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Abstract. Though group signature schemes with efficient membership
revocation were proposed, the previous schemes force a member to ob-
tain a public membership information of O(`nN) bits, where `n is the
length of the RSA modulus and N is the number of members joining and
removed. In the scheme proposed in this paper, the public membership
information has only K bits, where K is the number of members’ joining.
Then, for groups with a reasonable size that is comparable to the RSA
modulus size (e.g., about 1000 members for 1024 bit RSA modulus), the
public membership information is a single small value only, while the
signing/verification also remains efficient.
Keywords. Group signature scheme, Membership revocation, Strong
RSA assumption, Zero-knowledge proof of integer relations

1 Introduction

1.1 Backgrounds

A group signature scheme allows a group member to anonymously sign a mes-
sage on behalf of a group, where, in addition, a membership manager (MM)
and an opening manager (OM) participate. MM has the authority to add a
user into the group, and OM has the authority to revoke the anonymity of a
signature. Since the scheme allows us to anonymously verify user’s ownership of
some privilege, it is applied to various cryptographic protocols such as anony-
mous credential system [6]. On the other hand, various group signature schemes
are also proposed [10, 5, 1, 4, 2, 7, 12], with the improvements of efficiency, secu-
rity and convenience. The breakthrough is achieved in [5]. In this scheme, the
efficiency of the public key and signatures is independent from the group size,
and furthermore an entity’s joining has no influence on other member. The fol-
lowers [1, 4, 2, 7, 12] also have these good characteristics. In both the efficiency
and the provably unforgeability, the state-of-the-art scheme is due to Ateniese
et al. [1], followed by [2, 7, 12].

The essential idea in this type of schemes is the use of the membership
certificate. MM issues a membership certificate to the joining member, where



the certificate is MM ’s digital signature. Then, the group signature is a non-
interactive zero-knowledge proof of knowledge of this certificate. Since the group
signature has no relation with the other members, this idea provides the above
good characteristics. However, on the other hand, this idea prevents a member
from being easily removed from the group, since it is hard to erase the issued
membership certificate in the removed member’s environment without physical
device’s help. One plausible solution is to reissue certificates of all the members
except the removed one by changing MM ’s public key of the digital signature,
as [2]. However, the loads of unrelated members are too large.

1.2 Previous Works

Recently, some schemes [4, 2, 7, 12] deal with this problem of the membership re-
vocation. However, in the first schemes [4, 2], signing and/or verification requires
a computation that is linear in the number of removed members.

In [7], an elegant approach using a dynamic accumulator is proposed, which
is followed by [12] with the efficiency improvement. The accumulator allows
MM to hash a large set of effective certificates into a short value. In the group
signature, the signer has to prove that own certificate is accumulated into the
short value. Therefore, signing/verification is efficient, since the computation is
independent from the number of the joining and removed members. However,
whenever making a signature, the signer has to modify a secret key for the
accumulator. Though the modification is performed efficiently, it requires cer-
tificates of joining and removed members since the last time he signed. To obtain
the certificates, the signer must fetch the certificates of all joining and removed
members from a public directory with the list of the certificates, as pointed out
in [2]. This is because fetching a part of the list can reveal the information to
trace the signer. The fetched public membership information has O(`nN) bits,
where `n is the length of the RSA modulus and N is the number of members
joining and removed, since each certificate has about `n bits. This communica-
tion cost is vast, and therefore those schemes are not a complete solution for
efficient membership revocation.

1.3 Our Contributions

In this paper, we propose a group signature scheme with efficient membership
revocation, where the public membership information has only K bits, where
K is the number of members’ joining. The information is only a composition
of the group, where each bit indicates that a member is joining but not re-
moved. Namely, the information includes no certificate. Then, for reasonable
groups with a size that is comparable to the RSA modulus size (e.g., less than
about 1000 members for 1024 bit RSA modulus), the public membership infor-
mation falls in a single value that is comparable to the modulus. Though the
signing/verification in our scheme utilizes a zero-knowledge proof of knowledge
w.r.t. this membership information for realizing the efficient revocation, this
proof’s cost has no dependency on the number of joining and removed members,



due to the public membership information with the reasonable size. Therefore,
the signing/verification remains efficient. Furthermore, at each revocation, MM
only has to perform a simple bit operation and the signer needs no modification
of own secret key. On the other hand, for larger groups, the proposed scheme
requires the signing/verification cost related to O(K/`n). Note that, for such
larger groups, the accumulator-based schemes also have a problem of enormous
public information with the size O(`nN).

