
Integrated Block-Processing and Design-Space Exploration

in Temporal Partitioning for RTR Architectures ?

Meenakshi Kaul Ranga Vemuri

mkaul@ececs.uc.edu Ranga.Vemuri@UC.EDU

Department of ECECS, University of Cincinnati, Cincinnati, OH 45221{0030

Abstract.We present an automated temporal partitioning and design space ex-
ploration methodology that temporally partitions behavior speci�cations. We propose
block-processing in the temporal partitioning framework for reducing the recon�gura-
tion overhead for partitioned designs. Block-processing is a technique used traditionally
in the area of parallel compilers, for increasing the computation speed by processing
several inputs simultaneously. Block-processing technique has been integrated with
task-level design space exploration to achieve designs that justify temporal partition-
ing of systems. An ILP-based methodology has been proposed to solve this problem.
We present experimental results for the Discrete Cosine Transform (DCT).

1 Introduction
The recon�guration capability of SRAM-based FPGAs can be utilized to �t a large

application onto an FPGA by partitioning the application over time into multiple
segments. This division into temporal segments is called temporal partitioning. Such
temporally partitioned applications are also called Run-Time Recon�gured (RTR) sys-
tems.

To overcome the e�ects of high recon�guration overhead for existing recon�gurable
hardware, we demonstrated in [8] how loop �ssion techniques can be used as a post-
processing step after temporally partitioning a design to increase the throughput. In
the current work, we extend our temporal partitioning technique to incorporate block-
processing and design space exploration techniques and demonstrate how this inte-
grated processing can be used to search for optimized temporally partitioned designs.

We assume the input speci�cation to be a task graph [4], where each task consists of
a set of operations. Depending on the resource/area constraint for the design, di�erent
implementations of the same task, which represent di�erent area-time tradeo� points,
can be contemplated. These di�erent implementations are design points in the design
space of a task. If a task is implemented with less resources then the operations in
the task will be executed serially, thus increasing the latency of the task. On the
other hand, an implementation with more resources reduces the latency but increases
the area. Therefore, choosing the best design point for each task may not necessarily
result in the best overall design for the speci�cation. The optimal design point for a
task in the context of optimizing the overall throughput of the design will depend on
the architectural constraints and the dependency constraints among the tasks. In the
subsequent discussion we will express the latency of a design point in terms of total
execution time and not in number of clock cycles.
Block-Processing in Temporally Partitioned designs : In many application
domains eg., Digital Signal Processing, computations are de�ned on very long streams
of input data. In order to decrease overall execution time multiple inputs from the
input data stream can be processed simultaneously. This approach known as block-
processing, is used to increase the throughput of a system through the use of parallelism
and pipelining in the area of parallel compilers [12] and VLSI processors [13]. We can

? This work is supported in part by the US Air Force, Wright Laboratory, WPAFB,
under contract number F33615-97-C-1043.

apply the concept of block-processing to a single processor recon�gurable system to
speedup the processing time.

Figure 1 illustrates the use of block-
A B

C

(a)

50 ns

80 ns

A B

C

D

(b)

3

3

3

D

500 ns

500 ns

Fig. 1. Temporally partitioned de-
sign example

processing to speed up computation in a
temporally partitioned design. The task
graph consists of 4 tasks A, B, C, D. It is
partitioned into two temporal partitions as
shown in Figure 1(b). The latency of tem-
poral partition 1 is 50ns and of partition
2 is 80 ns. The recon�guration time is 500
ns. The latency of the design is 50+500
+80+500 = 1130 ns. A single iteration of
the task graph executes in 1130 ns. Now

