
1

Iterative Design of MIMO Radar Transmit
Waveforms and Receive Filter Bank
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Abstract—In this paper, we propose an iterative design ap-
proach to jointly optimize probing signal waveforms and a receive
filter bank for a multiple-input multiple-output (MIMO) radar
under a constant modulus constraint. The design goals are to
approximate a desired beampattern and to minimize the auto-
/cross- correlation levels of the probing signal waveforms for
different time lags and between different spatial angles. Since the
overall design problem is nonconvex, we propose to optimize the
transmit probing signals and receive filter bank separately and
alternately. The optimization of receive filter bank is a standard
least squares problem, while the optimization of the constant
modulus transmit signal waveforms is a norm-constrained least
squares problem which can be approximately solved using a
low-rank semidefinite relaxation procedure. We demonstrate the
effectiveness of our proposed approach through a simulation
example.

Index Terms—Multiple-input multiple-output (MIMO) radar,
Beampattern, Mismatched filter bank, Constant modulus probing
signal, Auto correlation peak sidelobes, Cross correlation Level.

I. INTRODUCTION

MIMO transmission and reception is a promising paradigm

for the next generation radar systems. Unlike the phased-array

radar, MIMO radar allows independent probing signals to

be transmitted at different antennas. Through this additional

waveform diversity, MIMO radar can deliver higher spatial

resolution and better detection performance [1].

A central signal processing problem in MIMO radar re-

search is waveform design. The basic issue is how to gen-

erate a pre-specified beampattern using independent constant

modulus waveforms while minimizing the so called auto-

/cross- correlation peak sidelobe levels. The constant mod-

ulus property is important since all radar systems typically

require their power amplifiers to operate at saturation region

where nonlinearity effect is significant, while low auto-/cross-

correlation levels are necessary so that the echo signals from

different targets or at different range cells do not interfere

with each other. Existing approaches to MIMO waveform

design consist of two phases: the first is to optimize the

transmitted signal correlation matrix, and the second phase

is to synthesize the derived signal correlation matrix using
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constant modulus signals. For example, in reference [2], Stoica

et.al. formulated the signal correlation matrix design problem

as convex semidefinite program. Their objective was to match

a desired beampattern while minimizing peak sidelobe level of

the generated beampattern. In [3] and [4], Li et.al. proposed a

cyclic algorithm to synthesize a given signal correlation matrix

using constant modulus probing signals. In reference [5], [6],

Fuhrmannn showed how to create spatial beampatterns ranging

from high directionality to omni-directionality through binary

phase-shifted keyed signaling.

In this paper, we consider the MIMO waveform design

problem by directly optimizing the constant modulus probing

signals and a receive filter bank to achieve a given beampattern

while maximally suppressing the auto-/cross- correlation peak

sidelobe levels at different time delay and between different

spatial angles. Unlike the existing work [2], [3], [5], [6],

we directly impose the constant modulus constraint in the

optimization process, and include the minimization of time-

delayed auto-/cross- correlation levels in our formulation so

that clutters’ effect can be as small as possible. To facilitate ef-

ficient computation, we introduce a receive filter bank and sep-

arate the optimization of transmit waveforms and receive filter

bank (not necessarily matched to the transmit waveform as in

the work of [2], [3], [5], [6]). It turns out the optimization of

the receive filter bank is a convex least squares problem, while

the transmit waveform optimization is a norm-constrained

least squares problem. Although the latter is a nonconvex

(NP-hard in general) problem, we introduce an efficient low

rank SDP relaxation method for this purpose. By alternating

between the optimization of the transmit waveforms and the

receive filter bank, we are able to achieve a high degree

of suppression of auto-/cross- correlation levels at different

time delays and between different spatial angles, while closely

approximating a desired beampattern. A simulation example

shows the effectiveness of the proposed approach.

II. BASIC CONCEPTS AND SYSTEM PARAMETERS

Consider a uniform linear array with M antennas. As shown

in Fig.1, we denote the probing signal waveforms and and

steering vector as a L-by-M matrix and a M -by-1 vector,

respectively, where L denotes the length of the transmitted

waveforms.

X = [x1 · · · xM] =

⎡
⎢⎣x1,1 · · · x1,M

...
. . .

...

xL,1 · · · xL,M

⎤
⎥⎦ (1)

a(θ) = [ej0 ejπsin(θ) · · · ejπ(M−1) sin(θ)]T , . (2)
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Fig. 1. MIMO radar system equipped with M antennas (uniform linear array
- ULA and half wavelength inter-element spacing, d = λ

2
). θ is the angle

between the beampattern direction and reference direction.

