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Abstract—Radio frequency identification (RFID) technology
has many applications in inventory management, supply chain,
product tracking, transportation and logistics. One research issue
of practical importance is to search for a particular group of tags
in a large-scale RFID system. Time efficiency is a core factor that
must be taken into consideration when designing a tag search
protocol to ensure scalability. In this paper, we design a new
technique called filtering vector, which can significantly reduce
transmission overhead during search process, thereby shortening
search time. Based on this technique, we propose an iterative
tag search protocol. In each round, we filter out some tags
and eventually terminate the search process when the search
result meets the accuracy requirement. The simulation results
demonstrate that our protocol performs much better than the
best existing ones.

I. INTRODUCTION

Recent years have witnessed the rapid development of radio

frequency identification (RFID) technology. It is becoming

increasingly utilized in various applications, such as inventory

management, supply chain, product tracking, transportation and

logistics [1]–[5]. Generally speaking, a RFID system comprises

three components: one or multiple RFID readers, a large set

of RFID tags, and a backend server. Each tag has a unique

ID to identify the object it is attached to. Equipped with an

antenna, a tag is capable of transmitting and receiving radio

signals, through which communications with the readers are

achieved. Hence, the readers can collect the IDs and other

useful information from tags located in their coverage areas,

and then send the gathered data to the backend server for

further process.

This paper focuses on the tag search problem in large RFID

systems. We use an example to illustrate the problem. Suppose

a manufacturer suspects that some of its products may be

defective, but those products have already been distributed

in different warehouses. The manufacturer knows the IDs of

tags attached to those suspected products and wants to recall

them for further inspection. Thus the manufacturer asks for

tag search in each warehouse: Given a set of wanted tag IDs,

the problem is to search in the coverage area of a reader and

identify the tags that belong to the set. Note that there may exist

other tags in the area that do not belong to the set. To meet the

stringent delay requirements of real-world applications, time

efficiency is a critical performance metric for the RFID tag

search problem. In our example, it is highly desirable to make

the search quick in a busy warehouse as lengthy searching

process may interfere with other activities that move things in

and out of the warehouse. The only prior work studying this

problem is called CATS [6], which however does not work

under some common conditions (e.g., if the size of the wanted

set is much larger than the number of tags in the coverage area

of the reader).

The main contribution of this paper is a fast tag search

method based on a new technique called filtering vectors.

A filtering vector is a compact one-dimension bit array

constructed from tag IDs, which can be used not only for

tag filtration, but also for parameter estimation. Using the

filtering vectors, we design, analyze, and evaluate a novel

iterative tag search protocol, which progressively improves

the accuracy of search result and reduces the time for each

iteration to a minimum by using the information learned

from previous iterations. Given an accuracy requirement, the

iterative protocol will terminate once the search result meets

the accuracy requirement. We show that our protocol performs

much better than the CATS protocol and other alternatives that

we use for comparison. In particular, the new protocol is able

to work efficiently under conditions when the CATS protocol

no longer works.

The rest of this paper is organized as follows. Section II

gives the system model and the problem statement. Section III

briefly introduces the prior work. Section IV describes our

new protocol in detail. Section V evaluates the performance of

our protocol by simulations. Section VI presents some related

RFID work. Section VII draws the conclusion.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

In our model, a RFID system consists of multiple readers,

a large number of tags and a backend server. The tags

may be battery-powered active tags, or passive tags that are

powered by radio energy emitted from the reader. Each tag

has a unique 96-bit ID according to the EPC global Class-

1 Gen-2 standard [7]. A tag is able to communicate with

the reader wirelessly and perform some computations such as

hashing. The backend server is responsible for data storage

and information processing. It is capable of carrying out high-

performance computations. The reader and the backend server

are connected via a high speed wired or wireless link. They

can be regarded as an integrated unit, still called the reader for

simplicity.

In practice, the tag-to-reader (T ⇒ R) transmission rate and

the reader-to-tag (R ⇒ T ) transmission rate may be different
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and subject to the environment. For example, as specified in the

EPC global Class-1 Gen-2 standard, the T ⇒ R transmission

rate is 40kbps ∼ 640 kbps in the FM0 encoding format or

5kbps ∼ 320kbps in the Miller modulated subcarrier encoding

format, while the R ⇒ T transmission rate is about 26.7kbps ∼
128kbps [7]. However, to simplify our discussions, we assume

the T ⇒ R transmission rate and the R ⇒ T transmission rate

are the same, and it is straightforward to adapt our protocol

for asymmetric transmission rates.

B. Time Slots

The RFID reader and the tags in its coverage area use a

framed slotted MAC protocol to communicate. We assume

that clocks of the reader and all tags in the RFID system are

synchronized by the reader’s signal. During each frame, the

communication is initialized by the reader in a request-and-

response mode, namely, the reader broadcasts a request with

some parameters to the tags and then waits for the tags to reply

in the subsequent time slots.

Consider an arbitrary time slot. We call it an empty slot if

no tag replies in this slot, or a busy slot if one or more tags

respond in this slot. Only one-bit information is needed for

distinguishing an empty slot from a busy slot: ‘0’ for an empty

slot with an idle channel and ‘1’ for a busy slot with a busy

channel. We denote the length of a slot for one-bit information

as ts.

Some prior RFID work needs another type of slots, carrying

96-bit IDs, whose length is denoted as tid.