2 Model

We show a model of group signature scheme with membership revocation.

Definition 1. A group signature scheme with membership revocation consists
of the following procedures:

Setup: MM and OM generate the general public key and their secret keys.
Join: MM issues a membership certificate for a membership secret chosen by

a user joining a group. In addition, MM authentically publishes a public
membership information that reflects the current members in the group such
that the joining user belongs to the group.

Membership revocation: MM authentically publishes the public membership
information that reflects the current members in the group such that the
removed user does not belong to the group. Note that OM , unrelated members
and even the removed member do not participate in this procedure.

Sign: Given a message, a group member with a membership secret and its mem-
bership certificate generates the signature for the message w.r.t. the public
key and public membership information.

Verify: A verifier checks whether a signature for a message is made by a member
in the group w.r.t. the public key and public membership information.

Open: Given a signature, OM with his secret specifies the identity of the signer.

Definition 2. A secure group signature scheme with membership revocation sat-
isfies the following properties:

Unforgeability: Only a member in the group, which is indicated by the public
membership information, can generate a valid signature.

Coalition-resistance: Colluding members including removed members cannot
generate a valid membership certificate that MM did not generate, even if
the members adaptively obtained valid certificates from MM .

Anonymity: Given a signature, it is infeasible that anyone, except the signer
and OM , identifies the signer.

Unlinkability: Given two signatures, it is infeasible that anyone, except the
signers and OM , determines whether the signatures ware made by the same
signer.

No framing: Even if MM , OM , and members collude, they cannot sign on
behalf of a non-involved member.

Traceability: OM is always able to open a valid signature and identify the
signer.



3 Preliminaries

3.1 Assumptions and Notations

Our scheme is based on the strong RSA assumption and decisional Diffie-Hellman
(DDH) assumption, as well as the state-of-the-art group signature scheme [1]

Assumption 1 (Strong RSA assumption) Let n = pq be an RSA modulus,
and let G be a cyclic subgroup of Z∗n. Then, for all probabilistic polynomial-time
algorithm A, the probability that A on inputs n and z ∈ G outputs e ∈ Z s.t.
e > 1 and u ∈ G satisfying z = ue (mod n) is negligible.

Intuitively, the DDH assumption means the infeasibility to decide whether
the discrete logs of two random elements in G to the random bases are the same.
When n = pq is an RSA modulus for safe primes p, q (i.e., p = 2p′+1, q = 2q′+1,
and p, q, p′, q′ are prime), let QR(n) be the set of quadratic residues modulo n,
that is, the cyclic subgroup of Z∗n generated by an element of order p′q′. As well
as the scheme due to Ateniese et al., we assume that QR(n) satisfies the above
both assumptions.
Notations: Let [a, a + d] be an integer interval of all integers int such that
a ≤ int ≤ a + d, for an integer a and a positive integer d. We additionally use
notation [a, a+d) for all int such that a ≤ int < a+d, and notation (a, a+d) for
all int such that a < int < a + d. Let ∈R denote the uniform random selection.

3.2 Camenisch-Lysyanskaya Signature Scheme for blocks of
messages

Our group signature scheme is based on the ordinary (not group) signature due
to Camenisch and Lysyanskaya [8] under the strong RSA assumption, which is
an extension from the signature used as a membership certificate in Ateniese et
al.’s scheme [1].

Key generation: Let `n, `m, `s, `e, ` be security parameters s.t. `s ≥ `n+`m+`,
`e ≥ `m + 2 and ` is sufficiently large (e.g., 160). The secret key consists of
safe primes p, q, and the public key consists of n = pq of length `n and
a1, . . . , aL, b, c ∈R QR(n), where L is the number of blocks.

Signing: Given messages m1, . . . , mL ∈ [0, 2`m), choose s ∈R [0, 2`s) and a
random prime e from (2`e−1, 2`e). Compute A s.t. A = (am1

1 · · · amL

L bsc)1/e.
The signature is (s, e, A).

Verification: Given messages m1, . . . ,mL ∈ [0, 2`m) and the signature (s, e, A),
check Ae = am1

1 · · · amL

L bsc and e ∈ (2`e−1, 2`e).

