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Abstract—We describe a method of constructing a sequence
(pulse train) of phase-coded waveforms, for which the ambiguity
function is free of range sidelobes along modest Doppler shifts.
The constituent waveforms are Golay complementary waveforms
which have ideal ambiguity along the zero Doppler axis but are
sensitive to nonzero Doppler shifts. We extend this construction
to multiple dimensions, in particular to radar polarimetry, where
the two dimensions are realized by orthogonal polarizations. Here
we determine a sequence of two-by-two Alamouti matrices where
the entries involve Golay pairs and for which the range sidelobes
associated with a matrix-valued ambiguity function vanish at
modest Doppler shifts. The Prouhet–Thue–Morse sequence plays
a key role in the construction of Doppler resilient sequences of
Golay complementary waveforms.

Index Terms—Ambiguity function, Doppler resilient waveforms,
Golay complementary sequences, Prouhet–Thue–Morse sequence,
radar polarimetry, range sidelobe suppression.

I. INTRODUCTION

I N sensing and communications it is often required to
localize a received signal in time, e.g., to estimate the

range of a target from a radar based on the delay in the radar
return or to synchronize a mobile handset with a pilot signal
sent from a base station. Typically, localization is performed
by matched filtering the received signal with the transmitted
waveform. The output of the matched filter would ideally be
an impulse at the desired delay. Therefore, waveforms with
impulse-like autocorrelation functions are of great value in
these applications. Phase coding [1] is a common technique
in radar for generating waveforms with impulse-like auto-
correlation functions. In this technique, a long pulse is phase
coded with a unimodular (biphase or polyphase) sequence
and the autocorrelation function of the coded waveform is
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controlled through the autocorrelation function of the uni-
modular sequence. Examples of sequences that produce good
autocorrelation functions are polyphase sequences by Heimiller
[2], Frank codes [3], polyphase codes by Chu [4], Barker
sequences [5], and generalized Barker sequences by Golomb
and Scholtz [6]. It is however impossible to achieve an impulse
aperiodic autocorrelation function with a single unimodular
sequence. This has led to the idea of using complementary sets
of unimodular sequences [7]–[11] for phase coding.

Perhaps the most famous class of complementary sequences
are binary complementary sequences introduced by Marcel
Golay [7]. Golay complementary sequences (Golay pairs) have
the property that the sum of their autocorrelation functions
vanishes at all delays other than zero. Thus, if the sequences
are transmitted separately and their autocorrelation functions
are added together the sum will be an impulse. The concept of
complementary sequences was generalized to multiple com-
plementary codes by Tseng and Liu [11], and to multiphase
(or polyphase) sequences by Sivaswami [12] and Frank [13].
Properties of complementary sequences, their relationship with
other codes, and their applicability in radar have been studied
in several articles among which are [7]–[13].

Recently, Howard et al. [14], [15] and Calderbank et al. [16]
combined Golay complementary waveforms with Alamouti
signal processing to enable pulse compression for multichannel
and fully polarimetric radar systems. In [14]–[16], Alamouti
coding is used to coordinate the transmission of Golay com-
plementary waveforms across two orthogonal polarizations
in time. Separating Golay complementary waveforms in fre-
quency however is not as straightforward. Frequency separation
disturbs the complementary property of the waveforms due
to the presence of delay-dependent phase terms. Searle and
Howard [17], [18] have recently introduced modified Golay
pairs, which are complementary in the squared autocorrelation
functions and maintain their complementary property when
transmitted over different frequencies. Golay complementary
sequences have also been advocated for the next generation
guided radar (GUIDAR) systems [19].

The use of complementary sequences have also been ex-
plored for data communications. The early work in this context
include the introduction of orthogonal complementary codes
for synchronous spread spectrum multiuser communications
by Suehiro and Hatori [20]. In the 1990s, some researchers in-
cluding Wilkinson and Jones [21], van Nee [22], and Ochiai and
Imai [23] explored the use of Golay complementary sequences
as codewords for orthogonal frequency-division multiplexing
(OFDM), due to their small peak-to-mean envelope power ratio
(PMEPR). However, the major advances in this context are due
to Davis and Jedwab [24] and Paterson [25], who derived tight
bounds for the PMEPR of Golay complementary sequences
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and related codes from cosets of the generalized first-order
Reed–Muller code. Construction of low PMEPR codes from
cosets of the generalized first-order Reed–Muller code has also
been considered by Schmidt [26] and by Schmidt and Finger
[27]. Complementary codes have also been employed as pilot
signals for channel estimation in OFDM systems [28]. Or-
thogonal complementary codes have been advocated by Chen
et al. [29], [30] and Tseng and Bell [31] for enabling inter-
ference-free (both multipath and multiple-access) multicarrier
code-division multiple access (CDMA). Other work in this
context include the extension of complementary codes using
the Zadoff–Chu sequence by Lu and Dubey [32] and cyclic
shifted orthogonal complementary codes by Park and Jim [33].
In [34], orthogonal complementary codes have been used in the
design of access-request packets for contention resolution in
random-access wireless networks.

