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Abstract

It is inevitable to capture a portion of iris images with
motion blur during iris recognition. The texture details
on iris patterns are lost in motion blurred images so it
may cause recognition performance degradation. This pa-
per presents a first systematic study on the issue of motion
blurred iris image recognition. Firstly, the reason of gener-
ating motion blurred iris images is analyzed. Secondly, the
influence of the strength and the direction of motion blur
on the accuracy of iris recognition is quantitatively inves-
tigated. Thirdly, we propose two solutions which can be
used separately or jointly to improve recognition accuracy
on motion blurred iris images. The first solution is a deblur-
ring method in preprocessing stage and the other is a mo-
tion blur weight map with two generation methods in match-
ing stage. Experimental results on both synthetic and real-
world motion blurred iris image databases demonstrate the
effectiveness and efficiency of our methods.

1. Introduction

Recognition of motion blurred iris images is an in-
evitable problem in iris biometrics. There are three parts
in a systematic study of motion blurred iris image recogni-
tion as shown in Figure 1. This issue is not well addressed
in the literature. Because the fundamental part, i.e., the in-
fluence of motion blur on iris recognition performance has
not been quantitatively investigated and analyzed in details.
Moreover, the current solutions to motion blurred iris im-
age recognition usually follow an intuitive idea, i.e., restor-
ing images [15] before recognition. In current iris image
deblurring methods, blurring kernels are always assumed to
follow parametric models, which is too simplified for the
real world motion blur. Apart from image deblurring, there
is actually another approach to this problem. It is to develop
a feature extraction algorithm or a matching strategy which

Figure 1. Three parts of the systematic study of motion blurred iris
image recognition.

is robust to motion blurred iris images. Therefore, the ex-
tracted features or the generated matching scores can be less
influenced by motion blur. They can be not only used sep-
arately but also incorporated with a restoration method for
further performance improvement.

This paper aims to present a systematic study on recog-
nition of motion blurred iris images. Firstly, the reason
and model of generating motion blurred iris images are an-
alyzed. Secondly, the relationship between iris image blur-
ring and iris recognition performance is investigated and its
primary explanations are also provided. They are treated
as the foundation of our proposals for recognizing motion
blurred iris images. Thirdly, we propose a novel Matching
Scheme incorporating Deblurring and Blurmask (MSDB)
as a comprehensive solution for motion blurred iris image
recognition. MSDB is conducted in two stages, i.e., image
restoration in the preprocessing stage and a blurmask strat-
egy in the matching stage. Our deblurring method takes ad-
vantages of both the two-phase structure and the distinctive
characteristics of iris images. It is performed in the selected
filter domain rather than the pixel domain, which guarantees
efficiency and robustness. Meanwhile, the blurmask adap-
tively weights each bit in iris code based on its blur situation
instead of directly discarding the unreliable regions with in-
formation loss. From different perspectives, two mask gen-
eration methods are proposed according to whether there



are available training samples. Experiments on both syn-
thetic and real-world databases show that these two solu-
tions of MSDB can be used separately or jointly to improve
recognition performance on motion blurred iris images.

The remainder of this paper is organized as follows. In
Section 2 background is introduced. In Section 3 the influ-
ence of motion blur on iris recognition is studied. Section 4
and Section 5 present preprocessing-level and matching-
level solutions to recognizing motion blurred iris images
respectively. The experimental results are illustrated in Sec-
tion 6. Section 7 concludes this paper.

2. Background
Given a clear image I , space-invariant blurring can be

modeled as a convolution process [9],

B = I ⊗ f + n, (1)

where B and n represent the blurred image and additive
noise, respectively. ⊗ denotes the convolution operator, and
f is the point spread function (PSF), namely blurring kernel.
Its inverse procedure is the deblurring problem which can
be optimized by alternatively solving the equations as [3]

f̂ = argmin
f

Φ(I ⊗ f −B) + αΘ1(f), (2a)

Î = argmin
I

Φ(I ⊗ f −B) + βΘ2(I), (2b)

where Φ(I ⊗ f −B) is the fidelity term, Θ1(f) and Θ2(I)
denote the regularization terms on f and I , respectively. α
and β are the regularization parameters.