Remark 1. The unforgeability of this scheme means that, given signatures of
messages, an adversary cannot forge a signature of new messages. On the other
hand, it allows that, given a signature of messages, the adversary can compute
another signature of the same messages. Namely, given a messages-signature tu-
ple (m1, . . . ,mL, s, e, A), we can compute another signature (s′, e, A′) for m1,
. . . , mL, by s′ = s + ke and A′ = Abk for k ∈ Z, since A′e = (Abk)e =
am1
1 · · · amL

L bscbke = am1
1 · · · amL

L bs′c.



3.3 Commitment Scheme

A commitment scheme on QR(n) is proposed by Damg̊ard and Fujisaki [11],un-
der the strong RSA assumption. The following is a slightly modified version due
to Camenisch and Lysyanskaya [8].

Key generation: The public key consists of a secure RSA modulus n of length
`n, h from QR(n), and g from the group generated by h.

Commitment: For the public key, input x of length `x, and randomness r ∈ Zn,
the commitment C is computed as C = gxhr.

3.4 Signatures of Knowledge

As main building blocks, we use signatures converted from honest-verifier zero-
knowledge proofs of knowledge, which are called as signatures of knowledge. We
abbreviate them as SPKs. The SPKs are denoted as

SPK{(α, β, . . .) : R(α, β, . . .)}(m),

which means the signature for message m by a signer with the secret knowledge
α, β, . . . satisfying the relation R(α, β, . . .).

The proofs used in our scheme show the relations among secret representa-
tions of elements in QR(n) with unknown order. The simple SPK proves the
knowledge of a representation [11]. We furthermore use the SPK of representa-
tions with equal parts, SPK of a representation with parts in intervals [9], and
SPK of a representation with a non-negative part [3].

SPK of representation: An SPK proving the knowledge of a representation
of C ∈ QR(n) to the bases g1, g2, . . . , gt ∈ QR(n) on message m is denoted
as

SPK{(α1, . . . , αt) : C = gα1
1 · · · gαt

t }(m).

In this SPK (including the following SPKs), the assurance of C ∈ QR(n) is
required for the soundness, but verifiers who do not know the factorization
of n cannot check whether an element of Z∗n is a quadratic residue. Hence,
instead the above SPK, we use

SPK{(α1, . . . , αt) : C2 = (g2
1)α1 · · · (g2

t )αt}(m),

for such verifiers, as [6]. Then, the soundness is ensured such that (α1, . . . , αt)
satisfies C2 = (g2

1)α1 · · · (g2
t )αt , but it does not necessarily imply C = gα1

1 · · · gαt
t .

SPK of representations with equal parts: An SPK proving the knowledge
of representations of C,C ′ ∈ QR(n) to the bases g1, . . . , gt ∈ QR(n) on mes-
sage m, where the representations include equal values as parts, is denoted
as

SPK{(α1, . . . , αu) : C = g
αj1
i1

· · · gαjv
iv

∧ C ′ = g
αj′

1
i′1

· · · g
αj′

v′
i′
v′
}(m),



where indices i1, . . . iv, i′1, . . . i
′
v′ ∈ {1, . . . , t} refer to the bases g1, . . . , gt, and

indices j1, . . . jv, j′1, . . . j
′
v′ ∈ {1, . . . , u} refer to the secrets α1, . . . , αu. This

SPK is easily obtained by the similar way to the SPK for groups with the
known order (e.g., [9]).

SPK of representation with parts in intervals: An SPK proving the knowl-
edge of a representation of C ∈ QR(n) to the bases g1, . . . , gt ∈ QR(n) on
message m, where the i-th part lies in an interval [a, a + d], is denoted as

SPK{(α1, . . . , αt) : C = gα1
1 · · · gαt

t ∧ αi ∈ [a, a + d]}(m).

For this SPK, two types are known. One is due to Boudot [3], where it
is assured that the knowledge exactly lies in the interval. However, this
SPK needs the computations of about 10 normal SPKs of a representation.
Another type appears in [9] for example, where the integer the prover knows
in fact lies in the narrower interval than the interval the proved knowledge
lies in. However, its efficiency is comparable to that of the normal SPK,
and this is why we use the later type. For αi ∈ [a, a + d] in fact, this SPK

proves the knowledge in [a − 2˜̀
d, a + 2˜̀

d], where ˜̀ is a security parameter
derived from the challenge size and from the security parameter controlling
the statistical zero-knowledge-ness (in practice, ˜̀≈ 160). This SPK can be
easily extended into the SPK for two or more knowledges in intervals, such
as SPK{(α, β) : C = gαhβ ∧ α ∈ [a, a + d] ∧ β ∈ [a′, a′ + d′]}(m).