Despite their many intriguing properties, in practice, a major
barrier exists in adoption of Golay complementary sequences
for radar and communications; the perfect autocorrelation
property of these sequences is extremely sensitive to Doppler
shift. Although the effective ambiguity function of comple-
mentary sequences is free of delay (range) sidelobes along the
zero-Doppler axis, off the zero-Doppler axis it has large-range
sidelobes. Most generalizations of Golay complementary se-
quences, including multiple complementary sequences and
polyphase complementary sequences, suffer from the same
problem to some degree. Sivaswami [35] has proposed a class
of near-complementary codes, called subcomplementary codes,
which exhibit some tolerance to Doppler shift. Subcomplemen-
tary codes consist of a set of length- sequences that are
phase-modulated by a binary Hadamard matrix. The necessary
and sufficient conditions for a set of phase-modulated sequences
to be subcomplementary have been derived by Guey and Bell
in [36]. We note that a large body of work exists concerning the
design of single polyphase sequences that have Doppler toler-
ance. A few examples are Frank codes [3], , , , and
sequences [37], sequences [38], and sequences
[39], [40]. The design of Doppler tolerant polyphase sequences
has also been considered for multiple-input multiple-output
(MIMO) radar. In [41], Khan et al. have used a harmonic
phase structural constraint along with a numerical optimization
method to design a set of polyphase sequences with resilience
to Doppler shifts for orthogonal netted radar (a special case
of MIMO radar). Their design is based on an extension of a
work by Deng [42], which utilizes polyphase sequences for
orthogonal netted radar.

In this paper, we present a novel and systematic way of
designing a Doppler resilient sequence of Golay complemen-
tary waveforms, for which the pulse train ambiguity function
is free of range sidelobes at modest Doppler shifts. The idea
is to determine a sequence of Golay pairs that annihilates the
range sidelobes in the low-order terms of the Taylor expansion
(around zero Doppler) of the pulse train ambiguity function.
It turns out that the Prouhet–Thue–Morse sequence [43]–[46]
plays a key role in constructing the Doppler resilient sequence
of Golay pairs. We then extend our analysis to the design of
a Doppler resilient sequence of Alamouti waveform matrices

of Golay pairs, for which the range sidelobes associated with
a matrix-valued ambiguity function vanish at modest Doppler
shifts. Alamouti matrices of Golay waveforms have recently
been shown [14]–[16] to be useful for instantaneous radar po-
larimetry, which has the potential to improve the performance of
fully polarimetric radar systems, without increasing the receiver
signal processing complexity beyond that of single-channel
matched filtering. Again, the Prouhet–Thue–Morse sequence
plays a key role in determining the Doppler resilient sequence
of Golay pairs. Finally, numerical examples are presented,
demonstrating the resilience of the constructed sequences to
modest Doppler shifts.

II. GOLAY COMPLEMENTARY WAVEFORMS FOR RADAR

A. Golay Complementary Sequences

Definition 1: Two length- unimodular sequences of com-
plex numbers and are Golay complementary if for

the sum of their autocorrelation functions
satisfies

(1)

where is the autocorrelation of at lag and is
the Kronecker delta function.

Let and be the -trans-
forms of and so that

(2)

Then, and (or alternatively and ) are Golay
complementary if and satisfy

(3)

where and are the
-transforms of and , the time

reversed complex conjugates of and .
Henceforth, we drop the discrete time index from and

and simply use and . We use the notation when-
ever and are Golay complementary and call a Golay
pair. Correspondingly, each member of the pair is called a
Golay sequence. From (3), it follows that if is a Golay pair
then , , , are also Golay
pairs.

B. Golay Pairs for Radar

Suppose ( even) Golay sequences
are transmitted from a radar antenna during pulse repe-
tition intervals (PRIs) to interrogate a radar scene. Assume

are Golay pairs. Con-
sider a point scatterer at delay coordinate . Suppose the
scatterer moves at a constant speed, causing a relative Doppler
shift of [rad] between consecutive PRIs.1 Assume that
the radar PRI is short enough so that during the PRIs the

1We assume that the relative Doppler shift over L chip intervals (duration of
a single waveform) is negligible. A chip interval is the time interval between
two consecutive values in a phase code.
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scatterer remains within the same range cell (or delay cell). Let
denote the -transform of the radar return

associated with the th PRI where is transmitted. Then, the
radar return vector (in -domain) is given by

(4)

where , is a scattering coef-
ficient, is the transmit signal
vector, and is a noise vector. The matrix is the fol-
lowing diagonal Doppler modulation matrix:

(5)

If we now process the radar measurement vector using
the receiver vector the receiver output will be

(6)

where is given by

(7)

The function is the -transform of the ambiguity
function [1] (ignoring the range aliases) of the pulse train

. Along the zero-Doppler axis ( )
is given by

(8)

where the second equality follows from the fact that
are Golay pairs. This shows

that the ambiguity function of the pulse train
is an impulse function in delay (constant in -domain) and is
hence free of range sidelobes. Off the zero-Doppler axis, how-
ever, this is no longer the case. In fact, even for small Doppler
shifts the ambiguity function has large range sidelobes. From
a radar imaging viewpoint, this means that a weak target can
be masked by the sidelobes associated with a strong reflector.
This motivates the following question.

Question 1: Is it possible to construct a Doppler re-
silient sequence or pulse train of Golay pairs

so that

(9)

where is some function of , independent of the delay op-
erator , for a reasonable range of Doppler shifts ?

