ν̃(k)
∣∣ < ε.

that is suitable to a specific context. The authors in [39]
also provide some typical functions g(·) intended to the
users’ costs; however, they cannot be applied in our context
where we design a reward mechanism. In EPM, we choose
g(Θ) = Θ−α, characterized by the parameter α > 0, for the
reward rule (24) to align the NE of the bidding game with the
solution of SWO. We have the following result of the proposed
EPM.

Theorem 2. With EPM, the bidding game either has a trivial
NE θne = 0 or a unique non-trivial NE θne (with at least two
tenants have positive bids) such that ∆ei(θ

ne
i , θne−i), i ∈ I, is

the unique solution of the SWO.

Proof: Please see Appendix C.
From this proposition, we see that the existence of a non-

trivial unique efficient NE is what the operator aims to.
However, there is no guideline on how to achieve this desired
equilibrium at step 3 of the EPM operation (i.e., the operator
clearly wants to avoid the trivial equilibria).

If the operator can calculate the non-trivial NE in advance,
then all steps of EPM can proceed in only one round. But
this capability only exists when the operator can solve a set
of fixed-point equations (22), which requires accessing each
tenant i’s private cost information Ci(·), ∀i. In this case,
the well-known VCG mechanism is favored. In contrast, we
prefer a distributed algorithm that can help tenants protect their
privacy and use their bids as the only means to communicate
with the operator.

Distributed algorithm for EPM. Inspired by Algorithm 2,
we propose a distributed implementation for EPM, which is
presented in Algorithm 3. Intuitively, it is designed based on
two principles: (i) the EPM rules to gurantee an efficient NE
according to Proposition 2, and (ii) the dual-based gradient
methods to enable the distributed fashion similar to Algorithm
2. We explain the operation of Algorithm 3 as follows.

At the beginning of each demand response period (line
1), the operator will broadcast D, α, and random initial
values of Θ−i > 0 to all tenants i, ∀i, according to the

energy reduction and reward rules of EPM. The initial Θ−i
is randomly set to a positive value to avoid the trivial NE, as
in Proposition 2. Then, the next loop (lines 2-5) is simply
iterating the interaction between the operator and tenants
in steps 1 and 2 of EPM until the equilibrium is reached.
Specifically, at line 4, in each iteration k, the operator collects
all bids and calculates a new value Θ

(k+1)
−i for tenant i based

on an updated virtual rate ν̃(k+1) that tracks the values of
g(·) (EPM step 1). After receiving its value, at line 3, tenant
i updates its bid (27), which is the solution to its net utility
maximization problem (25) (EPM step 2). The algorithm will
stop if the convergence condition is satisfied at line 6, where
ν̃(k+1) ≈ ν̃(k) with a sufficiently small ε.

Proposition 3. Algorithm 3 can converge to the unique
efficient NE θne with an appropriate step-side rule.

Proof: Please see Appendix D.
We have some remarks for Algorithm 3 as follows:

• Similar to Algorithm 2, tenants need not reveal their
private information (e.g., ωi,1, ωi,2, Mi, and ρi) to the
operator. However, unlike Algorithm 2 where each tenant
submits its ∆ei and the operator broadcasts the reward
rate, in Algorithm 3, based on the bids of all tenants {θi},
the operator announces the aggregate of other tenant bids
Θ−i for tenant i to update its strategy. Therefore, it is
not necessary for tenant i to know each individual bid of
other tenants.

• We can see that tenants have discriminate reward rates:
Ri(θ

ne
i , θne−i)/∆ei(θ

ne
i , θne−i). We observe through simula-

tions (Section VII) that this rate is higher than the optimal
rate ν∗ of Algorithm 2, inducing that the operator has to
give more incentives to strategic tenants than to price-
taking ones in order to achieve the optimal social cost.

VI. PRACTICAL EXTENSION DISCUSSION

In this section, we discuss other practical scenarios for
colos’ demand responses. We first consider the operator with
a fixed reward budget constraint in the case of economic de-
mand response. We next examine how colos use their backup
generator to fulfill an LSE’s emergency demand request which
cannot be achieved through tenant reduction.