SPK of representation with non-negative part: An SPK proving the knowl-
edge of a representation of C ∈ QR(n) to the bases g1, . . . , gt ∈ QR(n) on
message m, where the i-th part is not negative integer, is denoted as

SPK{(α1, . . . , αt) : C = gα1
1 · · · gαt

t ∧ αi ≥ 0}(m).

As for this, since we need to prove that the knowledge is exactly 0 and over,
we adopt the SPK due to Boudot [3].

The interactive ones are denoted by substituting PK for SPK.

4 Proposed Scheme

4.1 Idea

The foundation is that a group signature is an SPK of a membership certifi-
cate issued by MM . For simplicity, in the following, we omit the mechanism to
trace the signer. Ateniese et al. [1] propose the state-of-the-art group signature
scheme that is most efficient and provably coalition-resistant against an adap-
tive adversary. In the registration, MM computes an ordinary signature on a
secret x chosen by a joining member, denoted by Sign(x), and MM issues the
member Sign(x) as the membership certificate. Then, the member can compute
his group signature on message M , as SPK{(x, v) : v = Sign(x)}(M).

As the extension, Camenisch and Lysyanskaya [8] propose an ordinary sig-
nature scheme shown in Section 3.2, together with a PK of the signature. In



the scheme, the signer can sign two blocks of messages. Then, by an interactive
protocol in [8], a receiver can obtain a signature from the signer, where one mes-
sage x is known by only the receiver, but another message m is known by both.
Let Sign(x, m) denote the signature on x and m. In the PK shown in [8], the
owner of the signature can prove the knowledge of the signature on the messages
in the zero-knowledge fashion, such as PK{(x,m, v) : v = Sign(x,m)}.

Our scheme effectively utilizes the part m to be signed in the Camenisch-
Lysyanskaya signature scheme for efficient membership revocation. Concretely,
for the i-th member, m = 2i−1 is signed, where only the i-th bit from the LSB
of m is 1. Then, MM issues a joining member the signature on member’s secret
x and the message m, Sign(x,m), as the membership certificate. As the public
membership information, MM publishes m̃ satisfying that, for all j, the j-th bit
is 1 iff the j-th member is joining and not removed. Then, i-th member’s group
signature consists of the SPK of the certificate, and SPK proving that a bit
specified by m in the certificate (i.e., the i-th bit) is 1 in m̃. In fact, the predicate
proved by the latter SPK is that m̃U and m̃L exist such that m̃ = m̃U (2m)+m+
m̃L and 0 ≤ m̃L ≤ m−1. Since a removed member cannot prove this predicate as
shown in Lemma 3 below, the membership revocation is accomplished. Namely,
the group signature on message M is SPK{(x,m, v, m̃U , m̃L) : v = Sign(x,m)∧
m̃ = m̃U (2m) + m + m̃L ∧ 0 ≤ m̃L ≤ m − 1}(M). Note that removing the i-th
member is only the computation of m̃− 2i−1, and it is the very low cost.

Finally we mention the traceability. In the previous scheme, a group signature
includes an ElGamal ciphertext of the certificate v = Sign(x). The decryption
leads to the signer’s identity. On the other hand, in the Camenisch-Lysyanskaya
signature as a certificate, the owner of a certificate v = Sign(x,m) can compute
different certificates of the same x,m. This is why the previous technique is not
applied to our scheme. Thus, our group signature includes an ElGamal ciphertext
of ax

1 for a public a1, while the owner has to register the value with MM . The
decryption of the ciphertext leads to the owner’s identity.