2.1. Related work

Nature-scene deblurring methods have been extensively
investigated in the literature, however directly using them
on blurred iris images can not guarantee the performance
improvement due to the unique characteristics of iris im-
ages. To this end, some restoration algorithms [13, 14, 15,
18] are proposed particularly for iris images. Among them,
the parametric model of motion blur is defined as

fmot(x, y) =


1
d if x2 + y2 < d2 and

x sin(θ) = y cos(θ)

0 otherwise,
(3)

where θ and d represent the direction and the length of mo-
tion blur, respectively. This fixed kernel form is always too
specific to characterize the actual blurring reasons resulting
in degraded outputs. Even worse, the parameters are ba-
sically estimated from visual appearances, which not only
narrows the range of applications but also brings down the
reliability.

The robust feature extraction methods for iris recogni-
tion have been widely studied, while not enough attention

is paid to the feature matching with weight maps in the lit-
erature [7, 12]. These weighting strategies are supposed to
mainly focus on the quantization error [7] and personality
[12] rather than low-quality iris images.

3. A study of the influence of motion blur on
iris recognition performance

In this section, we discuss the relationship between blur-
ring situation and recognition accuracy, which is not only
essential but also very helpful in developing a robust match-
ing scheme against motion blur. To fully exploit this po-
tential relationship, experiments on both synthetic and real-
world datasets are conducted in the following sections.

3.1. Iris recognition performance as a function of
the strength of motion blur

To report real-world performance, genuine iris image
databases with motion blur which are detailed in Section 6
are applied for the evaluation, and the results are shown in
Figure 3 (a). It is clear that recognition performance with
presence of motion blur drops significantly. However, it is
challenging to separately investigate the influence of motion
blur strength and orientation on recognition performance,
because motion blurred iris images with controlled param-
eters can be hardly captured. Therefore, it is better to syn-
thetically generate blurred iris image datasets to quantita-
tively investigate the degradation of iris recognition perfor-
mance with motion blur. We select 1,214 clear iris images
Ii(x, y), i = 1, 2, . . . , 1214 from ICE [1] for this assess-
ment. ICE database [1] is applied because it almost only
contains one covariate, namely defocus blur which can be
easily eliminated via focus value estimation [6]. By the
nature of blurring model in Equation (1), Ii is artificially
blurred by convolving with the desired PSFs, as Ii ⊗ fmot.
Afterwards, it is localized and normalized (NOR(·)) into
ymax (height) × xmax (width). This type of blur genera-
tion INB = NOR(Ii ⊗ fmot) simulates the distortion in
real world, and is denoted as Type 2 blur generation which
is red in Figure 2. The examples of unwrapped original im-
age NOR(Ii) and INB are shown in Figure 2 (a) and (c).

(a) (b)

Figure 3. (a) Experimental results without and with motion blur
on real-world datasets. (b) Experimental results with increasing
degree of motion blur on synthetic datasets.



Figure 2. The flowchart of two types of blur generation for iris images. (a) A normalized clear iris image. (b) Type 1. Synthetic blur on
normalized image, IBN with θ = 0. (c) Type 2. A normalized version of blurred image, INB with θ = 0.

The applied iris recognition algorithm is based on ordi-
nal measures (OM) [20] which are state-of-the-art image
descriptors for encoding discriminative features of iris im-
ages. Equal error rate (EER) refers to the point in receiver
operating characteristic (ROC) curve when false accept rate
(FAR) is equal to false reject rate (FRR). It is employed
as the quantitative measurement of iris recognition perfor-
mance. Iris recognition performance as a function of the
strength of motion blur is shown in Figure 3 (b). The ex-
perimental results show that motion blurred iris images de-
grade recognition performance more significantly with the
increasing of d.

3.2. Iris recognition performance as a function of
the orientation of motion blur

To directly investigate the performance variation in term
of θ in a quantitative way, blur is synthesized after nor-
malization IiBN = fθ

mot ⊗ NOR(Ii), which is the Type
1 of blur generation shown in Figure 2. The applied PSFs
fθ
mot have a fixed length d and different θ. An example

with θ = 0 can be found in Figure 2 (b). The recogni-
tion results with different directions of motion blur are il-
lustrated in Figure 4 (a). Here, the blue dotted line indicates
the recognition result of selected clear images, meanwhile
the red solid line corresponds to the experiments by using
the generated datasets with different fθ

mot. Some observa-
tions and analyses are provided as follows.