A. Economic Demand Response: Colos with a Reward Budget

In Section IV, the Stage-I operator model has no restriction
on budget. We include the budget, denoted by B, into this
model, where the original operator’s problem (6) can be
modified as follows

maximize
r≥0

U
(∑

i∈I
m∗i (r)

)
, (29)

s.t. r
∑

i∈I
m∗i (r) ≤ B.
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Analogously, by introducing variable zi according to (11),
problem (29) is equivalent to

maximize
r,{zi}i∈I

U
(∑

i∈I
zifi(r)

)
, (30)

s.t. r
∑

i∈I
zifi(r) ≤ B,

r ≥ 0,

zi ∈ {0, 1},∀i.

By assuming a fixed configuration of {zi = 1}i∈I , problem
(30) is reduced to

maximize
r≥0

U
(∑

i∈I
fi(r)

)
, (31)

s.t.
∑

i∈I
rfi(r) ≤ B.

Then we can solve (30) in a similar way as with Algorithm
1, replacing unconstrained problem (14) at line 4 by its
constrained version (31). We note that the second derivative of
rfi(r) is (r−4ωi,1)

√
ωi,2ρ

4(r−ωi,1)3/2
, which shows that rfi(r) is convex

when r > 4ωi,1 and concave otherwise. Therefore, problem
(31) is convex when r > 4 maxi ωi,1 and non-convex other-
wise, which complicates the analysis. Further simplifications
are first solving the non-convex part in the range 0 ≥ r ≥ 4ωi,1
using the branch-and-bound method and the convex part in
the range r > 4ωi,1 using the interior-point method, then
comparing and choosing the better solutions.

B. Emergency Demand Response: The Use of Backup Gener-
ators

In Section V, the social cost minimization problem (15) is
infeasible if the request target D is higher than the tenant
cost (e.g., D >

∑I
i Mi). In this case, the operator has to rely

on backup energy storage, e.g., diesel generator, pre-charged
batteries [16], etc., to fulfill the mismatch. A similar model
was studied in [28] with a different approach. Let y denote
the backup energy used by the operator and β denote the cost
of backup usage per kWh; a new social cost problem is then
formulated as follows

SWO′ : minimize
y≥0,{∆ei}≥0

βy +
∑

i∈I
Ci(∆ei) (32)

s.t. y +
∑

i∈I
∆ei = D.

The Lagrangian of problem (32) is as follows

L({∆ei}, y, {µi}, ν, ζ) = βy +
∑

i∈I
Ci(∆ei)

− ν(y +
∑

i

∆ei −D)−
∑

i
µi∆ei − ζy,

where {µi}, ν, and ζ are dual variables. Since SWO′ is a
convex problem, its optimal primal and dual variables are
characterized by the KKT conditions provided as follows




C ′i(∆e
∗
i )− ν∗ − µ∗i = 0, ∀i;

β − ν∗ − ζ∗ = 0;

y∗ +
∑
i∈I ∆e∗i = D;

y∗ ≥ 0, ζ ≥ 0,∆e∗i ≥ 0, µi ≥ 0, ∀i;
µ∗i∆e

∗
i = 0, ∀i;

ζ∗y∗ = 0.

(33)

Algorithm 4 Distributed Algorithm for SWO′

1: Operator initializes and broadcasts a random reward rate
ν(0) > 0 to all tenants, k = 0;

2: repeat
3: Tenant i submits its reduced energy level

∆e
(k)
i = arg max

∆ei≥0

[
ν(k)∆ei − Ci(∆ei)

]
; (35)

4: Operator updates its reward rate

ν(k+1) =

[
ν(k) − γ(k)

(
y(k) +

∑
i∈I

∆e
(k)
i −D

)]+

,

(36)

then broadcasts ν(k+1) to all tenants;
5: Operator updates its backup usage

y(k+1) =





[
D −

∑
i∈I ∆e

(k)
i

]+
, if ν(k+1) ≥ β,

0, otherwise.
(37)

6: k = k + 1;
7: until

∣∣ν(k+1) − ν(k)
∣∣ < ε.
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Fig. 1: Traced and synthesized workloads.