4.2 Proposed Protocols

Setup: Let `n be a security parameter. Then, MM sets up the Camenisch-
Lysyanskaya scheme, i.e., MM computes two (`n/2)-bit safe primes p, q and n =
pq, and chooses a1, a2, b, c ∈R QR(n). Furthermore, he sets up the commitment
scheme on QR(n) to generate g and h. He publishes (n, a1, a2, b, c, g, h) as the
public key, and keeps (p, q) as the secret key. For the Camenisch-Lysyanskaya
scheme, security parameters `x, `m, `e, `s, ` are set s.t. `s ≥ `n + max(`x, `m) + `
and `e ≥ max(`x, `m) + 2. Additionally, we use a security parameter ˜̀ that is
for SPK of intervals as shown in Section 3.4. To simplify the description, we
introduce interval notations as follows: Define S = [0, 2`s), E = (2`e−1, 2`e),X =
[0, 2`x),M = [0, 2`m). Since the following protocols adopt the efficient SPK of
the interval, we need to prepare the narrower intervals Ẽ = [2`e−1+2`e−2, 2`e−1+
2`e−2 + 2`e−3−˜̀], X̃ = [2`x−1, 2`x−1 + 2`x−2−˜̀],M̃ = [2`m−1, 2`m−1 + 2`m−2−˜̀] of
E ,X ,M, respectively. If x ∈ X̃ = [2`x−1, 2`x−1 +2`x−2−˜̀] in fact, the knowledge



proved by the SPK lies in expanded [2`x−1−2`x−2−˜̀2˜̀
, 2`x−1 +2`x−2−˜̀2˜̀], that

is, [2`x−1−2`x−2, 2`x−1 +2`x−2]. Thus, it is confirmed that the knowledge lies in
[0, 2`x) = X . This is the same in case of M,M̃, and similar to the case of E , Ẽ .
The initial public membership information m̃ is set as 0.

On the other hand, OM sets up the ElGamal encryption on QR(n), i.e., OM
chooses a secret key xOM ∈R {0, 1}`n and publishes the public key y = gxOM .

Join and membership revocation: We describe the join protocol for the i-th
user (1 ≤ i ≤ K). We assume K ≤ `m − 2− ˜̀. This protocol is derived from the
interactive protocol shown in [8], as mentioned in Section 4.1. In our scheme, the
membership certificate is (s, e, A) s.t. Ae = ax

1am+2`m−1

2 bsc, where m = 2i−1, e is
a prime from Ẽ ⊂ E and x ∈ X̃ ⊂ X is the user’s secret. Furthermore, note that
m + 2`m−1 ∈ M̃ ⊂M. Thus, (s, e, A) is a Camenisch-Lysyanskaya signature on
messages x and m + 2`m−1. The detail protocol is as follows:

1. The joining user U sends MM C = ax
1 , where x ∈R X̃ . Next, U proves the

knowledge of the secret by PK{α : C = aα
1 ∧ α ∈ X}.

In this step, note that MM can check C ∈ QR(n) and that squaring is not
needed in the PK.

2. For the membership information m = 2i−1, MM computes A = (Caṁ
2 bsc)1/e,

where ṁ = m + 2`m−1, s ∈R S, and e is a random prime from Ẽ , and sends
(s, e, A) to U . Then, note that ṁ ∈ M̃.

3. U obtains the membership certificate (s, e, A) on the membership secret x

and membership information m such that Ae = ax
1am+2`m−1

2 bsc.
4. MM publishes the new public membership information m̃ = m̃ + 2i−1.

On the other hand, the membership revocation is simple as follows: When the
i-th user is removed from the group, MM publishes the new public membership
information m̃ = m̃− 2i−1.

Sign and verify: As mentioned in Section 4.1, the group signature proves
the knowledge of the membership certificate for the membership information
m, and the knowledge m̃U and m̃L satisfying m̃ = m̃U (2m) + m + m̃L and
0 ≤ m̃L ≤ m − 1, which imply m̃ = m̃U (2(ṁ − 2`m−1)) + (ṁ − 2`m−1) + m̃L

and 0 ≤ m̃L ≤ (ṁ − 2`m−1) − 1, for ṁ = m + 2`m−1. The SPK needs squared
bases, since verifiers except MM do not know the factorization of n, as discussed
in Section 3.4. This is why the following SPK proves the knowledge of the
membership certificate, by the knowledge (x, ṁ, s, e, A) satisfying the quadratic
equation A2e = a2x

1 a2ṁ
2 b2sc2. Additionally, the SPK has to prove x ∈ X , ṁ ∈M

and e ∈ E . Furthermore, for the traceability, the group signature contains an
ElGamal ciphertext on a2x

1 and the SPK proves the correctness. The detail
protocol is as follows:

1. Member U signing message M computes CA = gwA,Cw = gwhw̃, Cṁ =
gṁhwṁ , Cm̃U = gm̃U hwm̃U , Cm̃L = gm̃Lhwm̃L , T1 = gwe and T2 = yweax

1 ,
where w, w̃, wṁ, wm̃U , wm̃L , we ∈R Zn.