C. Problem Statement

Suppose we are interested in a known set of tag IDs

X = {x1, x2, x3, · · · }, each xi ∈ X is called a wanted

tag. For example, the set may contain tag IDs on a certain

type of products under recall by a manufacturer. Let Y =
{y1, y2, y3, · · · } be the set of tags within the coverage area of

a RFID system (e.g., in a warehouse). Each xi or yi represents

a tag ID. The tag search problem is to search for which wanted

tags are present in the coverage area. Let W denote the subset

of wanted tags that are present in the coverage area. Since

every tag in W is a wanted tag, W ⊆ X . Since each tag in W
is in the coverage area, W ⊆ Y . Therefore, W = X ∩ Y . We

define the intersection ratio of X and Y as

RINTS =
|W |

min{|X|, |Y |}
. (1)

Exactly finding W can be expensive if X and Y are very

large, and it is much more efficient to find W approximately,

allowing small bounded error [6]. We take the approximate

approach in this paper. Our solution performs iteratively. Each

round rules out some tags in X when it becomes certain that

they are not in the coverage area (i.e., Y ), and it also rules

out some tags in Y when it becomes certain that they are

not wanted ones in X . These ruled-out tags are called non-

candidate tags. Other tags that remain possible to be in both X
and Y are called candidate tags. At the beginning, the search

result is initialized to all wanted tags X . As our solution is

iteratively executed, the search result shrinks towards W when

more and more non-candidates are ruled out.

Let W ∗ be the final search result. We have the following

two requirements:

1) All wanted tags in the coverage area must be detect,

namely, W ⊆ W ∗.

2) A false positive occurs when a tag in X −W is included

in W ∗, i.e., a tag not in the coverage area is kept in the

search result by the reader. The false positive ratio is the

probability for any tag in X −W to be in W ∗ after the

execution of a search protocol. We want to bound the

false positive ratio by a pre-specified system requirement

PREQ, whose value is set by the user. In other words, we

expect

|W ∗ −W |

|X −W |
≤ PREQ. (2)

III. BACKGROUND

We discuss some prior work that can be applied to the tag

search problem.

A. Tag Identification

Plenty of RFID research concentrates on designing efficient

tag identification protocols that collect the IDs of tags in a

RFID systems. These protocols collect all tag IDs in Y and

thus can be used to solve the tag search problem simply by

computing the intersection X ∩ Y once Y is known. Each

96-bit ID transmission from a tag to the reader takes a time

slot of tid, which is much longer than the one-bit slot ts. Due

to collision, the lower bound for ALOHA-based identification

protocols such as DFSA [8] and EDFSA [9] to collect all tag

IDs is e×|Y | time slots, where e is the natural constant. Hence,

when a tag identification protocol is used, the search time is

at least

Tidentify = e× |Y | × tid. (3)

B. Baseline Protocol

A baseline protocol for the tag search problem is given in

[6], which is much faster than the tag identification protocols

when |X| ≪ |Y |. Instead of collecting all IDs in Y , the

reader broadcasts the IDs in X one by one. Each tag checks

whether the received ID is identical to its own ID. If so, the

tag transmits a one-bit short response to notify the reader about

its presence; otherwise, the tag keeps silent. Hence, the search

time of baseline protocol is

Tbaseline = |X| × (tid + ts). (4)

The baseline protocol improves time efficiency due to the

following reasons:

1) It avoids collecting all IDs of a large tag set Y when

|Y | ≫ |X|.
2) It eliminates collision incurred in the tag identification

protocols.

However, the baseline protocol also has serious limitations. It

does not work well when |X| ≫ |Y |. The energy consumption

of tags (particularly when active tags are used) is significant

because tags in Y have to continuously listen to the channel

and receive a large number of IDs until its own ID is received.
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C. CATS Protocol

To further reduce the search time, Zheng et al. propose a

two-phase protocol named Compact Approximator based Tag

Searching protocol (CATS) [6], which is the most efficient

solution for the tag search problem to date.

The main idea of the CATS protocol is to encode tag IDs

into an L1-bit Bloom filter and then transmit the Bloom filter

instead of the IDs themselves. In its first phase, the reader

encodes all IDs of wanted tags in X into a Bloom filter, and

then broadcasts this filter together with some parameters to

tags in the coverage area. Having received this Bloom filter,

each tag tests whether it belongs to the set X . If the answer is

negative, the tag is a non-candidate and will keep silent for the

remaining time. After the filtration of phase one, the number of

candidate tags in Y is reduced. During the second phase, the

remaining candidate tags in Y report their presence in a second

L2-bit Bloom filter constructed from a frame of time slots ts.

Each candidate tag transmits in k slots that it is mapped to.

Listening to channel, the reader builds the Bloom filter based

on the status of the time slots: ‘0’ for an idle slot where no

tag transmits, and ‘1’ for a busy slot where at least one tag

transmits. Using this Bloom filter, the reader conducts filtration

for the IDs in X to see which of them belong to Y , and the

result is regarded as X ∩ Y .