From the complementary slackness, i.e., the last two equations
of (33), we have: i) if ∆e∗i > 0, then µ∗i = 0, C ′i(∆e

∗
i ) = ν∗;

and if µ∗i > 0, then ∆e∗i = 0, C ′i(0) = ν∗ + µ∗i ≥ ν∗; ii) if
ζ∗ > 0, then y∗ = 0, ν∗ = β − ζ∗ ≤ β; and if y∗ > 0, then
ζ∗ = 0, ν∗ = β.

In summary, the KKT condition (33) can be simplified as
follows




ν∗ = β = C ′i(∆e
∗
i ), if ∆e∗i > 0 and y∗ > 0;

ν∗ < β, if y∗ = 0;

ν∗ ≤ C ′i(0), if ∆e∗i = 0,∀i;
y∗ +

∑
i∈I ∆e∗i = D.

(34)

There are many interesting observations from condition
(34). First, we always have ν∗ ≤ β: the optimal incentive
price is no greater than the backup energy cost. Intuitively,
if incentivizing tenants is more costly than using backup, the
operator is better off performing the demand response using its
backup energy. Second, if D is too high such that all tenants
cannot fulfill it, then the operator will turn on the backup
to complement the mismatch: ν∗ = β, and y∗ > 0 such
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that y∗ +
∑
i∈I ∆e∗i = D. Finally, if D is small such that

tenant reduction is sufficient to fulfill, then backup energy is
not necessary (i.e., a feasible solution of the problem SWO in
Section V): ν∗ < β, y∗ = 0, and

∑
i∈I ∆e∗i = D.

Based on these observations from KKT condition (34), the
incentive mechanism for price-taking tenants in Algorithm 2
can be modified as in Algorithm 4 to include the backup
energy constraints, which are reflected in lines 4 and 5 of
Algorithm 4. Therefore, the convergence of Algorithm 4 to
the solution of SWO′ can be stated similarly to that of
Algorithm 2.

However, due to the coupling among y, ∆ei and D, EPM
cannot be extended to problem SWO′ to deal with strategic
tenants, which is an interesting problem for future work.

VII. SIMULATION RESULTS

In this section, we present the simulation settings, then
provide the results to validate our proposal’s efficacy.

A. Settings

We consider a colo with varying number of tenants for
performance evaluation, where each tenant i has a number
of maximum servers Mi that varies uniformly from 3,000 to
10,000, representing heterogeneous tenant business. The wear-
and-tear and delay cost weights, ωi,1 and ωi,2, respectively,
also are uniformly distributed on [0.1, 3], which captures
a wide range of tenant cost sensitivity. The total energy
reduction requested by the operator is scaled to a ratio such
that D = 20 kWh for every considered one-hour period (i.e.,
T = 1). Unless otherwise stated, we set α = 1 in all scenarios.

In terms of workload of each tenant λi, we uses two basic
traces “MSR” and “FIU”, which were also used in [18], to
generate synthetic workloads for all tenants. Each tenant’s
workload is normalized with respect to its service rate µi,
which is set to 1000 jobs/s [12]. All workload samples of five
tenants in 12 hours are illustrated in Fig. 1.

B. Results

Since we have two different scenarios, we will evaluate them
separately and compare each individual with its corresponding
baselines.

Economic demand response. We compare the perfor-
mance of Algorithm 1 (Alg. 1) with two baselines. The
first baseline, named OPT, is the optimal solutions of prob-
lem (10) using the exhaustive search. The second baseline,
called RAND, is a random price νrand uniformly distributed
in [mini{C ′i(0)},maxi{C ′i(0)}] to enable feasible solutions,
which represents a simple but inefficient scheme.