2. U computes the following SPK:

V = SPK{(α, β, γ, δ, ε, ζ, η, θ, ι, κ, λ, µ, ν, ξ, o, π, ρ) :
c2 = (CA

2)α(1/a2
1)

β(1/a2
2)

γ(1/b2)δ(1/g2)ε ∧ C2
w = (g2)ζ(h2)η

∧1 = (C2
w)α(1/g2)ε(1/h2)θ

∧C2
ṁ = (g2)γ(h2)ι ∧ C2

m̃U
= (g2)κ(h2)λ ∧ C2

m̃L
= (g2)µ(h2)ν

∧T 2
1 = (g2)ξ ∧ T 2

2 = (y2)ξ(a2
1)

β

∧(C4
m̃U

)2
`m−1

(g2)m̃+2`m−1
(1/C2

ṁ)(1/C2
m̃L

) = (C4
m̃U

)γ(h2)o

∧C2
ṁ(1/g2)1+2`m−1

(1/C2
m̃L

) = (g2)π(h2)ρ

∧µ ≥ 0 ∧ π ≥ 0 ∧ α ∈ E ∧ β ∈ X ∧ γ ∈M}(M).

Then, the group signature is (CA, Cw, Cṁ, Cm̃U , Cm̃L , T1, T2, V ). The verification
of the signature is the verification of V . Note that U is allowed to send a negative
value such as T1 = −gwe or T2 = −yweax

1 , since verifiers except MM cannot
check the membership in QR(n). Thus, squared ElGamal encryption (T 2

1 , T 2
2 ) is

used.

Open: OM computes T 2
2 /(T 2

1 )xOM = (ax
1)2 to decrypt the ElGamal ciphertext

(T 2
1 , T 2

2 ). The obtained (ax
1)2 is linkable to the member’s identity. The correctness

is proved by PK{α : T 2
2 /(ax

1)2 = (T 2
1 )α ∧ y2 = (g2)α}.

5 Security

Our membership certificate is a Camenisch-Lysyanskaya signature, but is slightly
modified. Though the original chooses a random prime e from E = (2`e−1, 2`e),
our scheme chooses it from the narrower Ẽ = [2`e−1 + 2`e−2, 2`e−1 + 2`e−2 +
2`e−3−˜̀]. Furthermore, in the security proof, our scheme requires that a forger F ,
who adaptively obtains regular signature (si, ei, Ai = (axi

1 aṁi
2 bsic)1/ei) on chosen

messages xi, ṁ from the signing oracle, tries to output a new tuple (x, ṁ, s, e, A)
satisfying the quadratic equation A2e = a2x

1 a2ṁ
2 b2sc2, due to the squared pred-

icates in SPK V . In the original, F ’s output (x, ṁ, s, e, A) simply satisfies the
regular equation Ae = ax

1aṁ
2 bsc. However, these modifications do not affect the

security proof in [8]. Thus, the following lemma holds:

Lemma 1. Assume the strong RSA assumption. Consider an adversary allowed
to adaptively query the signing oracle about a signature (si, ei, Ai) on messages
xi ∈ X , ṁi ∈M such that Aei

i = axi
1 aṁi

2 bsic, si ∈R S, and ei is a random prime
from Ẽ. Then, it is infeasible that any adversary computes a signature (s, e, A)
on new messages x ∈ X , ṁ ∈M such that A2e = a2x

1 a2ṁ
2 b2sc2 and e ∈ E.

From this lemma, we can obtain the coalition-resistance by the similar proof
as [8].

Theorem 1. Under the strong RSA assumption, the proposed scheme is coalition-
resistant for the adversary who adaptively obtains valid membership certificates
from MM .



Next, we prove the unforgeability, using the following two lemmas.