The transmit beampattern is defined as the power of the

probing signal at a given direction θ

Pt(θ) = a(θ)†X†Xa(θ). (3)

Here, “†” is conjugate transpose operator and θ belongs to a

set Θ which covers the directions of interest. The concept of

beampattern can be extended to the receiver, named herein the

receive beampattern,

Pr(θ) = a(θ)†H†Xa(θ), (4)

where H ∈ C
L×M is a filter bank of the receiver. In particular,

if the receiver uses a matched filter bank H = X , then the

transmitter beampattern Pt(θ) and the receiver beampattern

Pr(θ) coincide.

Similar with the traditional radar, the transmitted waveforms

probing to different directions are required to hold good

autocorrelation property, in order to improve the detection

performance of the small target close to a large target, and

avoiding false alarm introduced by clutter. This should be

concerned when designing transmit waveforms in a MIMO

radar system. MIMO radar has the ability to form multiple

spatial beams simultaneously. The target echoed signal or

clutter from different beams will be interference to each

other. Therefore, it is ideal that the transmitted waveforms for

different spatial directions of MIMO radar are orthogonal to

each other or have small enough correlation coefficients. This

can be handled by a careful design of transmit waveforms and

mismatch filter bank. Notice that clutters have different time

delays and spatial directions with respect to useful echoes. We

can describe time delay characteristics of clutters by

xm(�) =

⎧⎪⎪⎨
⎪⎪⎩

[0 · · · 0︸ ︷︷ ︸
� zeros

x1,m · · ·xL−�,m]T , � > 0

[x−�+1,m · · ·xL,m 0 · · · 0︸ ︷︷ ︸
−� zeros

]T , � ≤ 0
, (5a)

X(�) = [x1(�) · · · xM (�)] = S(�)X, (5b)

where −L < � < L and S(�) is a L-by-L matrix. The elements

in the �-th diagonal off-line of S(�) are 1 and others are 0.

Assuming the use of a receive (possibly mismatched) filter

bank H , the correlation characteristics can be described by

Pc(�, θ̂i, θ̂k) = a(θ̂i)†H†S(�)Xa(θ̂k), (6)

where θ̂i, θ̂k∈Θ̂ = {θ̂1, ..., θ̂K̂}, Θ̂ is a set of angles repre-

senting the directions of interested targets, 1≤i, k≤K̂, and K̂
is the number of interested targets. Naturally, Θ̂ ⊂ Θ. From

(6), two important parameters, named auto-correlation function

and cross-correlation functions can be derived. The former

is related to clutters and the latter can take effects on some

adaptive techniques of radar system [2].

If θ̂i = θ̂k = θ̂,

Pc(�, θ̂, θ̂) = Pac(�, θ̂) = a(θ̂)†H†S(�)Xa(θ̂) (7)

is referred to as the auto-correlation function. So Pac(�, θ̂)
(��=0) is the auto-correlation sidelobes. If θ̂i �= θ̂k,

Pc(�, θ̂i, θ̂k) = Pcc(�, θ̂i, θ̂k) = a(θ̂i)†H†S(�)Xa(θ̂k) (8)

is referred to as the cross correlation function. Let Pd(θ) de-

note the desired beampattern. The normalized auto-correlation

function and cross-correlation function can also be defined

accordingly

P ′
ac(�, θ̂) =

Pac(�, θ̂)

Pd(θ̂)
(9a)

P ′
cc(�, θ̂i, θ̂k) =

Pcc(�, θ̂i, θ̂k)√
Pd(θ̂i)Pd(θ̂k)

. (9b)

III. PROBLEM FORMULATION

Let CL×M denote the set of matrices whose elements have

unit modulus. Define

f(X, H) =
∑
θ∈Θ

|w1[Pd(θ) − a(θ)†H†Xa(θ)]|2

+
L−1∑

�=−L+1
��=0

∑
θ̂∈Θ̂

|w2a(θ̂)†H†S(�)Xa(θ̂)|2

+
L−1∑

�=−L+1

∑
θ̂i �=θ̂k

θ̂i,θ̂k∈Θ̂

|w3a(θ̂i)†H†S(�)Xa(θ̂k)|2,

(10)

where wi > 0, i = 1, 2, 3, are some positive weights

(chosen by the user). The cost function f(X, H) captures

the beampattern matching (the first term), auto-correlation

level suppression (the second term), and the cross-correlation

level suppression (the third term). Then the joint optimization

of receive filter bank H and transmit waveforms X can be

described as

min
X∈CL×M ,H∈CL×M

f(X,H), (11)

where the constant modulus condition is represented by X ∈
CL×M . The above MIMO waveform design problem involves

minimizing a nonconvex fourth-order polynomial which is

computationally difficult. Below we propose a coordinate

descent method for the joint design of X and H .
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A. Optimizing the Mismatched filter Bank H

Fix a value of X ∈ CL×M . We optimize H by

Hopt = argmin
H∈CL×M

f(X, H). (12)