With a pre-specified false positive ratio requirement PREQ,

the CATS protocol uses the following optimal settings for L1

and L2:

L1 = |X| logφ

(

−
α|X|

β|Y | lnPREQ

)

, (5)

L2 =
|X|

lnφ

(

lnPREQ −
α

β

)

, (6)

where φ is a constant which equals 0.6185, α and β are

constants pertaining to R ⇒ T transmission rate and T ⇒ R
transmission rate respectively. Because φ < 1, it is required

that |X| < −β
α |Y | lnPREQ; otherwise, L1 will become

negative. When α = β, i.e. the R ⇒ T transmission rate

and the T ⇒ R transmission rate are identical, the total search

time of the CATS protocol is:

TCATS = (L1 + L2)× ts

= |X|

(

logφ

(

−|X|

|Y | lnPREQ

)

+
lnPREQ − 1

lnφ

)

× ts.

(7)

IV. A FAST TAG SEARCH PROTOCOL BASED ON FILTERING

VECTORS

In this section, we propose an Iterative Tag Search Protocol

(ITSP) to solve the tag search problem in large-scale RFID

systems.

A. Motivation

Although the CATS protocol takes a significant step forward

in solving the tag search problem, it still has several important

drawbacks. First, when optimizing the Bloom filter sizes L1

and L2, CATS approximates |X ∩ Y | simply as |X|. This

rough approximation may cause considerable overhead when

|X ∩ Y | deviates significantly from |X|.

Second, it assumes that |X| < |Y | in its design. In reality,

the number of wanted tags may be far greater than the number

in the coverage area of a RFID system. For example, there

may be a huge number |X| of tagged products that are under

recall, but as the products are distributed to many warehouses,

the number |Y | of tags in a particular warehouse may be much

smaller than |X|.

Third, the performance of CATS is sensitive to the false

positive ratio requirement PREQ. The performance deteriorates

when the value of PREQ is very small. While the simulations

in [6] set PREQ = 5%, its value may have to be much smaller in

some practical cases. For example, suppose |X| = 100, 000,

and |W | = 1, 000. If we set PREQ = 5%, the number of

wanted tags that are falsely claimed to be in Y by CATS will

be up to |X −W | × PREQ = 4, 995, far more than the 1,000

wanted tags that are actually in Y .

We will show that an iterative way of implementing Bloom

filters is much more efficient than the classical way that the

CATS protocol adopts.

B. Iterative Implementation of Bloom Filter

A Bloom filter is a compact data structure that encodes

the membership for a set of items. To represent a set S =
{e1, e2, · · · , em} using a Bloom filter, we need a bit array of

length l in which all bits are initialized to zeros. To encode

each element e ∈ S, we use k hash functions, h1, h2, · · · , hk,

to map the element randomly to k bits in the bit array, and

set those bits as ones. For membership lookup of an element

b, we again map the element to k bits in the array and see

if all of them are ones. If so, we claim that b belongs to S;

otherwise, it must be true that b /∈ S. A Bloom filter may cause

false positives: a non-member element is falsely claimed as a

member in S. The probability for a false positive to occur in

a membership lookup is given as follows [10]:

PB =

(

1−

(

1−
1

l

)km
)k

≈
(

1− e−km/l
)k

. (8)

When k = ln 2 × l
m , PB is minimized to

(

1
2

)k
=
(

1
2

)ln 2 l
m .

In order to achieve a target value of PB , the minimum size

of the filter is − lnPB

(ln 2)2m. CATS sends one Bloom filter from

the reader to tags and another Bloom filter from tags back to

the reader. Suppose we want to have PB = 0.001 for the first

Bloom filter that encodes X . Since m = |X|, the minimum

size of the filter becomes 14.4 × |X| bits, where each bit is

implemented by a time slot ts. Similarly, the size of the second

filter is also related to its target false-positive probability.

Below we provide motivation for the idea of filtering vectors

that can significantly reduce the filter size.

A Bloom filter can be implemented in a segmented way.

We can divide the bit array into k equal segments, and the ith

hash function will map each element to a random bit in the ith

segment, for i ∈ [1..k]. We name each segment as a filtering

vector. The number of bits in a segment is l/k. The following

formula gives the false-positive probability of a single filtering

vector, i.e., the probability for a non-member to be hashed to
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h1(a) h2(b) h1(b)h2(a)

0 0 0 01 1 1 1

Bloom filter

h1(a) h1(b) h2(b)h2(a)

0 0 0 01 1 1 1

Filtering vetor one Filtering vetor two

Fig. 1. Bloom filter and filtering vectors

a ‘1’ bit in the vector:

PFV = 1−

(

1−
1

l/k

)m

≈ 1− e−km/l. (9)

Since there are k independent segments, the overall false-

positive probability of the Bloom filter is

P ′
B = (PFV )

k ≈
(

1− e−km/l
)k

, (10)

which is approximately the same as the result in (8). This

means the two ways of implementing the Bloom filter have

similar effect. The value P ′
B is also minimized when k =

ln 2 × l
m , and thus the optimal size of each filtering vector

is
l

k
=

m

ln 2
, (11)

which results in

PFV ≈
1

2
. (12)

Hence, each filtering vector can filter out half of non-members.

Fig. 1 illustrates the concept of filtering vectors. Suppose we

have two elements a and b, two hash function h1 and h2, and

an 8-bit bit array. First, suppose h1(a) mod 8 = 1, h1(b) mod

8 = 7, h2(a) mod 8 = 5, h2(b) mod 8 = 2, and we construct a

Bloom filter for a and b in the upper half of the figure. Next,

we divide the bit array into two 4-bit filtering vectors (note 4-

bit is not the optimal size of a filtering vector in this case, we

just use it for illustration), and apply h1 on the first segment

and h2 on the second segment. Since h1(a) mod 4 = 1, h1(b)
mod 4 = 3, h2(a) mod 4 = 1, h2(b) mod 4 = 2, we build the

two filtering vectors in the lower half of the figure.