When the operator’s utility is chosen to be U =
ω3 log

(
1 +

∑
i∈I m

∗
i (r)

)
, where ω3 is set to be uniformly

distributed on [0.2, 50] and log term reflects the diminishing
return on the amount of reduced load, we show the values of
the reward rates of different schemes and the corresponding
operator’s profit in Figs. 2a and 2b, respectively. When the
operator’s utility is affine U = ω4

(∑
i∈I m

∗
i (r)

)
+ω5, where

ω4 and ω5 are uniformly distributed on [1, 2] and [5, 10],

respectively, we show the operator’s reward rate and profit
of three schemes in Figs. 3a and 3b, respectively. Since the
operator can have a wide range of possible utility values
depending on many factors such as LSE’s reimbursement, peak
or non-peak demand response period, and colo characteristics,
we have the freedom to choose the weight parameters in order
to achieve feasible solutions. We also compare the operator
profit and reward rates of the three schemes with a budget
constraint of problem (29) in Figs. 5a and 5b, respectively.
In all scenarios, while Alg. 1 and OPT achieve the same
performance, the scheme RAND is not as efficient as the
others.

We also examine the effect of ω3 in the case of log utility
function in Figs. 4a and 4b. We see that ω3 has an impact
on the operator profit. Specifically, the optimal operator profit
increases linearly when ω3 increases, while the optimal reward
rates are unchanged. We observe a similar behavior in the case
of linear utility function with varying parameters ω4 and ω5.

Emergency demand response. We first illustrate the con-
vergence of the proposed schemes with fixed number of five
tenants (their workload traces are in Fig. 1). Considering the
first period and setting ε = 10−3, γ(k) = 1/k, we show in
Fig. 6 that tenant bids and reduced energy and operator reward
of EPM converge within an acceptable number of iterations
(i.e., less than 90 iterations).

We further consider the impact of α in Fig. 7. There are
two important observations to highlight: a) varying α has no
effect on the convergence of the virtual reward rate g(Θne),
which is the same value as the optimal price ν∗ of the problem
SWO (c.f., left plot of Fig. 7), and b) the total reward that
the operator gives tenants increases with α (c.f., right plot of
Fig. 7). Therefore, we expect that the operator will choose
an α as small as possible. However, we observe that when
α is small, more iterations are required for convergence, and
when α is sufficiently small (e.g, less than 1), there is no
convergence. We conclude numerically that there is a trade-
off between convergence speed and operator payment via
adjusting α.

To evaluate the efficacy of the proposed mechanisms, we
compare EPM with two baselines. The first baseline, named
SWO, is an efficient scheme that uses the optimal price ν∗

satisfying (17) of the SWO problem. The second baseline is
the random scheme RAND used in economic demand response
comparison.

We first compare all schemes without backup energy. Fig. 8
shows the sum cost of all tenants of the three schemes. Differ-
ent from RAND, SWO and EPM have the same performance
in all periods, which illustrates that EPM can achieve the
objective of social welfare maximization problem (15). Fig. 9
shows how different schemes respond to the energy reduction
request D in 12 periods. While EPM and SWO have the same
energy reduction levels for all tenants and can achieve the
energy reduction target, RAND has off-target responses from
tenants due to its random nature, which is not efficient. In
terms of rewards, Fig. 10 compares how much the operator
pays to tenants with different schemes. It is interesting to see
that the operator has to pay approximately 25% more with
EPM than with SWO. This observation indicates that in order
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Fig. 2: Comparison among three schemes in economic demand response with utility U as a log function: a) Reward rate, b)
Operator profit.
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Fig. 3: Comparison among three schemes in economic demand response with utility U as a linear function: a) Reward rate,
b) Operator profit.
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Fig. 4: Comparison among three schemes in economic demand response with varying ω3: a) Reward rate, b) Operator profit.

to achieve efficiency while dealing with the strategic behaviors
of tenants, the operator must provide more incentives with
EPM than those of SWO scheme with presumed price-taking
tenants. Furthermore, Fig. 9 and Fig. 10 show that tenants
receive their rewards proportionally to their reduced energy
levels.