This problem can be formulated as a linear least squares

problem. Specifically, if we define b(·, �) = S(�)Xa(·) and

Y (·, ·, �) = b(·, �)a(·)†, the beampattern term in (10) can be

formulated as ∑
θ∈Θ

|w1[Pd(θ) − a(θ)†H†Xa(θ)]|2

=
[

1
vec(H†)

]† [
A1 A2

A3 A4

] [
1

vec(H†)

]
,

(13)

where

A1 =
∑
θ∈Θ

w2
1Pd(θ)2, (14a)

A2 = −
∑
θ∈Θ

w2
1Pd(θ)vec(Y (θ, θ, 0)T )T , (14b)

A3 = −
∑
θ∈Θ

w2
1Pd(θ)vec(Y (θ, θ, 0)T )∗, (14c)

A4 =
∑
θ∈Θ

w2
1vec(Y (θ, 0)T )∗vec(Y (θ, θ, 0)T )T , (14d)

and “*” is the conjugate operator and vec(·) vectorizes a

matrix by stacking its columns in sequence on top of one

another. We further define

A5 =
L−1∑

�=−L+1
��=0

∑
θ̂∈Θ̂

w2
2vec(Y (θ̂, θ̂, �)T )∗vec(Y (θ̂, θ̂, �)T )T ,

(15a)

A6 =
L−1∑

�=−L+1

∑
θ̂i �=θ̂k

θ̂i,θ̂k∈Θ̂

w2
3vec(Y (θ̂i, θ̂k, �)T )∗vec(Y (θ̂i, θ̂k, �)T )T .

(15b)

Then the auto-correlation term and the cross-correlation term

in (10) can also be written as

L−1∑
�=−L+1

��=0

∑
θ∈Θ̂

|w2a(θ̂)†H†S(�)Xa(θ̂)|2

= vec(H†)†A5vec(H†),
L−1∑

�=−L+1

∑
θ̂i �=θ̂k

|w3a(θ̂i)†H†S(�)Xa(θ̂k)|2

= vec(H†)†A6vec(H†).

(16)

Then (12) is equivalent to

Hopt = argmin
H∈CL×M

[
1

vec(H†)

]†
A

[
1

vec(H†)

]
, (17)

where

A =
[
A1 A2

A3 A4 + A5 + A6

]
. (18)

Because (12) guarantees A is a positive semi-definite ma-

trix, its eigenvalue decomposition can be expressed as A =
UDU† = V †V . Then (12) can be equivalent to a least square

problem

min
∥∥∥∥V

[
1

vec(H†)

]∥∥∥∥
2

, s.t. H∈C
L×M , (19)

where ‖·‖2 is 2-norm. This is a standard convex least square

problem which can be solved efficiently by a standard opti-

mization software using YALMIP [7].

B. Optimization of Transmit Waveforms

For a fixed receive filter bank H , we can optimize the

transmit waveforms X by solving a norm-constrained least

squares problem

Xopt = argmin
X∈CL×M

f(X,H). (20)

Similar to the optimization of H , we define

c(·, �) = S(�)†Ha(·), (21a)

Z(·, ·, �) = a(·)c(·, �)†, (21b)

B1 =
∑
θ∈Θ

w2
1Pd(θ)2, (21c)

B2 = −
∑
θ∈Θ

w2
1Pd(θ)vec(Z(θ, θ, 0)T )T , (21d)

B3 = −
∑
θ∈Θ

w2
1Pd(θ)vec(Z(θ, θ, 0)T )∗, (21e)

B4 =
∑
θ∈Θ

w2
1vec(Z(θ, θ, 0)T )∗vec(Z(θ, θ, 0)T )T , (21f)

B5 =
L−1∑

�=−L+1
��=0

∑
θ̂∈Θ̂

w2
2vec(Z(θ̂, θ̂, �)T )∗vec(Z(θ̂, θ̂, �)T )T ,

(21g)

B6 =
L−1∑

�=−L+1

∑
θ̂i �=θ̂k

θ̂i,θ̂k∈Θ̂

w2
3vec(Z(θ̂i, θ̂k, �)T )∗vec(Z(θ̂i, θ̂k, �)T )T ,

(21h)

B =
[
B1 B2

B3 B4 + B5 + B6

]
= W †W. (21i)

Then Xopt in (20) can be solved through

min
∥∥∥∥W

[
1

vec(X)

]∥∥∥∥
2

, s.t. X∈CL×M . (22)

In theory, optimization model (22) is a NP-hard problem.

However, this problem can be approximately solved using an

efficient low rank semidefinite relaxation procedure [8]. This

procedure has been coded in a public software (available from

the last author’s homepage).

C. An Alternating Direction Algorithm

Combining the above two steps we obtain an alternating

direction algorithm for the joint optimization of X and H .