In this work, we use filtering vectors in a novel iterative way:

The Bloom filters between the reader and tags are exchanged

in rounds; only one filtering vector is exchanged in each round,

and the size of filtering vector is continuously reduced in

subsequent rounds, such that the overall size of the whole

Bloom filter is much reduced. Below we use a simplified

example to illustrate the idea: Suppose there is no wanted tag

in the coverage area of a RFID reader, namely, X ∩ Y = ∅.

In round one, we firstly encode X in a filtering vector of size

|X|/ ln 2 through a hash function h1, and broadcast the vector

to filter tags in Y . Using the same hash function, each candidate

tag in Y knows which bit in the vector it is mapped to, and

it only needs to check the value of that bit. If the bit is zero,

the tag becomes a non-candidate and will not participate in

the execution further. The filtering vector reduces the number

of candidate tags in Y to about |Y | × PFV = |Y |/2. Then a

filtering vector of size |Y |/(2 ln 2) is sent from the remaining

candidate tags in Y back to the reader in order to filter X . After

filtering, the number of candidate tags in X is reduced to about

|X| × PFV = |X|/2. Only the candidate tags in X need to

be encoded in the next filtering vector, using a different hash

function. Hence, in the second round, the size of the filtering

vector from the reader to tags is reduced by half to |X|/(2 ln 2),
and similarly the size of the filtering vector from tags to the

reader is also reduced by half to |Y |/(4 ln 2). Repeating the

same process, it is easy to see that, in the ith round, the size of

the filtering vector from the reader to tags is |X|/(2i−1 ln 2),
and the size of the filtering vector from tags to the reader

is |Y |/(2i ln 2). After n rounds, the total size of all filtering

vectors from the reader to tags is

1

ln 2

n
∑

i=1

|X|

2i−1
<

2|X|

ln 2
, (13)

which compares favorably to the traditional approach of

sending 14.4 × |X| bits of Bloom filter in one shot in our

earlier example. Similarly, the total size of all filtering vectors

from tags to the reader is

1

ln 2

n
∑

i=1

|Y |

2i
<

|Y |

ln 2
, (14)

and PFP = (PFV )
n ≈

(

1
2

)n
. We can make PFP as small as

we like by increasing n, while the total transmission overhead

never exceeds 1
ln 2 (2|X|+ |Y |) bits. The strength of filtering

vectors in bidirectional filtration lies in their ability to reduce

the candidate sets during each round, thereby diminishing the

sizes of filtering vectors in subsequent rounds.

C. Generalized Approach

Unlike the CATS protocol, our iterative approach breaks

the bidirectional filtration in tag search process into multiple

rounds. Before the ith round, the set of candidate tags in X
is denoted as Xi (⊆ X), which is also called the search result

after the (i − 1)th round. The final search result is the set of

remaining candidate tags in X after all rounds are completed.

Before the ith round, the set of candidate tags in Y is denoted

as Yi (⊆ Y ). Initially, X1 = X and Y1 = Y . We define

Ui = Xi − W and Vi = Yi − W . Because W is always a

subset of both Ui and Vi, we have

|Ui| = |Xi| − |W |

|Vi| = |Yi| − |W |.
(15)

Instead of exchanging a single filtering vector at a time,

we generalize our iterative approach by allowing multiple

filtering vectors to be sent consecutively. Each round consists

of two phases. In phase one of the ith round, the RFID reader

broadcasts a number mi of filtering vectors, which shrink the

set of remaining candidate tags in Y from Yi to Yi+1. In phase

two of the ith round, one filtering vector is sent back to the

reader in the following distributed way: The candidate tags in

Yi+1 randomly select slots in a time frame to transmit one-bit

responses to the reader. By listening to the states of the slots,

the reader reconstructs the filtering vector from the candidate

tags in Yi+1. The received filtering vector shrinks the set of
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remaining candidates on the reader’s side from Xi to Xi+1,

setting the stage for the next round. This process continues

until the false positive ratio meets the requirement of PREQ.

The values of mi will be determined in the next subsection.

If mi > 0, multiple filtering vectors will be sent consecutively

from the reader to tags in one round. If mi = 0, no filtering

vector is sent from the reader in this round. When this

happens, it essentially allows multiple filtering vectors to be

sent consecutively from tags to the reader (across multiple

rounds).

D. Values of mi

Let K be the total number of rounds. After all K rounds,

we use XK+1 as our search result. There are in total K
filtering vectors sent from tags to the reader. We know from

subsection IV-B that each filtering vector can filter out half

of non-members (in our case, tags in X − W ). To meet the

false positive ratio requirement PREQ, the following constraint

should hold

(PFV )
K =

(

1

2

)K

≤ PREQ. (16)

Hence, the value of K must be at least − lnPREQ

ln 2 .

Next, we discuss how to set the values of mi, 1 ≤ i ≤ K,

in order to minimize the execution time of each round. We

use FV (·) to denote the filtering vector of a set. In phase

one of the ith round, the reader builds mi filtering vectors,

denoted as FVi1(Xi), FVi2(Xi), · · · , FVimi
(Xi), which are

consecutively broadcasted to the tags. From (11), we know the

size of each filtering vector is |Xi|/ ln 2. After filtering based

on these vectors, the number of remaining candidate tags in

Yi+1 is

|Yi+1| = |Vi| × (PFV )
mi + |W |

≈ |Vi| × (1/2)
mi + |W |

= |Vi|/2
mi + |W |.