Remark 1: The ambiguity function of the pulse train
has range aliases (cross

terms) which are offset from the zero-delay axis by ,
, where is the PRI. In this paper, we

ignore the range aliasing effects and only focus on the main

lobe of the ambiguity function, which corresponds to
given in (7). Range aliasing effects can be accounted for using
standard techniques devised for this purpose (e.g., see [1]) and
hence will not be further discussed.

III. DOPPLER RESILIENT GOLAY PAIRS

In this section, we consider the design of Doppler resilient
sequences of Golay pairs. More precisely, we describe how to
select Golay pairs so that in the
Taylor expansion of around the coefficients of all
terms up to a certain order, say , vanish at all nonzero delays.
Consider the Taylor expansion of around , i.e.,

(10)

where

for (11)

The coefficient is equal to and has no components at
nonzero delays. The rest of the coefficients are two-sided poly-
nomials in and can be expressed as

(12)

For instance, the first coefficient is

(13)

Noting that are Golay pairs we can
simplify as

(14)

Each term in (14) is a
two-sided polynomial of degree in the delay operator ,
which cannot be matched with any of the other terms, as we have
already taken into account all the Golay pairs. Consequently,

is a two-sided polynomial in of the form (12).
We wish to design the Golay pairs

so that vanish for all nonzero . More
generally, we wish to design
so that in the Taylor expansion in (10) the coefficients of
all the terms up to a given order vanish at all nonzero
delays, i.e., , for all and for
all nonzero . Although not necessary, we continue to carry
the term in writing for reasons that will
become clear. From here on, whenever we say a function

or , which is a polynomial in the delay operator
, vanishes at all nonzero delays we simply mean that the

coefficients of all , in are zero.
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A. The Requirement That Vanishes at All Nonzero
Delays

To provide intuition, we first consider the case ,
where Golay pairs and are transmitted over
four PRIs. Then, as the following calculation shows, will
vanish at all nonzero delays if the Golay pairs and

are selected such that is also a Golay pair:

(15)

The trick is to break into , and then pair the extra
with . Note that it is easy to choose the pairs
and such that is also a Golay pair. For example,
let be an arbitrary Golay pair, then ,

, and are Golay pairs.
Other combinations of , , , and are also possible.
For instance, and also
satisfy the extra Golay pair condition. The calculation in (15)
shows that it is possible to make vanish at all nonzero
delays with Golay sequences .

B. The Requirement That and Vanish at All
Nonzero Delays

It is easy to see that when it is not possible to force
to zero at all nonzero delays. However, this is

possible when . As the calculations in (16) and
(17) at the bottom of the page show, we can make both
and vanish at all nonzero if we select the Golay pairs

such that , , and
are also Golay pairs.2

Note that it is easy to select the Golay pairs
such that , , and are also Golay

pairs. For example, , ,
, and , where is an

2In writing (16) and(17) we have dropped the argument z on the right-hand
side (RHS) of the equations for simplicity.

arbitrary Golay pair, satisfy all the extra Golay pair conditions.
Again, other combinations of , , , and are also
possible, e.g., , ,

, and . We notice that what allows
us to make both and vanish at all nonzero is the
identity

(18)

or alternatively

(19)

where and correspond to the calculations for
and , respectively. In other words, the reason

and can be forced to zero at all nonzero delays is that the
set can be partitioned into two disjoint sub-
sets and whose elements sat-
isfy (19) for . This is a special case of the Prouhet (or
Prouhet–Tarry–Escott) problem [46], [47] which we will dis-
cuss in more detail later in this section. But for now we just
note that is the set of all numbers in that correspond to
the zeros in the length- Prouhet–Thue–Morse (PTM) sequence
[43]–[46]

(20)

and is the set of all numbers in that correspond to the ones
in .

A key observation here is that the extra Golay pair conditions
we had to introduce are all associated with pairs of the form

where and are odd, and and . This
suggests a close connection between the PTM sequence and the
way Golay sequences must be paired.

C. The Requirement That Through Vanish at
All Nonzero Delays

We now address the general problem of selecting the
Golay pairs to make ,

vanish at all nonzero delays. We begin with
some definitions and results related to the PTM sequence.

Definition 2: [43]–[46] The PTM sequence
over is defined by the following recursions:

(16)

(17)
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1) ,
2) ,
3) ,

for all , where denotes the binary complement
of .

For example, the PTM sequence of length is shown in (21)
at the bottom of the page.

Prouhet Problem: [46], [47]. Let be
the set of all integers between and . The Prouhet problem
(or Prouhet–Tarry–Escott problem) is the following. Given ,
is it possible to partition into two disjoint subsets and
such that

(22)

for all ? Prouhet proved that this is possible when
and that the partitions are identified by the PTM

sequence.

Theorem 1 (Prouhet): [46], [47]. Let be the
PTM sequence. Define

Then, (22) holds for all , .

Lemma 1: Let , be
Golay pairs. Let and

. Then, neither nor contains any of the Golay pairs
.

Proof: The Golay pairs are of
the form , where . From the
definition of the PTM sequence we have .
Therefore, and cannot be in the same set.

Lemma 2: Assume that the Golay pairs
, are such that all pairs of the form

are also Golay complementary.
Then

and (23)

for all and for all , and all pairs of the form
are Golay complementary.