Step 1. Initialization. Set maximum iteration number max
and randomly generate a L-by-M random matrix X0.
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Step 2. Fix the probing signal matrix X . Determine H
through optimization model (19). If the maximum iteration

number max is reached, output the current H and X .

Step 3. Fix H from Step 1 and solve optimization model

(22) to determine probing signal X . Increase the iteration

counter by 1 and go to Step 1.

IV. SIMULATION RESULTS

We present a simulation example to illustrate the effective-

ness of the proposed design method. Consider a MIMO radar

system with a total of M = 8 ULA antennas. Each probing

pulse consists of L = 256 samples. The angle set Θ covers

[−90o, 90o] with spacing 1o. Consider three targets located

in Θ̂ = {θ̂k = −40o, 00, 400}, and the desired beampattern is

given by

Pd(θ) =

{
1, θ ∈ [θ̂k − 10o, θ̂k + 10o], k = 1, 2, 3
0, otherwise

. (23)

Optimization models (19) and (22) are solved using YALMIP

[7] and PSK Detector [8]. The maximum iteration number is

4.

The constant modulus probing signal matrix X generates a

transmit beampattern Pt(θ), and a receive beampattern Pr(θ).
They are plotted in Fig.2 together with the desired beampattern

Pd(θ). The beampattern weight w1 and auto-correlation peak

sidelobe weight w2 are set to 10 and 1, respectively. The cross-

correlation weight w3 is set to 2 for � = 0 and 1 for other

nonzero �’s. Fig.2 shows that both transmit beampattern Pt(θ)
and receive beampattern Pr(θ) are close to the desired beam-

pattern Pd(θ). Compared to the transmit beampattern, some

values of receive beampattern are negative. This is because

that H†X does not satisfy positive semidefinite condition. In

theory, Pr(θ) can be complex. However in this simulation, its

imagery part is so small that it can be neglected.

Fig.3(a) and Fig.3(b) show the normalized auto- and cross-

correlation functions respectively. Compared to the desired

beampattern values (Pd(θ), θ = −40o, 0o, and 40o), both auto-

correlation and cross- correlation levels have been suppressed

by as much as -10dB.
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Fig. 2. Comparison of transmit beampattern Pt(θ), receive beampatten
Pr(θ), and desired beampattern Pd(θ).
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Fig. 3. Suppressed auto- and cross- correlations.

V. CONCLUSION

By separating the optimization of transmit waveforms and a

receive filter bank, we propose an efficient iterative approach

for the joint optimization probing signals and a (possibly

mismatched) receive filter bank. The designed probing signals

satisfy the constant modulus constraint and can closely ap-

proximate the desired beampattern, while the corresponding

normalized auto- and cross- correlation peak sidelobes are

suppressed to as low as -10dB. Because of space reason, some

important parameters, such as SNRLoss, will be discussed in

our later works.

REFERENCES

[1] E. Fishler, A. Haimovich, R. Blum, et.al, “MIMO Radar: An Idea Whose
Time Has Come,” In Proc. 2004 IEEE Radar Conference, Philadelphia,
Pa, USA, pp. 71–78, April 2004.

[2] P. Stoica, J. Li, Y. Xie, “On Probing Signal Design For MIMO Radar,”
IEEE Trans. Signal Process., vol.55, no.8, pp. 4151–4160, Aug.2007.

[3] J. Li, P. Stoca, X. Zhu, “MIMO Radar Waveform Synthesis,” Radar
Conference, Rome, Italy., pp. 1–6 May. 2007.

[4] J. Li, P. Stoica, X.-Y, Zheng, “Signal Synthesis and Receiver Design
for MIMO Radar Imaging,” IEEE Trans. Signal Process., vol.56., no.8,
pp. 3959–3968, Aug.2009.

[5] D. R. Fuhrmann and G. S. Antonio, “Transmit beamforming for MIMO
radar systems using partial signal correlation,” in Proc. 38th IEEE
Asilomar Conf. Signals, Syst., Comput., CA, USA, pp. 295–299, Nov.
2004.

[6] ——–, “Transmit Beamforming for MIMO Radar Systems using Signal
Cross-Correlation,” IEEE Trans. Aerosp. Electron. Syst., vol.44., no.1,
pp. 171–186, Jan.2008.

[7] J. Lofberg, “YALMIP: A Toolbox for Modeling and Optimization in
MATLAB,” In Proceedings of the CACSD Conference, Taipei, Taiwan,
pp.284-289, Sept. 2004.

[8] M. Kisialiou, X.-D. Luo and Z.-Q. Luo, “Quasi-Maximum-Likelihood
Detection Based on Semidefinite Relaxation: Analysis and Implementa-
tion,” IEEE Trans. Signal Process., June 2009.

2773