We also illustrate the demand response with backup energy
in Algorithm 4. The value of β is set to 0.3 $/kWh, corre-

sponding to a typical diesel cost [40]. Fig. 11 shows that all
reduced and backup energy of Algorithm 4 converge to the
optimal point of SWO′. We next demonstrate the effect of
backup energy in Fig. 12 by increasing D linearly from 30 to
50 kWh in 12 periods. In this figure, we see that the backup
energy also increases in order to fulfill the high demand target
D since the total reduced energy of all tenants is not sufficient
to match the target.
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Fig. 5: Comparison among three schemes in economic demand response with a budget constraint: a) Reward rate, b) Operator
profit.
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Fig. 6: Convergence of EPM: a) Tenant bids, b) Tenant energy reduction, and c) Operator payment.
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VIII. CONCLUSIONS

In this paper, we addressed the demand response of a crucial
but less-studied segment of datacenter market: colocation dat-
acenters (colos). We tackled the split-incentive hindrance be-
tween colo tenants and operator, a unique feature of colos, by
proposing two incentive schemes. The first scheme, which is
appropriate for a controllable demand target of the operator, is
based on the two-stage Stackelberg game, where the operator
is the leader who sets its incentive reward rate, and the tenants
are the followers who decide how much energy to reduce given
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Fig. 8: Total tenant cost of three schemes.

the operator’s reward. We first analyze this hierarchical game
structure using the backward induction method and propose
a linear time complexity to find its equilibrium. The second
scheme, which is designed for fixed demand response target in
many grid emergency incidents, is considered with two types
of tenants: if tenants are price-takers, for which we propose a
dual-based distributed algorithm that can achieve the optimal
social cost; if otherwise, tenants are price-predictors, we
propose a proportional mechanism with a distributed algorithm
that can incentivize the tenants to reduce their energy in
strategies that produce the same optimal social performance
as in the previous price-taking case. Finally, the trace-based
simulation results validate the efficacy of our proposals.
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Fig. 9: Tenant energy reduction of three schemes.
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Fig. 10: Operator rewards to tenants of three schemes.
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Fig. 11: Convergence of Algorithm 4 with backup energy.
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Fig. 12: Backup usage y and tenant reduction energy.

APPENDIX A
PROOF OF PROPOSITION 1

Since the tenants are sorted according to increasing κi (line
1), when the sufficient condition r > κi is satisfied, we
have zj = 1, ∀j ≤ i. In this case, the operator’s problem
(13) becomes (14), which is a single-variable and continuous

problem and can be solved efficiently using any numerical
methods (e.g., bisection, Newton, etc.) (lines 1-4).

Therefore, we assume that (14) is available, then find its
solutions and keep those satisfying the sufficient condition
(line 5). By successively solving (14) and checking the
sufficient condition (lines 5-8), we cover all possible cases
of equivalence between problems (13) and (14). Finally, we
compare and choose the solutions that result in the highest
operator profit (line 10).

Clearly, with a single loop, Algorithm 1 has the complexity
O(cI), where c is complexity to solve problem (14).

APPENDIX B
PROOF OF THEOREM 1

It is obvious that U(r?, {mi}) ≥ U(r, {mi}), ∀r, for any
given {mi} since r? is the solution to the Stage-I problem;
hence, we have U(r?, {m?

i }) ≥ U(r, {m?
i }). Similarly, for any

given values r and ∀i, we have ui(m?
i , r) ≥ ui(mi, r), ∀mi;

hence, ui(m?
i , r

?) ≥ ui(mi, r
?), ∀mi. Combining these facts,

we conclude the proof based on the definitions of (7) and (8).

APPENDIX C
PROOF OF THEOREM 2

It is straightforward to see that θ = 0 is an NE because,
when θ−i = 0, tenant i, ∀i, receives reward Ri(θi, θ−i) = 0
according to (24) so that it has no incentive to submit a positive
bid.