three iterations of this temporally partitioned design will take 3x1130 = 3390 ns. How-
ever if we perform block-processing by sequencing all 3 computations on each temporal
partition, the time taken for the execution is (50+50+50)+500+(80+80+80)+500 =
1390 ns. Thus block-processing amortizes the recon�guration overhead over the 3 in-
puts. Block-processing is possible only for applications that process a large stream of
inputs. We represent such applications by a task graph having an implicit outer loop as
shown in Figure 1(a). Note that block-processing is possible if there are no dependen-
cies among the computations for di�erent inputs. In compiler terminology this means
there should be no loop-carried dependencies due to the implicit outer loop among
di�erent iterations of this loop. In this paper, we deal with applications for which no
dependencies among computations is present. Most DSP applications fall in this cate-
gory.
Integrating Design-Space Exploration and Block-Processing in Temporal
Partitioning : For FPGA based architectural synthesis, the constraints of area in
terms of CLBs (Con�gurable Logic Blocks)/FGs (Function Generators) and memory
are to be met by the partitioned design. For the spatial partitioning problem increasing
the number of partitions has the e�ect of increasing the overall area for the design, and
directly a�ects the latency of the design. Increasing the area, generally increases the
number of operations that can execute in parallel (if no dependency constraints exist)
and thus decreases the latency of the design. However, for a temporal partitioning sys-
tem increasing the number of partitions increases the area available for the design, but
this increase is `over time' and not `over space'. This increase in number of partitions
may or may not result in the reduction of the latency of the design.

A

B

(a)

A

B

(a)

Area = 300, Delay = 70 ns

A

B

Design Pt. 2

Design Pt. 2

Area = 200, Delay = 50 ns

Latency = 2*500 mu + 50 ns + 70 ns

Design Pt. 2 : Area = 300, Delay = 70 ns

A

B

(a)

Design Pt. 1 : Area = 100, Delay = 100 ns

Design Pt. 2 : Area = 200, Delay = 50 ns

Design Pt. 1 : Area = 150, Delay = 200 ns

(c)

Area = 150, Delay = 200 ns

A

B

Design Pt. 1

Design Pt. 1

Area = 100, Delay = 100 ns

(b)
Latency = 500 mu + 100 ns + 200 ns

Reconfiguration Time = 500 micro sec
FPGA size = 300

Fig. 2. Design space exploration

When the recon�guration overhead is very large compared to the execution time of
the task it is clear that minimizing the number of temporal partitions will achieve the
smallest latency in the overall design. However, it is not necessary that the minimum
latency design is the best solution. We illustrate this idea with an example. In the

Figure 2(a) a task graph is shown. Each task has two di�erent design points on which
it can be mapped. Two di�erent solutions (b) and (c) are possible. If minimum latency
solution is required then solution (b) will be chosen over solution (c) because the latency
of (b) is 500.3 � sec and latency of (c) is 1000.12 � sec. Now, if we use (b) and (c) in the
block-processing framework to process 5000 computations on each temporal partition.
Then the execution time for solution (b) is 2000 � seconds and for solution (c) is 1600
� seconds. Therefore if we can integrate the knowledge about block-processing while
design space exploration is being done then it is possible to choose more appropriate
solutions.

The price paid for block-processing is the higher memory requirements for the
recon�gured design. We call the number of data samples or inputs to be processed
in each temporal partition to be the the block-processing factor, k. This is given by
the user and is the minimum number of input data computations that this design will
execute for typical runs of the application. The amount of block-processing is limited
by the amount of memory available to store the intermediate results.

Currently many designers perform temporal partitioning

HOST

Reconfigurable

MEMORY

Hardware

Fig. 3. RTR Sys-
tem Architecture

manually [1] or the designer speci�es the partitioning points
to the tool [3]. Existing automated temporal partitioning
techniques, extend existing scheduling techniques of high-level
synthesis [2, 9] and focus on minimizing the number of parti-
tions of the design. In [7], we presented a mathematical model
for combined temporal partitioning and synthesis. In that ap-
proach, synthesis cost exploration is performed at an opera-
tion level in the task graph, and the number of alternative
solutions explored becomes very large. It can be used to syn-
thesize small-scale behavior speci�cations. Our current technique can also simultane-
ously handle multiple design constraints, eg., FPGA resources, on-board memories,
and perform design exploration for large speci�cations.