Lemma 2. Assume the strong RSA assumption. Then, V is an SPK of knowl-
edge (x, ṁ, s, e,A, m̃U , m̃L, we) s.t. A2e = a2x

1 a2ṁ
2 b2sc2, e ∈ E, x ∈ X , ṁ ∈ M,

T 2
1 = (g2)we , T 2

2 = (y2)we(ax
1)2, m̃ = m̃U (2(ṁ − 2`m−1)) + (ṁ − 2`m−1) + m̃L

and 0 ≤ m̃L ≤ (ṁ− 2`m−1)− 1.

Proof sketch. Only the soundness is discussed. By the similar way to [8], from
the SPK V , we can extract the knowledge of (x = β, ṁ = γ, s = δ, e = α, A =
CA/gζ , we = ξ) such that A2e = a2x

1 a2ṁ
2 b2sc2, e ∈ E , x ∈ X , ṁ ∈ M, T 2

1 =
(g2)we and T 2

2 = (y2)we(a2
1)

x.
From the SPK for the predicates

C2
ṁ = (g2)γ(h2)ι, C2

m̃U
= (g2)κ(h2)λ, C2

m̃L
= (g2)µ(h2)ν , and

(C4
m̃U

)2
`m−1

(g2)m̃+2`m−1
(1/C2

ṁ)(1/C2
m̃L

) = (C4
m̃U

)γ(h2)o,

by substituting the first three equations for the left hand in the last equation,
the left hand is equal to (g2)2κ2`m−1+m̃+2`m−1−γ−µ(h2)2λ2`m−1−ι−ν . On the other
hand, the right hand is equal to (g2)2κγ(h2)2λγ+o. Thus, we can obtain the
equation 2κ2`m−1 + m̃+2`m−1−γ−µ = 2κγ (mod p′q′). Then, from the RSA
assumption, the equation holds as integer equation. Thus, m̃ = κ ·2(γ−2`m−1)+
γ−2`m−1 +µ holds, where γ = ṁ and κ, µ corresponds to m̃U , m̃L, respectively.

Similarly, from the SPK for C2
ṁ(1/g2)1+2`m−1

(1/C2
m̃L

) = (g2)π(h2)ρ, we
can obtain (g2)γ(h2)ι(1/g2)1+2`m−1

(1/((g2)µ(h2)ν)) = (g2)π(h2)ρ. Then, from
(g2)γ−1−2`m−1−µ(h2)ι−ν = (g2)π(h2)ρ, γ − 1 − 2`m−1 − µ = π holds as integer
equation. Since the SPK V proves π ≥ 0, the inequation γ − 1− 2`m−1 − µ ≥ 0
holds and thus µ ≤ γ − 2`m−1 − 1. Furthermore, the SPK proves µ ≥ 0, and
finally we obtain 0 ≤ µ ≤ γ − 2`m−1 − 1, that is, 0 ≤ m̃L ≤ ṁ− 2`m−1 − 1. ut
Lemma 3. Let m̃ =

∑K−1
j=0 2jm̄j for K, where m̄j ∈ {0, 1}. Then, m̃U and m̃L

exist s.t. m̃ = m̃U2i +2i−1 +m̃L and 0 ≤ m̃L ≤ 2i−1−1 if and only if m̄i−1 = 1.

Proof. Since the if part is straightforward, we prove the only if part. Then,
m̃U and m̃L exist s.t. m̃ = m̃U2i + 2i−1 + m̃L and 0 ≤ m̃L ≤ 2i−1 − 1. For
the contradiction, assume m̄i−1 = 0. Then, m̃ =

∑i−2
j=0 2jm̄j +

∑K−1
j=i 2jm̄j ,

and thus m̃ =
∑i−2

j=0 2jm̄j + 2i
∑K−i−1

j=0 2jm̄j+i. Let m̂U =
∑K−i−1

j=0 2jm̄j+i,
and m̂L =

∑i−2
j=0 2jm̄j . Then, m̃ = m̂U2i + m̂L, and 0 ≤ m̂L ≤ 2i−1 − 1. Set

D := m̃U2i + 2i−1 + m̃L − m̃. Then, D = (m̃U − m̂U )2i + 2i−1 + m̃L − m̂L.
Consider the case of m̃U ≥ m̂U . Because of m̃U − m̂U ≥ 0 and m̃L ≥ 0,

(m̃U − m̂U )2i + 2i−1 + m̃L ≥ 2i−1 holds. Thus, because of m̂L ≤ 2i−1 − 1, we
can obtain D > 0, which contradicts D = 0, i.e., m̃ = m̃U2i + 2i−1 + m̃L.