We next show that if θ has only one positive element, then
it is not an NE. Suppose, w.l.o.g., tenant 1 has θ1 > 0 and
θ−1 = 0, then the reward to tenant 1 is zero. Therefore, tenant
1 will decrease its bid to 0.
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Finally, we show the existence and uniqueness of an efficient
NE θne (with at least two positive elements) via two steps. In
step 1, we provide a necessary and sufficient condition for a
bidding profile to be an NE. Based on this condition, in step
2, we show that the solution of SWO can lead to an NE of
the bidding game and vice versa, which finishes the proof due
to the existence of SWO’s unique solution.

Step 1: For a profile θ̂ to be an NE according to (22), using
the first-order condition, we have
∂ui
∂θi

(θ̂i, θ̂−i) = 0

=
Θ̂−iD(

θ̂i + Θ̂−i
)2
((
θ̂i + Θ̂−i

)−α − C ′i
(
∆ei(θ̂i, θ̂−i)

))
, (38)

if θ̂i > 0, and
∂ui
∂θi

(0, θ̂−i) =
D

Θ̂−i

(
Θ̂−α−i − C

′
i(0)

)
≤ 0, (39)

if θ̂i = 0, which implies
{
g(θ̂i + Θ̂−i) = C ′i

(
∆ei(θ̂i, θ̂−i)

)
, θ̂i > 0;

g(θ̂i + Θ̂−i) ≤ C ′i(0), θ̂i = 0,∀i.
(40)

Since g(θ̂i + Θ̂−i) is strictly decreasing (we can check that
∂g
∂θi

(θ̂i + Θ̂−i) < 0, ∀i) and C ′i
(
∆ei(θ̂i, θ̂−i)

)
is strictly

increasing with respect to θ̂i, we see that, for a fixed θ̂−i,
there exists a unique solution θ̂i to (40), which is the solution
to maxθi ui(θi, θ̂−i), ∀i. Therefore, (40) is a necessary and
sufficient condition for θ̂ to be an NE.

Step 2: Comparing the KKT conditions (17) with (40), we
show the existence and uniqueness of an efficient NE θne. That
is, there exists a unique NE θne such that ∆e∗ = ∆e(θne).

First, if θne with a corresponding Θne is an NE satisfying
(40), then by choosing ν′ = g(Θne), we see that (∆e(θne), ν′)
satisfies (17), which implies that (∆e(θne), ν′) coincides with
the unique primal-dual solution (∆e∗, ν∗) of the SWO.

Second, with the unique solution (∆e∗, ν∗) of SWO, we
can construct a profile θne as follows

g(Θne) = ν∗, (41)

θnei =
Θne

D
∆e∗i ,∀i. (42)

We see that there exists a unique Θne satisfying (41) since g(·)
is strictly decreasing. Hence, with (∆e∗, ν∗), the constructed
profile θne is unique and satisfies (40), which implies an NE.

APPENDIX D
PROOF OF PROPOSITION 3

We show that all updates of Algorithms 2 and 3 have the
same functionalities. Therefore, with a chosen step-side rule,
if the former converges to the unique solution of SWO, then
the latter also converges to the same point due to a one-to-one
relationship between the solution of SWO and the NE of EPM
(c.f. Proposition 2).

First, according to EPM’s rules, we see that the tenants’ bid
update (27) of Algorithms 3 can be rewritten as

∆ei(θi,Θ−i) =
[
C ′i
−1

(g(θi + Θ−i))
]+
. (43)

However, in line 4 of Algorithm 3, we know that the virtual
reward rate ν̃ tracks the values of g(·); therefore, (43) is
equivalent to

∆ei(θi,Θ−i) =
[
C ′i
−1

(ν̃)
]+
,∀i. (44)

Second, according to EPM’s rules, we see that the operator’
virtual rate updates (27) of Algorithm 3 can be rewritten as

ν̃(k+1) =

[
ν̃(k) − γ(k)

(∑
i∈I

∆ei(θi,Θ−i)−D
)]+

, (45)

It is obvious that updates (44) and (45) of Algorithm 3
are equivalent to the energy reduction level and reward rate
updates (18) and (19) of Algorithm 2, respectively.
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