Proof: Assume is even and . Then
is odd and . We know that the pair

is Golay complementary, as all
the original Golay pairs are of the
form , hence

(24)

Let and assume is odd. Then, since
and all pairs of the form are Golay
complementary (from our assumption), we have

(25)

Subtracting (25) from (24) gives

(26)

Since (26) is true for any even and any odd it
must be true for any , or equivalently, any

. Similarly, we can prove that for all
. Since at least one element from forms a pair

with one element in (e.g., and ) then all pairs of the
form must be Golay complementary.

Remark 2: We note that to construct Golay pairs
, that satisfy the

conditions of Lemma 2 we can consider an arbitrary Golay
pair and then arbitrarily choose from the set

and from the set , for
any and any .

We now present the main result of this section by stating the
following theorem.

Theorem 2: The coefficients in the Taylor
expansion (10) will vanish at all nonzero delays if the Golay
pairs , are selected
such that all pairs where and are odd and
and are also Golay complementary.

Proof: From Lemma 2, we have for
all and for all .
Therefore, we can write as

(27)

From the Prouhet theorem (Theorem 1), we have

(28)

where .

Definition 3: Let represent and represent . Then, a
length- PTM pulse train is a pulse train in
which the transmission of and over PRIs is coordinated
according to the zeros and ones in the length- PTM sequence.
If then the th entry in the PTM pulse train is , but if

then the th entry is .

It is easy to see that the length- PTM pulse train con-
structed from an arbitrary Golay pair satisfies all the con-

(21)
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ditions of Theorem 2. For example, the length- PTM pulse train
built from the Golay pair is

(29)

which annihilates Taylor coefficients and
at all nonzero delays.

IV. DOPPLER RESILIENT GOLAY PAIRS FOR FULLY

POLARIMETRIC RADAR SYSTEMS

Fully polarimetric radar systems are capable of simul-
taneously transmitting and receiving on two orthogonal
polarizations. The use of two orthogonal polarizations in-
creases the degrees of freedom and can result in significant
improvement in detection performance. Recently, Howard et
al. [14], [15] (also see [16]) proposed a novel approach to radar
polarimetry that uses orthogonal polarization modes to provide
essentially independent channels for viewing a target, and
achieve diversity gain. Unlike conventional radar polarimetry,
where polarized waveforms are transmitted sequentially and
processed noncoherently, the approach in [14], [15] allows for
instantaneous radar polarimetry, where polarization modes are
combined coherently on a pulse-by-pulse basis. Instantaneous
radar polarimetry enables detection based on full polarimetric
properties of the target and hence can provide better discrimi-
nation against clutter. When compared to a radar system with a
singly-polarized transmitter and a singly-polarized receiver, the
instantaneous radar polarimetry can achieve the same detection
performance (same false alarm and detection probabilities)
with a substantially smaller transmit energy, or alternatively it
can detect at substantially greater ranges for a given transmit
energy [14], [15].

A key ingredient of the approach in [14], [15] is a unitary
Alamouti matrix of Golay waveforms that has a perfect ma-
trix-valued ambiguity function along the zero-Doppler axis. The
unitary property of the waveform matrix allows for detection
in range based on the full polarimetric properties of the target,
without increasing the receiver signal processing complexity be-
yond that of single-channel-matched filtering. We show in this
section that it is possible to design a sequence of Alamouti ma-
trices of Golay waveforms, for which the range sidelobes as-
sociated with the matrix-valued ambiguity function vanish for
modest Doppler shifts.

Fig. 1 shows the scattering model of the fully polarimetric
radar system considered in [14], [15] where denotes the
scattering coefficient into the vertical polarization channel from
a horizontally polarized incident field. Howard et al. employ

Fig. 1. Scattering model for a fully polarimetric radar system, with a dually-
polarized transmit and a dually-polarized receive antenna.

Alamouti signal processing [48] to coordinate the transmission
of a Golay pair over vertical and horizontal polarizations
during two PRIs. The constructed waveform matrix is

where different rows correspond to vertical and horizontal po-
larizations, and different columns correspond to different time
slots (PRIs).

Suppose now that Golay pairs
are transmitted in the above fashion over

PRIs, where is even. Then, the waveform matrix
consists of a sequence of Alamouti matrices and is given by
(30) shown at the bottom of the page .

The radar measurement matrix for this transmission
scheme can be written as

(31)

where is the by target scattering matrix, with entries ,
, , and , is a by noise matrix, and

is the diagonal Doppler modulation matrix introduced in (5).
If we process with a receiver matrix given by (32),

also shown at the bottom of the page, then the receiver output
will be

(33)

The matrix can be viewed as the
-transform of a matrix-valued ambiguity function for .

Along the zero-Doppler axis, where , due to the inter-
play between Alamouti signal processing and the Golay prop-
erty, reduces to (34) shown at the bottom of the fol-
lowing page. This shows that has a perfect matrix-valued
ambiguity function along the zero-Doppler axis; that is, along
the zero-Doppler axis vanishes at all nonzero (integer)

(30)

(32)
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delays, and is unitary at zero-delay. A consequence of (34) is
that the full scattering matrix can be made available on a
pulse-by-pulse basis with a computational complexity compa-
rable to that of single-channel matched filtering. Off the zero-
Doppler axis however the property in (34) no longer holds, and
the elements of the matrix-valued ambiguity function have large
range sidelobes, even at small Doppler shifts.