(17)

In phase two of the ith round, the tags in Yi+1 use a time frame

of 1
ln 2 × |Yi+1| slots to report their presence. After receiving

the responses, the reader builds a filtering vector, denoted as

FVi(Yi+1). After the filtration with FVi(Yi+1), the size of the

search result Xi+1 is

|Xi+1| = |Ui| × PFV + |W |

≈ |Ui|/2 + |W |

= (|Xi|+ |W |)/2.

(18)

We denote the transmission time of the ith round by f(mi),
which can be expressed as:

f(mi) =
1

ln 2
×mi × |Xi| × ts +

1

ln 2
× |Yi+1| × ts

=
ts
ln 2

(mi|Xi|+ (|Vi|/2
mi + |W |)) .

(19)

To find the value of mi that minimizes f(mi), we take the first

order derivative and set the right side to zero.

df(mi)

dmi
=

ts
ln 2

(|Xi| − ln 2|Vi|/2
mi) = 0 (20)

Hence, the value of f(mi) is minimized when

mi =
ln(ln 2|Vi|/|Xi|)

ln 2
. (21)

Because mi cannot be a negative number, we reset mi = 0
if

ln(ln 2|Vi|/|Xi|)
ln 2 < 0. Furthermore, mi must be an integer.

If
ln(ln 2|Vi|/|Xi|)

ln 2 is not an integer, we round mi either to the

ceiling or to the floor, depending on which one results in a

smaller value of f(mi).

For now, we assume that we know |W | and |Y | in our

computation of mi. Later we will show how to estimate these

values on the fly in execution of each round of our protocol.

Initially, |X1| (= |X|) is known. |V1| can be calculated from

(15). Hence, the value of m1 can be directly computed from

(21). After that, we can estimate |Y2|, |X2|, and |V2| based on

(17), (18), and (15), respectively. From |X2| and |V2|, we can

calculate the value m2. Following the same procedure, we can

iteratively compute all values of mi for 1 ≤ i ≤ K.

We find it often happens that the mi sequence has several

consecutive zeros at the end, that is, ∃p < K, mi = 0 for

i ∈ [p,K]. In this case, we may be able to further optimize

the value of mp with a slight adjustment. We first explain

the reason for mp = 0: It costs some time for the reader to

broadcast a filtering vector in phase one of the pth round. It is

true that this filtering vector can reduce set Yp, thereby reducing

the frame size of phase two of the pth round. However, if the

time cost of sending the filtering vector cannot be compensated

by the time reduction of phase two, it will be better off to

remove this filtering vector by setting mp = 0. (This situation

typically happens near the end of the mi sequence because

the number of unwanted tags in the remaining candidate set is

already very small.) But if all values of mi in the subsequent

rounds (after mp) are zeros, increasing mp to a non-zero

value m′
p may help reduce the transmission time of phase two

of the subsequent rounds, and the total time reduction may

compensate the time cost of sending those m′
p filtering vectors,

or even reduce the overall transmission time.

Consider the transmission time of these (K − p+1) rounds

as a whole, denoted by G(m′
p, p). It is easy to know

G(m′
p, p) =

(

m′
p

ln 2
|Xp|+

K − p+ 1

ln 2

(

|Vp|

2m
′
p

+ |W |

))

ts.

(22)

To minimize G(m′
p, p), we have

m
′

p =

{

0 if γ < 0

γ if γ ≥ 0
(23)

where γ =
ln(ln 2(K−p+1)|Vp|/|Xp|)

ln 2 . As a result, mp is updated

to m′
p, while other mi, where i 6= p, remain unchanged.

Here, we give an example to illustrate how to calculate the

values of mi. Suppose |X| = 5, 000, |Y | = 50, 000, |W | =
500, and PREQ = 0.001, so K = ⌈− ln 0.001

ln 2 ⌉ = 10. Using

(21), we can calculate the values from m1 to m10. The result

is listed in Table I. There is a sequence of zeros from m7 to

m10. Thus, we can make an improvement using (23), and the

optimized result is shown in Table II.
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m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 0 0 0 0

TABLE I
THE INITIAL VALUES OF mi .

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

3 1 0 1 0 1 2 0 0 0

TABLE II
THE OPTIMIZED VALUES OF mi .

E. Iterative Tag Search Protocol

Having calculated the values of mi, we can present our

iterative tag search protocol (ITSP) based on the generalized

approach in Section IV-C. The protocol consists of K iterative

rounds. Each round consists of two phases. Consider the ith

round, where 1 ≤ i ≤ K.

1) Phase one: The RFID reader constructs mi filtering

vectors for Xi using mi hash functions. According to (11),

we set the size LXi
of each filtering vector as

LXi
=

1

ln 2
× |Xi| =

1

ln 2
(|Ui|+ |W |) . (24)

The RFID reader then broadcasts those filtering vectors one

by one. Once receiving a filtering vector, each tag in Yi maps

its ID to a bit in the filtering vector using the same hash

function that the reader uses to construct the filter. The tag

checks whether this bit is ‘1’. If so, it remains a candidate

tag; otherwise, it is excluded as a non-candidate tag and drops

out of the search process immediately. The set of remaining

candidate tags is Yi+1.