Observation 1. It can be seen that recognition accuracy
varies according to different motion directions even if d is
fixed. The explanations are as follows: The distinguish-
able information of a normalized iris image is mostly con-
veyed in horizontal direction rather than vertical direction.
Therefore, when the orientation of motion blur is close to
0◦/180◦, the preserved information of an iris image will
be damaged dramatically resulting in a sharply decreasing
recognition accuracy.

Observation 2. Blur makes different influences on gen-
uine and imposter matching. 1) Blur aggravates the vari-
ations of different images captured from the same iris.
It enlarges the dissimilarities between intra-class samples.
A validation can be found from the experimental results
shown in Figure 4 (b), where the mean value of genuine
matching distances changes with different θ. 2) Although

the mean value of imposter matching distances is stable,
their distribution is found to be flattened when motion
blurred iris images are used, as shown in Figure 4 (c) and
(d). The larger deviation indicates a smaller (degrees-of-
freedom) DOF [5], which means that the uniqueness of our
iris code is undermined causing performance degradation.
The nature of blurring model in Equation (1) takes respon-
sibility for this observation, because the convolved pixels
are essentially determined by its neighboring regions caus-
ing the increased inherent correlations within an iris code.

4. Iris image deblurring
In this section, a deblurring algorithm is developed as

the solution in preprocessing stage. It employs a coarse-to-
fine framework including coarse kernel estimation and im-
age deblurring, where PSF is modeled on parametric-level
and pixel-level respectively. This combination brings in the
advantages of both models, i.e., simplicity and accuracy.
The coarse estimation provides a reasonable starting point
and helps image restoration apart from computationally ex-
pensive iterations. Although it can be hardly obtained in
nature scene applications due to the limited prior informa-
tion, the distinct characteristics of iris images facilitate this
coarse estimation in our application. In image deblurring,
reliable region detection (RRD) makes full use of the par-
ticular analysis of iris images. Compared with nature-scene
deblurring methods, RRD-based algorithm in filter domain
[8] ensures higher levels of efficiency and reliability.

4.1. Framework

Since the initialized PSF will be subsequently refined,
the parametric kernel model is first adopted with the empha-
sis on efficiency. It turns coarse kernel initialization into the
determination of θ and d in Equation (3). From Figure 1, it
is apparent that the shape of reflection on pupil generally re-
veals the blurring reason. Therefore, this morphology infor-
mation is applied to determine the motion blur parameters
via directional filters and pre-trained relationships between
lengths of reflection and motion blur. Actually, the shape
information of corneal reflections is widely adopted in iris
recognition applications and also theoretically analyzed in
[10]. Even if the reflection-based method fails in some ap-
plications, I-IQA [17] can also be applied as substitution.



(a) (b) (c) (d)

Figure 4. (a) Recognition results with different directions of motion blur. (b) Varying mean values of genuine and imposter matching
distances (where µpos(Blurvs.Clear) are occluded by µpos(Clearvs.Clear)). (c) The distributions of genuine and imposter matching
distances on clear iris images. (d) The distributions of genuine and imposter matching distances on blurred iris images.

After initialization, PSF turns to be modeled on pixel-
level rather than characterized by θ and d, thus its form is
flexible enough to truly express the blurring reason. Tradi-
tional deblurring methods always predict the clear image by
using complicated prior and exclude the detrimental struc-
tures [4] in an iterative way. These two kinds of optimiza-
tions are actually guessing procedures which not only are
time consuming but also inevitably introduce spurious in-
formation. However, reliability and efficiency are signifi-
cant for iris recognition. We solve this problem by means
of detecting the reliable regions in the filter domain to guide
the alternative optimization of I and f .

4.2. Deblurring based on reliable region detection

The outliers are pixels which can not be modeled as
Equation (1), thus they certainly deteriorate image deblur-
ring based on this model. In iris images, they principally
consist of the overflow regions due to the saturated inten-
sities. Although they can be easily excluded in PSF es-
timation, severe ringing artifacts will be presented in the
estimated clear image [4]. Fortunately, overflow regions
in iris images can be filled by specular reflection removal
method [11]. Afterwards, reliable region detection is ap-
plied to find the regions benefitting kernel estimation. The
estimation in filter domain is more efficient [8], which en-
courages the use of gradient images for RRD. Significant
edges are helpful to estimate the PSF [16], but two edges
within a smaller distance than the scale of PSF will in-
crease the estimation ambiguity. That is to say the elements
with large gradient except the regions of dense and multiple
edges, i.e., eyelashes regions in iris images, are suggested
to be selected into the set Si+1

fd in (i + 1)-th iteration as
RRDfd(I) : S

i+1
fd ← {j : kij > ts

∩
maskj = 1}, where

j indexes the gradients ki of I . ts is configured by applying
the quartile to form the partial support. mask denotes the
segmentation result [11] indicating eyelids.