Consider the case of m̃U < m̂U . This implies (m̃U − m̂U )2i − m̂L ≤ −2i,
because of m̂L ≥ 0. Thus, (m̃U − m̂U )2i + 2i−1 − m̂L ≤ −2i−1 holds. Therefore,
because of m̃L ≤ 2i−1 − 1, we can obtain D < 0, which also contradicts D = 0.
Therefore, m̄i−1 = 1 must hold. ut



Theorem 2. Under the strong RSA assumption, the proposed scheme satisfies
the unforgeability.

Proof. For signing, the signer must know the certificate (s, e ∈ E , A) on x ∈
X , ṁ ∈M s.t. A2e = a2x

1 a2ṁ
2 b2sc2, owing to SPK V , as stated by Lemma 2. On

the other hand, from Theorem 1, such a certificate is unforgeable even if valid
members collude. Therefore, before signing, the signer must have conducted the
join protocol with MM , which implies that the signer is a member.

In the rest, we show that a removed member with the certificate w.r.t. ṁ =
2i−1 + 2`m−1 cannot compute a valid SPK V . In the certificate generated by
MM , ṁ = 2i−1 + 2`m−1 is assured. On the other hand, SPK V proves the
knowledge of (m̃U , m̃L) such that m̃ = m̃U (2(ṁ− 2`m−1)) + (ṁ− 2`m−1) + m̃L

and 0 ≤ m̃L ≤ (ṁ− 2`m−1)− 1. By substituting ṁ, this implies the knowledge
of (m̃U , m̃L) such that m̃ = m̃U (2 · 2i−1) + 2i−1 + m̃L and 0 ≤ m̃L ≤ 2i−1 − 1.
However, Lemma 3 claims that such a knowledge does not exist, if the i-th bit
in m̃ (i.e., m̄i−1) is 0, which implies that the member is removed. Therefore, the
removed member cannot compute a valid SPK V . ut

Finally, we simply discuss the other requirements. Anonymity and unlinka-
bility hold, because of the the zero-knowledge-ness of SPK V and the secrecy
of the ElGamal encryption and the commitment scheme, as well as the original
group signature [1]. No framing is also satisfied, since the SPK V proves the
knowledge of x, which is kept secret for others (even MM), owing to the PK
in the join protocol and the SPK V . Traceability is satisfied as follows: Since
V proves that (T 2

1 , T 2
2 ) is an ElGamal ciphertext of (ax

1)2, which is shown in
Lemma 2, openning the group signature produces (ax

1)2. On the other hand, V
proves the knowledge of the certificate A of the x, and the unforgeability of the
A implies that the owner registered the ax

1 . Therefore, the (ax
1)2 is linkable to

the owner.

6 Efficiency

The signing/verification cost of our scheme depends on `m, i.e., K that is the
maximum number of members’ joining. At first, consider the case of `m ≈ `n.
In this case, our scheme allows about 1000 members, if `n is standard 1024.
Then, the exponent length is all comparable to `n, and signing and verifica-
tion require 31 and 18 multi-exponentiations respectively, on such an exponent
length. Note that, in the state-of-the-art scheme [1] with no revocation, sign-
ing and verification require 5 and 3 multi-exponentiations, respectively. In the
accumulator-based scheme [7] with revocation, signing and verification require
14 and 8 multi-exponentiations, respectively. The accumulator-based scheme [12]
is slightly better. However, the schemes based on the accumulator require the
modification of signer’s secret key whenever signing, and the size of public mem-
bership information is O(`nN), where N is the number of joining and removed
members. On the other hand, our scheme needs no modification of signer’s secret
key, and the public membership information is only m̃ with the length O(`n).



For example, consider the case of N,K = 1000 and `n = 1024. Though the
size of the public membership information in the accumulator-based schemes is
about 100 KBytes, the size in our scheme is about 100 Bytes only.

Next, consider the case of `m À `n, namely much more members joining than
`n. Then, the computation and communication costs of signing/verification in
our scheme are O(K/`n). If `n = 1024, the feasible number of members’ joining
is the order of 1000. For such larger groups, note that the accumulator-based
schemes also have a serious problem: It suffers from the long public information.
In case of N = 10000 and `n = 1024, the size of the information amounts to
more than 1 MBytes.
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