From (12), we know that the false positive probability after

using mi filtering vectors is (PFV )
mi ≈ (1/2)mi . Therefore,

|Yi+1| = |Vi| × (PFV )
mi + |W | ≈ |Vi|/2

mi + |W |.
2) Phase two: The reader broadcasts the frame size LYi+1

of phase two to the tags, where

LYi+1
=

1

ln 2
× |Yi+1| =

1

ln 2
(|Vi|/2

mi + |W |) . (25)

After receiving LYi+1
, each tag in Yi+1 randomly maps its ID

to a slot in the time frame using a hash function and transmits

a one-bit short response to the reader in that slot. Based on the

observed state (busy or empty) of the slots in the time frame,

the reader builds a filtering vector, which is used to filter non-

candidates from Xi. The number of tags in the search result

Xi+1 of this round is about |Xi+1| = |Ui| × PFV + |W | ≈
|Ui|/2 + |W |.

The overall transmission time of all K rounds in the ITSP

is

TITSP =
K
∑

i=i

(mi × LXi
+ LYi+1

)× ts. (26)

F. Cardinality Estimation

Recall from Section IV-D that we must know the values of

|Xi|, |W | and |Vi| to determine mi and LYi+1
. For the purpose

of accuracy, we may estimate |Xi|, |W | and |Vi| in every round,

and then recalculate subsequent mi sequence and LYi+1
. It is

trivial to find the value of |Xi| by counting the number of tags

in the search result of the (i−1)th round. Meanwhile, we know

|Vi| = |Yi| − |W |. Therefore, we only need to estimate |W |
and |Yi|.

Besides serving as a filter, a filtering vector can also be used

for cardinality estimation, a feature that is not exploited in [6].

Since no filtering vector is available at the very beginning,

the first round of the the ITSP should be treated separately:

We may use the efficient cardinality estimation protocol ART

proposed in [11] to estimate |Y | (i.e., |Y1|) if its value is

not known at first. As for |W |, it is initially assumed to be

min {|X|, |Y |}.

Next, we can take advantage of the filtering vector built in

phase two of the (i− 1)th (i ≥ 2) round to estimate |W | and

|Yi| without any extra transmission expenditure. The estimation

process is as follows: First, counting the actual number of ‘1’

bits in the filtering vector, denoted as N∗
1 , we know the real

false positive ratio, denoted by P ∗
i−1, using this filtering vector

is

P ∗
i−1 = N∗

1 /LYi
. (27)

Meanwhile, we can record the number of tags in the search

results before and after the (i − 1)th round, i.e., |Xi−1| and

|Xi|, respectively. We have |Xi−1| = |Ui−1| + |W |, |Xi| =
|Ui|+ |W |, and |Ui| ≈ |Ui−1| × P ∗

i−1. Therefore,

|W | ≈
|Xi| − |Xi−1| × P ∗

i−1

1− P ∗
i−1

. (28)

Second, using the same filtering vector, we can estimate the

value of |Yi| as well. After mapping all tags in Yi to the filtering

vector, the probability that a certain bit in the vector remains

‘0’ (i.e., no tag maps its ID to this bit) is

P0 =

(

1−
1

LYi

)|Yi|

≈ e
−

|Yi|

LYi . (29)

Let N0 be the number of ‘0’ bits in the filtering vector. Each

slot of frame LYi
independently has probability P0 of being

‘0’. So N0 ∼ B(LYi
, P0), and

E(N0) = LYi
× P0 ≈ LYi

× e
−

|Yi|

LYi . (30)

Also, we can count the filtering vector to obtain the actual

number of ‘0’ bits, denoted as N∗
0 . When LYi

is large, we

have N∗
0 ≈ E(N0), namely, N∗

0 ≈ LYi
× e

−
|Yi|

LYi , so

|Yi| ≈ −LYi
ln

N∗
0

LYi

. (31)

G. Additional Filtering Vectors

Estimation may have error. Using the values of mi and LYi

computed from estimated |W | and |Yi|, a direct consequence

is that the actual false positive ratio, denoted as PT , can be

greater than the requirement PREQ. Fortunately, from (27),

the reader is able to compute the actual false positive ratio P ∗
i ,

1 ≤ i ≤ k, of each filtering vector received in phase two of

the ITSP. Thus, we must have

PT =
K
∏

1

P ∗
i . (32)
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If PT > PREQ, our protocol will automatically add additional

filtering vectors to further filter XK+1 until PT ≤ PREQ.

H. False positive ratio Requirement

Users can set their false positive requirements PREQ

arbitrarily. We observe that it may be desirable to set the

value of PREQ relative to |W |. For example, consider a RFID

system with |X| = 20, 000. If |W | = 10, 000, PREQ = 0.01
may be good enough because the number of false positives

is about (|X| − |W |) × PREQ = 100, which is much fewer

than |W |. However, if |W | = 10, PREQ = 0.01 may become

unacceptable since (|X| − |W |) × PREQ ≈ 200 ≫ |W |. It is

desirable to set the value of PREQ such that the number of

false positives in the search result is much smaller than |W |,
namely, (|X| − |W |)× PREQ ≤ 1

λ |W |, where λ is an integer

constant. Thus, we have

PREQ ≤
|W |

λ (|X| − |W |)
. (33)

Our protocol is able to set the value of PREQ using the

estimated value of |W | after the first round.