With the detected regions RRDfd(I), the reliable re-
gions in blurred image B is selected by marking large-value

elements in the convolution of I and f , as RRDB(B) :
Sb ← {j : (I ⊗ f)j > th}. Since iris image segmenta-
tion and reflection removal [11] are robust and necessary for
recognition, RRD can improve restoration reliability with-
out sacrificing efficiency.

Given the selected regions by RRD, the filter domain es-
timation is applied to totally capture the spatial randomness
of noise [19]. After iterations, the final restored image can
be obtained by alternatively optimizing Equation (2). The
fidelity term Φ(I ⊗ f −B) in Equation (2) can be rewritten
into

Φ =
∑
i

ωi∥RRDI(∂iI)⊗ f −RRDB(∂iB)∥2, (4)

where ∂i ∈ {∂x, ∂y, ∂xx, ∂yy, ∂xy} and ωi ∈
{ωx, ωy, ωxx, ωyy, ωxy} denote the partial derivative
operator and weight in different directions and orders.
The regularization terms of f and I take the forms of
∥△f∥2 = ∥fi − fi−1∥2 and ∥∇I∥2, respectively.

5. Matching strategy based on blurmask
The increasing tendency of inherent correlations within

iris code can be alleviated after restoration, since the blurred
iris images are deconvolved. However, some images de-
graded by large PSF still can not be totally restored. The
results to be presented in Section 6 show the performance
after restoration still has potential to be further improved. It
is undoubtedly a support to the requirement of an advanced
matching strategy as a complementary solution to the prob-
lem of motion blurred iris image recognition.

Iris feature codes are usually represented using binary
strings. As a traditional dissimilarity measurement, Ham-
ming Distance HD between a registered iris code codeX
and a query iris code codeY is written as

HDAB =∥ XOR(CodeX , CodeY ) ∥, (5)

where XOR is the exclusive-OR operator. This matching
strategy treats the iris texture patterns with different motion



situations equally, however recognition accuracy varies in
term of motion blur direction. Therefore, it is certainly not
optimal for matching motion blurred iris images. The im-
provement of blurmask BMY for the query iris code codeY
is to adaptively set each bit a weight according to its blur-
ring situation. Since the registered codeX is usually derived
from an image of high quality, only BMY is introduced to
the matching function as follows:

HDAB =∥ XOR(CodeX , CodeY )×BMY ∥, (6)

Before the calculation of blurmask, the blurring infor-
mation θ and d are firstly updated by using the directional
filters and measuring the length along main direction on the
refined PSF, since the initial PSF characterized by θ and d
has been refined on pixel level. Afterwards, the updated
θ and d are applied to generate a blurmask dealing with
the remained blurred texture patterns. The way to gener-
ate blurmasks is the key issue of this section. Depending on
whether training samples are used, two different methods
are proposed and will be detailed in the following sections.

5.1. Heuristic blurmask generation

Observation 1 in Section 3 reveals that the horizontally
blurred region (REGhb) dramatically degrades recognition
performance, thus they are expected to be marked before
the subsequent processes. With REGhb, a heuristic method
is proposed to automatically generate the blurmask without
training samples denoted as ”blurmask-h”.

In Figure 2 (b) and (c), the directions of red arrows gen-
erally show the directions of motion blur suffered by the
corresponding regions. It is apparent that the direction of
PSF in an unwrapped image INB varies regularly with the
horizontal coordinate. Theoretically, this varying pattern
is determined by the normalization method adopted in a
recognition system. Based on this relationship as well as
the motion parameters θ ∈ [0, π] and d on the original im-
age, the calculation of REGθ,d

hb
can be written as

REGθ,d
hb = [

θ0 + θ

2π
ymax − wd,

θ0 + θ

2π
ymax + wd]

∪ [
θ0 + θ + π

2π
ymax − wd,

θ0 + θ + π

2π
ymax + wd],

(7)

where wd = w + d/2 and the blurmask window w ∈
(0, ymax/4) is half of the blurmask size. θ0 is the start-
ing angle in iris normalization methods, and it is π/2 in our
implementation. Here, the horizontal coordinate y in nor-
malized image is treated circularly, i.e., In(x, ymax + y) =
In(x, y). The heuristic blurmask BMh is generated from
the consideration of adaptively strengthening the penalties
of unmatched pixels in REGhb. It is defined as

BMh(x, y) =

{
αθ,d(x, y) (x, y) ∈ REGθ,d

hb

1 others,
(8)

where αθ,d(x, y) is the penalty coefficient. It can be deter-
mined by a variety of considerations resulting in the gener-
alization of MSDB.