We consider how the Golay pairs
must be selected so that for small Doppler

shifts we have

(35)

where is some function of independent of the delay op-
erator . and are given by

(36)

and

(37)

The diagonal term of , i.e., , is equal to
in (7). Therefore, we can use Theorem 2 to design the Golay
pairs , such that in the
Taylor expansion (10) the coefficients ,
vanish at all nonzero delays. Thus, from now on we only discuss
how the off-diagonal term can be forced to zero for
small Doppler shifts.

Consider the Taylor expansion of around , i.e.,

(38)

where the coefficients , , are given by

(39)

In general, the coefficients , are two-
sided polynomials in of the form

(40)

For instance, the first coefficient is

(41)

Each term of the form in (41) is a two-sided
polynomial of degree in , and since, in general, the
terms for different values of do not cancel
each other, is also a two-sided polynomial of degree
in .

Suppose that the Golay pairs ,
satisfy the conditions of Theorem 2 so that

vanish at all nonzero delays. We wish
to determine the extra conditions required for

to force to zero at all delays.
As we show, again the PTM sequence is the key to finding the
zero-forcing conditions. The zero-order term is always
zero and hence we do not consider it in our discussion.

A. The Requirement That Vanishes

Again, to gain intuition, we first consider the case
. Then, as the calculation in (42) at the bottom of the

page shows, will vanish if the Golay pairs and
are selected so that . In

summary, to make vanish at all nonzero delays and to
force to zero at the same time, the Golay pairs
and must be selected such that is also a Golay
pair and . If we let be an
arbitrary Golay pair then it is easy to see that ,

satisfy these conditions. The Alamouti
waveform matrix for this choice of Golay pairs is given
by (43), shown at the bottom of the page. Other choices are
also possible.

(34)

(42)

(43)
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(44)

(45)

B. The Requirement That and Vanish

Let us now consider the case . Then, as the
calculations in (44) and (45) at the top of the page show, both

and will vanish if we select
such that

.3 Making vanish we get equation (44) at the
top of the page. Making vanish we get (45) at the top of
the page.

In summary, to make and vanish at all nonzero
delays and to force and to zero at the same time, the
Golay pairs must satisfy the conditions
of Theorem 2, and the within-pair cross-spectral densities must
satisfy

(46)

Let be an arbitrary Golay pair. Then, it is easy to see that
the Golay pairs in the waveform matrix given by

(47)

where

(48)

and

(49)

satisfy all the zero-forcing conditions.
The trick in forcing and to zero is to cleverly se-

lect the signs of the cross-correlation functions (cross-spectral
densities) between the two sequences in every Golay pair rela-
tive to the cross-correlation function (cross-spectral density) for

and . If we let and correspond to the positive and nega-
tive signs, respectively; we observe that the sequence of signs in
(46) corresponds to the length- PTM sequence. In Section V,
we show that the PTM sequence is in fact the right sequence for
specifying the relative signs of the cross-correlation functions
between the Golay sequences in each Golay pair.

3We have dropped the argument z from the RHS of (44) and (45) for sim-
plicity.

Remark 3: Representing and by and , re-
spectively, we notice that the placements of and
in are also determined by the length- PTM sequence.

C. The Requirement That Through Vanish

We now consider the general case where Golay
pairs , , are used to construct a
Doppler resilient waveform matrix . We have the fol-
lowing theorem.

Theorem 3: Let and let
be Golay pairs. Then, for any between

and , will vanish if for all , ,
we have

(50)

where is the th element in the PTM sequence.
Proof: For any , may be written

as

(51)

where the second equality in (51) follows by replacing
with . Since in the PTM

sequence , we can rewrite (51) as

(52)

However, from the Prouhet theorem (Theorem 1), it is easy
to see that

(53)

Therefore, .
Finally, we note that it is always possible to find Golay

pairs that satisfy the conditions
of both Theorem 2 and Theorem 3. Suppose

are built from an arbitrary Golay pair (as
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Fig. 2. (a) The plot of the ambiguity function g(`; �) (corresponding to the Doppler resilient transmission scheme) versus delay index ` and Doppler shift �. (b)
The plot of the ambiguity function g (`; �) (corresponding to the conventional transmission scheme) versus delay index ` and Doppler shift �.

explained in Section III) to satisfy the conditions of Theorem 2.
Then, we can apply the time reversal operator and change the
sign of the elements within the pairs to satisfy the conditions of
Theorem 3, as the Golay property is invariant to time reversal
and changes in the signs of the Golay sequences within a pair.
For example, a sequence of Alamouti matrices in which the
placement of and is coordinated by the zeros
and ones in the PTM sequence satisfies all the conditions of
Theorems 2 and 3.

V. NUMERICAL EXAMPLES

In this section, we present numerical examples to verify the
results of Sections III and IV and compare our Doppler resilient
design to a conventional scheme, where the same Golay pair is
repeated.

A. Single-Channel Radar System

We first consider the case of a single-channel radar system.
Following Theorem 2, we coordinate the transmission of eight
Golay pairs over PRIs to make
the Taylor expansion coefficients
vanish at all nonzero delays. Starting from a Golay pair ,
it is easy to verify that the eight Golay pairs in the following
waveform vector satisfy the conditions of The-
orem 2:

(54)

where and
.

Remark 4: Representing and by and , re-
spectively, we notice that the placements of and in

are determined by the length- PTM sequence.