I. Hash Functions

To keep the complexity of a tag’s circuit low, we only

implement one uniform hash function h(·), and use it to

simulate multiple independent hash functions: In phase one of

the ith ITSP round, we use h(·) and mi unique hash seeds

{s1, s2, · · · , smi
} to achieve mi independent hash outputs.

Thus, a tag id is mapped to position (h(id⊕ s1) mod LXi
),

(h(id⊕ s2) mod LXi
), · · · , (h(id⊕ smi

) mod LXi
) in each

filtering vector, respectively. Each hash seed, together with

its corresponding filtering vector, will be broadcasted to the

tags. In phase two of the ith round, the reader generates a

new hash seed r and sends it to the remaining candidate tags.

Each candidate tag in Yi+1 maps its id to the slot of index
(

h(id⊕ r) mod LYi+1

)

, and waits to transmit a one-bit short

response to the reader in that slot.

V. PERFORMANCE EVALUATION

A. Simulation Setting and Performance Metrics

The simulation setting is based on the EPC global Class-1

Gen-2 standard [7]. In the ITSP, filtering vectors constitute

most of the overall transmission overhead, while other

transmission cost, such as estimation of |Y | and transmission

of hash seeds, is comparatively negligible [6]. Consequently,

the key metric concerning the efficiency of the ITSP is the total

size of filtering vectors, and (26) can be used for calculating

the search time required by the ITSP.

After the search process is completed, we will calculate the

false positive ratio PFP using PFP = |W∗−W |
|X−W | , where W ∗ is

the set of tags in the search result. PFP will be compared with

PREQ to see whether the search result meets the false positive

ratio requirement.

In our simulation, we set both the R ⇒ T transmission

rate and the T ⇒ R transmission to be 100kbps. Accordingly,

ts =
1bit

100kbps = 10−5sec.
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Fig. 2. Relationship between search time and PREQ. Parameter setting:
|Y | = 50, 000; (a) |X| = 20, 000, (b) |X| = 40, 000.

B. Simulation Results

1) Performance comparison: In this subsection, we will

evaluate the performance of our protocol, using the protocols

mentioned in Section III: the CATS protocol, the baseline

protocol, and the tag identification protocols, as benchmarks

for comparison.

In the simulation, we assume X and Y are already known.

We set PREQ = 0.001, |Y | = 50, 000, vary |X| from 5,000

to 640,000, and let RINTS = 0.1, 0.3, 0.5, 0.7, 0.9. For

simplicity, we assume tid = 96× ts, during which a 96-bit ID

is transmitted. Table III shows the number of ts slots needed by

the protocols under different parameter settings. As the CATS

protocol is designed for applications where |X| < |Y |, it may

not always work when |X| ≥ |Y | (N.A. in the table).

From Table III, we observe that when RINTS is small,

the ITSP performs much better than the CATS protocol,

the baseline protocol, and the tag identification protocol. For

example, when RINTS = 0.1, the ITSP reduces the search

time of the CATS protocol, the baseline protocol and any

tag identification protocol, by as much as 90.0%, 98.8%, and

99.5%, respectively. As we increase RINTS , the gap between

the performance of the ITSP and the performance of the

CATS gradually shrinks. The CATS protocol performs poorly

when |X| ≥ |Y |, and more seriously, it does not work when

|X| ≫ |Y | due to the failure of (5). In contrast, the ITSP can

work efficiently in all cases. In practice, the wanted tags may

be spatially distributed in many different RFID systems (e.g.,

warehouses in the example we use in the introduction), and

thus RINTS can be small. As a result, the ITSP is a far better

protocol for solving the tag search problem in such practical

scenarios.

Another performance issue we want to investigate is the
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|X| ITSP ITSP ITSP ITSP ITSP CATS Baseline Tag identification
RINTS=0.1 RINTS=0.3 RINTS=0.5 RINTS=0.7 RINTS=0.9

5,000 61,463 96,989 105,828 108,346 124,553 126,370 485,000 13,047,752

10,000 108,017 145,553 206,709 199,586 231,236 238,313 970,000 13,047,752

20,000 185,204 255,898 335,426 397,462 403,954 447,772 1,940,000 13,047,752

40,000 304,767 467,433 512,156 598,718 678,066 837,837 3,880,000 13,047,752

80,000 414,686 590,150 656,426 721,347 721,347 1,560,259 7,760,000 13,047,752

160,000 472,677 630,669 721,347 721,347 721,347 2,889,689 15,520,000 13,047,752

320,000 529,835 668,794 721,347 721,347 721,347 5,317,715 31,040,000 13,047,752

640,000 573,270 696,015 721,347 721,347 721,347 N.A. 62,080,000 13,047,752

TABLE III
PERFORMANCE COMPARISON OF THE ITSP, THE CATS PROTOCOL, THE BASELINE AND TAG IDENTIFICATION PROTOCOLS.

relationship between the search time and PREQ. We set

|X| = 20, 000 or 40, 000, |Y | = 50, 000, vary RINTS from 0.1

to 0.9, and vary PREQ from 10−6 to 10−2. Fig. 2 compares

the search times required by the CATS and the ITSP under

different false positive ratio requirements. Generally speaking,

the gap between the search time required by the ITSP and

the search time by the CATS keeps getting larger with the

decrease of PREQ, particularly when RINTS is small. For

example, in Fig. 2 (b), when PREQ = 10−2 and RINTS = 0.1,

the search time by the ITSP is about one half of the time by

the CATS; when we reduce PREQ to 10−6, the time by the

ITSP becomes about one fourth of the time by the CATS.