5.2. Training­based blurmask generation

Compared with blurmask-h, the generation method pre-
sented in this section can get rid of finding REGhb and de-
signing the penalty coefficient of blurmask when there are
available training samples. This method is proposed from
the perspective of iris code inconsistence [12], the general
stability map P is first calculated and then used to automat-
ically generate the training-based ”blurmask-t”.

Due to the presence of motion blur in iris images, the
stability of iris feature codes decreases. Especially, the bits
with horizontal blur turn to be fragile, i.e., their codes fre-
quently change in different images of the same iris. Sup-
pose Ii, i = 1, 2, . . . , N are training iris images belong-
ing to classes C1, C2, . . . , CNc , and their iris codes are de-
noted by codeI1 , . . . , codeIN . Following the second type of
blur generation, we artificially blur Ii and obtain IiNB with
θ = 0 and d = 15. An example can be found in Figure 2
(c). The samples in the same class with different blurring
situations are matched, and their average result is

P =
1

α
ΣNc

k=1Σi,j∈ckXOR(codeIi , codeIj
NB), (9)

where α = ΣNc

k=1Num2(Ck), Num(Ck) is the number
of images in class Ck. As illustrated in Figure 5, P is
the general stability map with the same size as iris codes.
The bright area in P indicates the reliable region while the
matching results in the dark area are less stable. The bright
and the dark areas are alternatively distributed with a reg-
ular pattern. Compared with Figure 2 (c) and Figure 5, the
dark areas in P are found to share a similar existing pattern
with the heuristically designed REGhb.

Figure 5. The calculated stability map P of iris feature bits.

The stability map P is more precise than REGhb and is
always between 0.5 and 1. To set each coding bit a suitable
penalty based on its stability, we normalize and rotate the
general P to calculate the training-based blurmask BMt as

BMt(x, y) =
αmax − 1

P (x, y + θ
2πymax)

− αmax + 2, (10)

where αmax is the max penalizing value giving the most
severe punishment for unreliable iris feature bits, and the
horizontal coordinate y is also treated circularly. In this
way, α(x, y) is proportional to 1/P (x, y) and belongs to



[1, αmax]. The obtained blurmask is actually BMd=15
t ,

thus a few experiments with motion length d = 5, 10, 20
are required for the whole BMt which can cover a wide
range of blur.

6. Experiments
In this section, the parameters in MSDB are firstly dis-

cussed and set window size w = 24, penalizing coefficients
α = 1.25 and max penalizing value αmax = 1.4 respec-
tively. Afterwards, the deblurring method and the blurmask
strategy in MSDB are separately compared with the previ-
ous iris image deblurring methods to demonstrate the effec-
tiveness of our proposed algorithms. Finally, the deblurring
method and blurmask are combined into the unified MSDB
to verify the further improvement of recognition accuracy.

6.1. Experimental results

Two solutions in MSDB, i.e., restoration and blurmasks,
are firstly compared with the existed deblurring methods re-
spectively, and then they are integrated as the whole MSDB
to show the further improved recognition performance. As
a common criteria, discriminating index (d′) is applied to
represent the separability of genuine and impostor distribu-
tions. It is defined as

d′ = |µpos − µneg|/
√
(σ2

pos + σ2
neg)/2, (11)

where µpos, σpos, µneg and σneg represent the means and
standard deviations of genuine and imposter matching dis-
tributions, respectively.

Synthetic dataset. The previously selected clear images
Ii(x, y), i = 1, 2, . . . , 1214 in ICE [1] are also applied in
this experiment. PSFs with θ ∈ [0, π] and d ∈ [5, 20] are
randomly generated to artificially synthesize motion blurred
databases based on the second type of blur generation ap-
proach. The clear database is used for enrollment, while
blurred images are used for test, denoted as Baseline. As
comparisons, the images deblurred by [15] [18] are applied
to match the registered iris images. They are denoted as
Deblur-[15] and Deblur-[18]. The results by using our pro-
posed deblurring method and blurmask-h/t are denoted as

Table 1. Comparison of recognition performance on the synthetic
and the real-world datasets.