We compare the Doppler resilient transmission scheme in
(54) with a conventional transmission scheme, where the same
Golay pair is transmitted during all PRIs, re-
sulting in a waveform vector of the form

(55)

with the ambiguity function (in -domain)

(56)

The pair used in constructing and can
be any Golay pair. Here, we choose to be the following
length- Golay pair

(57)

with -transforms

Referring to the Taylor expansion of in (10), it is easy to
verify that , , and vanish at all nonzero delays
for the Doppler resilient design in (54).

Fig. 2 shows the plots of the ambiguity functions
and versus delay
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Fig. 3. Comparison of the ambiguity functions g(`; �) and g (`; �) at Doppler shifts (a) � = 0.025 rad, (b) � = 0.05 rad, and (c) � = 0.075 rad.

index and Doppler shift .4 Comparison of and
at Doppler shifts 0.025 rad, 0.05 rad, and 0.075
rad is provided in Fig. 3(a)–(c), where the solid lines correspond
to (Doppler resilient scheme) and the dashed lines cor-
respond to (conventional scheme). We notice that the
peaks of the range sidelobes of are at least 24 dB (for
0.025 rad), 28 dB (for 0.05 rad), and 29 dB (for 0.075
rad) smaller than those of . These plots clearly show the
Doppler resilience of the waveform vector in (54).

Remark 5: By increasing the number of PRIs (in powers
of two) more of the Taylor expansion coefficients can be zero-
forced (at all nonzero delays) and the width of the Doppler re-
silient interval can be increased. In practice, however, cannot
be made arbitrarily large, as we have a limited amount of time
to interrogate a range cell. We note that finding an exact rela-
tionship between the width of the Doppler resilient interval and
the number of PRIs (or, equivalently, the length of the PTM se-

4The ambiguity plots are interpolated in delay index for ease in visual inspec-
tion.

quence) requires an in-depth analysis of the Taylor expansion in
(10) and is beyond the scope of this paper.

B. Fully Polarimetric Radar System

We now consider the matrix-valued ambiguity function corre-
sponding to the fully polarimetric radar system described in Sec-
tion IV. Following Theorems 2 and 3, we coordinate the trans-
mission of eight Golay pairs across ver-
tical and horizontal polarizations and over PRIs, so that
in the Taylor expansions of (the diagonal element of

and (the off-diagonal element of the
coefficients , , and vanish at all nonzero de-
lays and , , and vanish at all delays. Letting

and be the Alamouti matrices in (48) and (49),
then it is easy to check that the Golay pairs in the following
waveform matrix satisfy all the conditions of Theo-
rems 2 and 3:

(58)
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Fig. 4. (a) The plot of g (`; �) (corresponding to the Doppler resilient transmission scheme) versus delay index ` and Doppler shift �. (b) The plot of g (`; �)
(corresponding to the conventional transmission scheme) versus delay index ` and Doppler shift �.

Remark 6: Representing and by and , re-
spectively, we notice that the placements of and
in are determined by the length- PTM sequence.

We compare the Doppler resilient transmission scheme in
(58) with a conventional transmission scheme, where the Alam-
outi waveform matrix built from a single Golay pair

is repeated and the waveform matrix is
given by

(59)

The matrix-valued ambiguity function (in domain) for
is given by

(60)

where

(61)

and

(62)

The Golay pair used in building both and is
the length- Golay pair in (57).

The diagonal elements of and , i.e.,
and , are equal to and , respectively.
Therefore, the plots in Figs. 2 and 3 apply for comparing the
diagonal elements. Thus, in this example, we only need to con-
sider the off-diagonal terms and .

Referring to the Taylor expansion of in (38), it is
easy to verify that , , and vanish at all delays
for the Doppler resilient design in (58).

Fig. 4 shows the plots of and
versus delay index and Doppler

shift . Comparison of and at Doppler shifts
0.025 rad, 0.05 rad, and 0.075 rad is provided

in Fig. 5(a)–(c), where the solid lines correspond to
(Doppler resilient scheme) and the dashed lines correspond to

(conventional scheme). We notice that the peaks of the
range sidelobes of are at least 24 dB (for 0.025 rad),
12 dB (for 0.05 rad), and 5 dB (for 0.075 rad) smaller
than those of . These plots together with the plots in
Fig. 3(a)–(c) show the Doppler resilience of the waveform ma-
trix in (58).

Remark 7: The range sidelobes due to a point scatterer corre-
spond to the sum of the range sidelobes of and ,
weighted by the target scattering coefficients or

. In the example considered here, the range side-
lobes corresponding to the off-diagonal term, shown in Figs.
4(a) and 5, are considerably larger than the range sidelobes for
the diagonal term, shown in Figs. 2(a) and 3. Therefore, here
the overall range sidelobe improvement of the Doppler resilient
design is determined by the improvement for the off-diagonal
term.

VI. CONCLUSION

We have constructed a Doppler resilient sequence of Golay
complementary waveforms, for which the pulse train ambiguity
function is free of range sidelobes at modest Doppler shifts.
We have extended our results to the design of Doppler resilient
Alamouti matrices of Golay complementtary waveforms for
instantaneous radar polarimetry. The main contribution is a
method for selecting Golay complementary sequences to force
the low-order terms of the Taylor expansion of an ambiguity
function to zero. The PTM sequence was found to be the
key to constructing the Doppler resilient sequences of Golay
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Fig. 5. Comparison of g (`; �) and g (`; �) corresponding to the conventional and Doppler resilient schemes at Doppler shifts (a) � = 0.025 rad, (b) � = 0.05
rad, and (c) � = 0.075 rad.

pairs. Numerical examples were presented, demonstrating the
resilience of PTM sequences of Golay pairs to modest Doppler
shifts.