2 System Architecture and Design Flow

In Figure 3, the hardware architecture
Component
Library

Macro

HLS Estimation

Partitioning
Temporal

Block-Processing
FactorConstraints

Behavior Task
Graph

configuration

High Level Synthesis

Logic/Layout

Synthesis

Bitmap files
for each

Configuration
Sequencer

Fig. 4. Design Flow

on which the Run-Time recon�gured de-
sign is to be mapped is shown. It consists
of a recon�gurable hardware communicat-
ing with an external memory. Each tem-
poral partition is mapped to the recon�g-
urable hardware, and the data owing be-
tween two temporal partitions is mapped
to the memory. A Host interacts with both
the recon�gurable hardware and the mem-
ory and is used to load new con�gurations.
In Figure 4, we present the design ow for
building a Run-Time Recon�gured (RTR)
design. The input speci�cation, is a behav-
ior level design description of the applica-
tion to be implemented on the recon�g-
urable hardware. The input speci�cation
consists of acyclic data ow task graph, with an outer implicit loop. The implicit loop
signi�es the successive items of input data that will be executed on this task graph.
Task Estimation: First, the behavior level estimation engine, part of a High Level

synthesis tool, DSS [10], generates multiple design points for each task separately based
on the architecture and user constraints. The architecture constraints are the resources
available on the recon�gurable hardware, the user constraints are the maximum clock-
width for the design. The HLS tool makes use of a component library characterized for
the particular recon�gurable device, to estimate the resource and delay.
Temporal Partitioning: Next, the temporal partitioning tool divides the task graph
into multiple temporal segments, while mapping each task to its appropriate design
point. We discuss the ILP formulation used to solve the multi-constraint temporal par-
titioning problem later in detail.
High Level Synthesis: A high level synthesis system is used to generate the RTL
design for each temporal segment.
Logic/Layout Synthesis:We use commercial tools, for logic synthesis (Synplify tools
from Synplicity) and layout synthesis (Xilinx M1 tools) to convert the RTL description
of each con�guration into bitmap �les.

3 Temporal Partitioning

The inputs to our Temporal Partitioning system are - (1) Behavior speci�cations
(2) Target Architecture Parameters (3) Block-processing Factor
In formal notation, the inputs are stated as -
T set of tasks in the task graph.
ti ! tj a directed edge between tasks, ti; tj 2 T , exists in the task graph.
B(ti; tj) number of data units to be communicated between tasks ti and tj.
B(env; tj) number of data units to be read by task tj from the environment.
B(ti; env) number of data units to be written from task ti to the environment.
Rmax resource capacity of the recon�gurable processor.
Mmax memory size of the RTR architecture.
CT recon�guration time of the recon�gurable processor.
k the block-processing factor for the design.

The behavior speci�cations are in the form of a directed graph called the Task
Graph. The vertices in the graph denote tasks, and the edges denote the dependency
among tasks. Data communicated between two tasks, B(ti; tj), will have to be stored
in the on-board memory of the processor, if the two tasks connected by an edge are
placed in di�erent temporal partitions. The target architecture parameters specify the
underlying resources and the recon�guration time, CT , for the device. Typically, re-
source capacity, Rmax, is the combinational logic blocks/function generators on the
FPGAs of the recon�gurable device. Mmax, is the memory for storage of intermediate
data available on the recon�gurable processor. k, the block-processing factor is the
lower bound on the number of computations that this design will usually perform.

3.1 Preprocessing

Design Point Generation: Each task in the task graph is processed by a design
space exploration and estimation tool which is part of a high level synthesis system.
The high level synthesis tool generates a set of design points for each task. Each design
point has an associated module set [11]. A module set, m, consists of the set of, possi-
bly multiple, functional units used to implement the design point. Each design point is
characterized by its area and latency. Each task t, will have a set of module sets, Mt,
corresponding to the set of synthesized design points. We state this formally as -
Mt set of module sets for a task t 2 T .
R(m) area for a design point using module set m 2Mt.

D(m) latency of a design point using module set m 2Mt.