Synthetic data Real-world data
EER (%) d′ EER (%) d′

Baseline 0.391 5.058 0.113 4.881

Deblurring
Kang [15] 0.306 5.187 0.104 4.899
Liu [18] 0.246 5.702 0.060 5.291

Our 0.230 5.723 0.051 5.311
Blurmask-h 0.228 5.721 0.095 5.044
Blurmask-t 0.217 5.730 0.091 5.064

Deblur-our+Blurmask-t 0.163 5.831 0.045 5.324

Deblur-our and Blurmask-h/t. Specially, the results of inte-
grated MSDB, i.e., the integration strategy of our proposed
deblurring method and blurmask-t are also evaluated to ver-
ify the further improvement, called Deblur-our + Blurmask-
t. To estimate the general stability map P , 214 images
are randomly selected as training samples from the original
clear database. These experimental results are illustrated in
Table 1 and Figure 6 (a).

Real dataset. Although there are some databases re-
leased for the study of iris recognition. To the best of
our knowledge, it is difficult to find a public iris image
database that contains only motion blur with no other co-
variates. Therefore, two databases are collected by our-
selves to conduct the succeeding experiments. IrisGuard
H100 [2] is used for data acquisition in our experiments.
The first database contains 266 iris images with different
degrees of motion blur, while the second one contains 141
clear iris images captured from the same eyes in the first
database. The experiments on real-world databases are con-
ducted with the same consideration as the above experiment
on synthetic examples. The randomly selected 41 clear im-
ages are served as training samples for BMt.

From the results shown in Table 1 and Figure 6, sev-
eral observations can be drawn. 1) Our proposed deblur-
ring method outperforms the previous methods in terms of
both EER and d′, since pixel-level PSF model is applied
after initialization and the distinctive prior information of
iris images is exploited. 2) The proposed matching strat-
egy based on blurmasks improves iris recognition perfor-
mance, which validates the effectiveness of blurmask. The
reliability of blurmask is guaranteed by the usage of ob-
served blurring patterns rather than the fragile prior infor-
mation in restoration methods. Since the stability map P
is used, the training-based blurmask-t is more precise than
blurmask-h, resulting in a larger performance improvement.
3) The recognition performance can be further enhanced
when blurmasks are incorporated with the deblurring meth-
ods. It means that the above two solutions not only achieve
the ultimately same goal by different routes so as to make
the recognition system more tolerant to motion blur, but also
are complementary to each other. Additionally, the compu-
tational cost of blurmask is not obviously increased com-
pared with the single restoration algorithm since the motion
direction and length are already identified for restoration.
Therefore, the integrated MSDB is suggested to be incor-
porated into practical recognition systems in less-intrusive
environments.

7. Conclusions
In this paper, a systematic study on recognition of mo-

tion blurred iris images has been presented. The influence
of motion blur for iris recognition is further exploited. The
basic pattern of how and why motion blurred iris images de-



(a) (b) (c) (d)

Figure 6. Comparison of the proposed deblurring algorithm with the existing deblurring methods [15] [18] on (a) the synthetic and (c)
the real-world datasets. Comparison of the proposed blurmasks-h/t with the integration strategy of our proposed deblurring algorithm and
blurmask-t on (b) the synthetic and (d) the real-world datasets.

grade recognition performance are analyzed by conducting
a series of experiments, and their intuitive interpretations
are also provided. Based on these observations, a novel
Matching Scheme incorporating Deblurring and Blurmask
(MSDB) is proposed to improve the recognition accuracy
on motion blurred iris images. It is implemented in both
preprocessing and matching stages. The motion blurred iris
images can be firstly enhanced, and then their unreliable re-
gions are marked and penalized strictly with the proposed
matching strategy. To the best of our knowledge, our work
is the first comprehensive research of motion blurred iris
image matching which contains the three essential parts for
systematic studies. In the future, we plan to develop a more
efficient form of penalty function, and this procedure may
be explicitly modeled as an optimization problem. In addi-
tion, it is of interest to develop the matching strategies for
other covariates, e.g., out-of-focus and off-angle.
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