ACKNOWLEDGMENT

The authors would like to thank Louis Scharf for his com-
ments.

REFERENCES

[1] N. Levanon and E. Mozeson, Radar Signals. New York: Wiley, 2004.
[2] R. C. Heimiller, “Phase shift pulse codes with good periodic correlation

properties,” IRE Trans. Inf. Theory, vol. IT-7, no. 4, pp. 254–257, Oct.
1961.

[3] R. L. Frank, “Polyphase codes with good nonperiodic correlation prop-
erties,” IEEE Trans. Inf. Theory, vol. IT-9, no. 1, pp. 43–45, Jan. 1963.

[4] D. C. Chu, “Polyphase codes with good periodic correlation proper-
ties,” IEEE Trans. Inf. Theory, vol. IT-18, no. 4, pp. 531–532, Jul. 1972.

[5] R. H. Barker, “Group synchronizing of binary digital sequences,” in
Communication Theory, W. Jackson, Ed. London, U.K.: Butteworth,
1953, pp. 273–287.

[6] S. W. Golomb and R. A. Scholtz, “Generalized Barker sequences,”
IEEE Trans. Inf. Theory, vol. IT-11, no. 4, pp. 533–537, Oct. 1965.

[7] M. J. E. Golay, “Complementary series,” IRE Trans. Inf. Theory, vol.
IT-7, no. 2, pp. 82–87, Apr. 1961.

[8] R. J. Turyn, “Ambiguity functions of complementary sequences,” IEEE
Trans. Inf. Theory, vol. IT-9, no. 1, pp. 46–47, Jan. 1963.

[9] G. R. Welti, “Quaternary codes for pulsed radar,” IRE Trans. Inf.
Theory, vol. IT-6, no. 3, pp. 400–408, Jun. 1960.

[10] Y. Taki, M. Miyakawa, M. Hatori, and S. Namba, “Even-shift or-
thogonal sequences,” IEEE Trans. Inf. Theory, vol. IT-15, no. 2, pp.
295–300, Mar. 1969.

[11] C. C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE
Trans. Inf. Theory, vol. IT-18, no. 5, pp. 644–652, Sep. 1972.

[12] R. Sivaswami, “Multiphase complementary codes,” IEEE Trans. Inf.
Theory, vol. IT-24, no. 5, pp. 546–552, Sep. 1978.

[13] R. L. Frank, “Polyphase complementary codes,” IEEE Trans. Inf.
Theory, vol. IT-26, no. 6, pp. 641–647, Nov. 1980.

[14] S. D. Howard, A. R. Calderbank, and W. Moran, “A simple polariza-
tion diversity technique for radar detection,” in Proc. 2nd Int. Conf.
Waveform Diversity and Design, Lihue, HI, Jan. 2006.

[15] S. D. Howard, A. R. Calderbank, and W. Moran, “A simple signal pro-
cessing architecture for instantaneous radar polarimetry,” IEEE Trans.
Inf. Theory, vol. 53, no. 4, pp. 1282–1289, Apr. 2007.



4266 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 9, SEPTEMBER 2008

[16] A. R. Calderbank, S. D. Howard, W. Moran, A. Pezeshki, and M.
Zoltowski, “Instantaneous radar polarimetry with multiple dually-po-
larized antennas,” in Conf. Rec. 40th Asilomar Conf. Signals, Systemas
and Computers, Pacific Grove, CA, Oct. 2006, pp. 757–761.

[17] S. J. Searle and S. D. Howard, “A novel polyphase code for sidelobe
suppression,” in Proc. Int. Waveform Diversity and Design Conf., Pisa,
Italy, Jun. 2007, pp. 377–381.

[18] S. J. Searle and S. D. Howard, “A novel nonlinear technique for side-
lobe suppression in radar,” in Proc. Int. Conf. Radar Systems, Edin-
burgh, U.K., Oct. 2007.

[19] K. Harman and B. Hodgins, “Next generation of GUIDAR technology,”
IEEE Aerosp. Electron. Syst. Mag., vol. 20, no. 5, pp. 16–26, Mar. 2005.

[20] N. Suehiro and M. Hatori, “N-shift cross-orthogonal sequences,” IEEE
Trans. Inf. Theory, vol. 34, no. 1, pp. 143–146, Jan. 1988.

[21] T. A. Wilkinson and A. E. Jones, “Minimization of the peak-to-mean
envelope power ratio of multicarrier transmission scheme by block
coding,” in Proc. IEEE Vehicular Technology Conf. (VTC), Chicago,
IL, Jul. 1995, pp. 825–829.

[22] R. J. van Nee, “OFDM codes for peak-to-average power reduction and
error correction,” in Proc. IEEE Global Telecom. Conf. (GLOBECOM),
London, U.K., Nov. 1996, pp. 740–744.

[23] H. Ochiai and H. Imai, “Block coding scheme based on complementary
sequences for multicarrier signals,” IEICE Trans. Fundamentals, vol.
E80-A, pp. 2136–2146, 1997.

[24] J. A. Davis and J. Jedwab, “Peak-to-mean power control in OFDM,
Golay complementary sequences, and Reed–Muller codes,” IEEE
Trans. Inf. Theory, vol. 45, no. 6, pp. 2397–2417, Nov. 1999.