The reason is as follows: When RINTS is small, |W | is

small and most tags in X and Y are non-candidates. After

several ITSP rounds, as many non-candidates are filtered out

iteratively, the size of filtering vectors decreases exponentially

and therefore subsequent ITSP rounds do not cause much extra

time cost. This merit makes the ITSP particularly applicable

in cases where the false positive ratio requirement is very

strict, requiring many ITSP rounds. On the contrary, the CATS

protocol does not have this capability of exploiting low RINTS

values.

2) False positive ratio: Next, we examine whether the

search results after execution of the ITSP will meet the

requirement of PREQ. Recall that the false positive ratio is

defined as PFP = |W∗−W |
|X−W | . We use (33) with λ = 10 to set

the value of PREQ. The ITSP is tested under three different

parameter settings:

(a) |X| = 5, 000, |Y | = 50, 000, and RINTS varies from

0.1 to 0.9 (|W | varies from 500 to 4,500). According to

(33), PREQ ≤ 500
10×(5,000−500) ≈ 0.01111. We set PREQ =

10−2.

(b) |X| = 20, 000, |Y | = 50, 000, and RINTS varies from

0.01 to 0.9 (|W | varies from 200 to 18,000). According

to (33), PREQ ≤ 200
10×(20,000−200) ≈ 0.00101. We set

PREQ = 10−3.

(c) |X| = 80, 000, |Y | = 50, 000, and RINTS varies from

0.01 to 0.9 (|W | varies from 500 to 45,000). According

to (33), PREQ ≤ 500
10×(80,000−500) ≈ 0.00063. We set

PREQ = 10−4.

For each parameter setting, the simulation repeats 500 times

to obtain the average false positive ratio.

Fig. 3 shows the simulation results. In (a), (b), and (c),

we can see that the average PFP is always smaller than the
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Fig. 4. False positive ratio in the search result after running the ITSP. The
bold horizontal line in each figure stands for PREQ. X-coordinate marks the
ordinal of simulations.

corresponding PREQ. Hence, the search results using the ITSP

meet the prescribed requirement of false positive ratio in the

average sense.

If we look into the details of individual simulations, we

find that a small fraction of simulation runs have PFP beyond

PREQ. For example, Fig. (4) depicts the results of 500 runs

with |X| = 5, 000, |Y | = 50, 000, |W | = 500 and PREQ =
10−2. There are about 5% runs having PFP > PREQ, but

that does not come as a surprise because the false positive

ratio in the context of filtering vectors (ITSP) or Bloom filters

(CATS) is defined in a probability way: The probability for

each tag in X−W to be misclassified as one in W is no greater

than PREQ. This probabilistic definition enforces a requirement

PREQ in an average sense, but not for each individual run.

VI. RELATED WORK

The basic technologies for RFID have been around for a long

time. In the past, much research concentrated on two fronts: (1)

physical-layer technologies for transmitting IDs from tags to

an RFID reader more reliably, over a longer distance, and using

less energy; (2) MAC-layer technologies for improving the rate

at which a reader can collect IDs from tags. Tag identification

protocols, which read IDs from all tags in a RFID system,

mainly fall into two categories. One is ALOHA-based [8], [9],

[12]–[15], and the other is tree-cased [16]–[19]. The ALOHA-

based protocols work as follows: The reader broadcasts a query

request. With a certain probability, each tag chooses a time slot

in the current frame to transmit its ID. If there is a collision

and the reader does not acknowledge positively, the tag will

continue participating in the next frame. This process repeats

until all tag IDs are read successfully. The tree-based protocols

organize all IDs in a tree of ID prefixes [16]–[19]. Each in-tree

prefix has two child nodes that have one additional bit, ‘0’ or
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Fig. 3. False positive ratio after running the ITSP.

‘1’. The tag IDs are leaves of the tree. The RFID reader walks

through the tree, and requires tags with matching prefixes to

transmit their IDs.

Another related research topic is cardinality estimation in

an RFID system. Kodialam and Nandagopal [20] estimate the

number of tags based on the probabilistic counting methods

[21]. The same authors propose a non-biased follow-up work in

[22]. Han et al. [23] improve the performance of [20]. Qian et

al. [24] present the Lottery-Frame scheme (LoF) for estimating

the number of tags in a multiple-reader scenario. The work in

[25] uses the maximum likelihood method. Sheng et al. design

two probabilistic algorithms to identify large tag groups [4].

VII. CONCLUSIONS

This paper studies the tag search problem in large-scale

RFID systems. To improve time efficiency and eliminate

limitation of the prior tag search protocol (CATS), we propose

an iterative tag search protocol (ITSP) based on a new

technique called filtering vectors. The main contributions of

our work are summarized as follows: (1) The iterative method

of ITSP based on filtering vectors is very effective in reducing

the amount of information to be exchanged between tags

and the reader, and consequently saves time in the searching

process; (2) the ITSP performs much better than the existing

solutions; (3) the ITSP works well under all system conditions,

particularly under conditions of |X| ≫ |Y | when CATS no

longer works well or even fails.
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