[25] K. G. Paterson, “Generalized Reed–Muller codes and power control
in OFDM modulation,” IEEE Trans. Inf. Theory, vol. 46, no. 1, pp.
104–120, Jan. 2000.

[26] K. Schmidt, “On cosets of the generalized first-order Reed–Muller
code with low PMEPR,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp.
3220–3232, Jun. 2006.

[27] K. Schmidt and A. Finger, “Constructions of complementary
sequences for power-controlled OFDM transmission,” in Proc. Work-
shop on Coding and Cryptography (WCC) 2005 (Lecture Notes in
Computer Science). Berlin, Germany: Springer-Verlag, 2006.

[28] M. Ku and C. Huang, “A complementary code pilot-based trans-
mitter diversity technique for OFDM systems,” IEEE Trans. Wireless
Commun., vol. 5, no. 3, pp. 504–508, Mar. 2006.

[29] H. H. Chen, J. F. Yeh, and N. Seuhiro, “A multi-carrier CDMA archi-
tecture based on orthogonal complementary codes for new generation
of wideband wireless communications,” IEEE Commun. Mag., vol. 39,
no. 10, pp. 126–135, Oct. 2001.

[30] H. H. Chen, H. W. Chiu, and M. Guizani, “Orthogonal complemen-
tary codes for interference-free CDMA technologies,” IEEE Wireless
Commun. Mag., vol. 13, no. 1, pp. 68–79, Feb. 2006.

[31] S. M. Tseng and M. R. Bell, “Asynchronous multicarrier DS-CDMA
using mutually orthogonal complementary sets of sequences,” IEEE
Trans. Commun., vol. 48, no. 1, pp. 53–59, Jan. 2000.

[32] L. Lu and V. K. Dubey, “Extended orthogonal polyphase codes for
multicarrier CDMA system,” IEEE Commun. Lett., vol. 8, no. 12, pp.
700–702, Dec. 2004.

[33] H. P. Lim, “Cyclic shifted orthogonal complementary codes for multi-
carrier CDMA systems,” IEEE Commun. Lett., vol. 10, no. 6, pp. 1–3,
Jun. 2006.

[34] X. Li, “Contention resolution in random-access wireless networks
based on orthogonal complementary codes,” IEEE Trans. Commun.,
vol. 52, no. 1, pp. 82–89, Jan. 2004.

[35] R. Sivaswami, “Self-clutter cancellation and ambiguity properties of
subcomplementary sequences,” IEEE Trans. Aerosp. Electron. Syst.,
vol. AES-18, no. 2, pp. 163–181, Mar. 1982.

[36] J. Guey and M. R. Bell, “Diversity waveform sets for delay-Doppler
imaging,” IEEE Trans. Inf. Theory, vol. 44, no. 4, pp. 1504–1522, Jul.
1998.

[37] F. F. Kretschmer and B. L. Lewis, “Doppler properties of polyphase
coded pulse-compression waveforms,” IEEE Trans. Aerosp. Electron.
Syst., vol. AES-19, no. 4, pp. 521–531, Apr. 1983.

[38] P. B. Rapajik and R. A. Kennedy, “Merit factor based comparison of
new polyphase sequences,” IEEE Commun. Lett., vol. 2, no. 10, pp.
269–270, Oct. 1998.

[39] T. Felhauer, “New class of polyphase pulse compression code with
unique characteristics,” Electron. Lett., vol. 28, no. 8, pp. 769–771,
Apr. 1992.

[40] T. Felhauer, “Design and analysis of new P (n; k) polyphase pulse
compression codes,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-30,
no. 3, pp. 865–874, Jul. 1994.

[41] H. A. Khan, Y. Zhang, C. Ji, C. J. Stevens, D. J. Edwards, and D.
O’Brien, “Optimizing polyphase sequences for orthogonal netted
radar,” IEEE Signal Process. Lett., vol. 13, no. 10, pp. 589–592, Oct.
2006.

[42] H. Deng, “Polyphase code design for orthogonal netted radar systems,”
IEEE Trans. Signal Process., vol. 52, no. 11, pp. 3126–3135, Nov.
2004.

[43] E. Prouhet, “Mèmoire sur quelques relations entre les puissances des
nombres,” C. R. Acad. Sci. Paris Sèr., vol. I 33, p. 225.

[44] M. Morse, “Recurrent geodesics on a surface of negative curvature,”
Trans. Amer. Math. Soc., vol. 22, pp. 84–100, 1921.

[45] J. P. Allouche and J. Shallit, Automatic Sequences: Theory, Applica-
tions, Generalizations. Cambridge, U.K.: Cambridge Univ. Press,
2003.

[46] J. P. Allouche and J. Shallit, “The ubiquitous Prouhet-Thue-Morse se-
quence,” in Sequences and Their Applications, Proc. SETA’98, T. H.
C. Ding and H. Niederreiter, Eds. Berlin, Germany: Springer-Verlag,
1999, pp. 1–16.

[47] D. H. Lahmer, “The Tarry-Escott problem,” Scripta Math., vol. 13, pp.
37–41, 1947.

[48] S. Alamouti, “A simple transmit diversity technique for wireless
communications,” IEEE J. Select. Areas Commun., vol. 16, no. 8, pp.
1451–1458, Oct. 1998.