Partition bounds Estimation: To �nd the number of partitions over which the tem-
poral partitioning solution should be explored we calculate two bounds -
1. MinAreaPartitions(): For calculating the lower bound on number of partitions N l

min,
we sum the minimum area module set, m, for each task. This value divided by the
FPGA area will be the minimum number of partitions required to obtain a solution.
N l
min =

P
t2T

R(m)=Rmax; m 2Mt, m is the minimum area module set in Mt

2. MaxAreaPartitions(): Ideally, we should be able to establish an upper bound on the
number of partitions needed to be explored by the partitioner, if the maximum area
design point for each task is chosen. However, we cannot establish, an upper bound
on the maximum number of partitions. If a task is too large to �t in some temporal
partition, it must go to a later partition. Then all the descendents of this task also
cannot occupy the earlier temporal partition. This will leave some area on temporal
partitions unoccupied due to dependency constraints, and the task graph will not �t,
even though there is enough area left unoccupied on the partitions. We de�ne, the min-
imum number of partitions, Nu

min, that need to be explored if maximum area design
point for each task is mapped by the partitioner, to be -
Nu
min =

P
t2T

R(m)=Rmax; m 2Mt, m is the maximum area module set in Mt

3.1.1 Partition Space Exploration
To explore better solutions Algorithm Refine Partition Bound()

begin
Nu
min MaxAreaPartitions()

Nl
min MinAreaPartitions()

N Nl
min /* starting partition number */

Da Solve ILP Model()
while Da = 0 /* Partition bound was infeasible */

N N + 1 /* next partition number */
Da Solve ILP Model()

end while
while N < Nu

min + and not TimeExpired()
N N + 1 /* Relax N */
D0a Solve ILP Model()
if D0a 6= 0 /* solution is feasible */

Da D0a
end if

end while
return(Da) /* return with the last known best solution */

end Algorithm Refine Partition Bound

Fig. 5. Partition Re�nement Procedure

for the temporal partitioning
problem, we need to explore
more than one partition bound.
Finding the ideal partition size,
N , is an iterative procedure,
shown in Figure 5. We calcu-
late the bounds on the num-
ber of partitions, N l

min and
Nu
min, as described earlier. We

start the search at N l
min and

obtain an optimal solution, by
forming and solving an ILP
model of the temporal parti-
tioning problem. The details
of the model are described in
Section 3.1.2. For the �rst ILP model there is no upper bound on constraint on the
execution time of the design. The result of solving this model is a temporal partitioning
solution for N partitions and the execution time Da of the solution. We now relax N
by 1, form and solve the ILP model again. This time however, since we are looking
for a better solution than the one we have already achieved, Da is the execution time
constraint for the new ILP model. We continue to relax N and look for better solutions
until the value of N reaches Nu

min+. Here is a user controlled parameter, called the
Partition Relaxation, which de�nes the number of partitions beyond Nu

min that must
be explored while searching for better solutions.

3.1.2 ILP formulation for Design Space Exploration
We build the temporal partitioning model for the given tasks and their design

points and the values of N and k. After linearization of the non-linear constraints, we
solve it using a linear programming solver. To state formally the mathematical model
we use the following de�nitions -

N bound on the number of partitions.
Da constraint on the execution time of the design.
Tl set of tasks ti 2 T , where 8tj 2 T;:(ti ! tj), (leaf tasks of T).
Tr set of tasks tj 2 T , where 8ti 2 T;:(ti ! tj), (root tasks of T).

ti
p
! tj a directed path from ti 2 T to tj 2 T .

P
l
p
!r

f ti
p
! tj j (ti 2 Tr) ^ (tj 2 Tl)g, (set of paths from root tasks to leaf tasks).

Variables and Constraints Variable ytpm, models partitioning and design point
selection for a task. wpt1t2 , models data transfer requirement across partition bound-
aries. �, is the actual number of partitions �nally used in the solution and will be less
than or equal to N . dp, models the execution time of a temporal partition.

ytpm =

n
1 if task t 2 T is placed in partition p, 1 � p � N, using module set m 2 Mt

0 otherwise

wpt1t2 =

8<
:

1 if task t1 is placed in any partition 1 � � �p � 1 and t2 is placed in any
p � � �N and t1 ! t2

1 if task t1 is placed in partition p and t2 is placed in any p+ 1 � � �N and t1 ! t2
0 otherwise

� = Number of partitions actually used in solution.

dp = execution time of partition p.

Variables ytpm, wpt1t2 are 0-1 variables, � is an integer variable and dp can be integer
or real depending on whether the latency values are integer or real.
Uniqueness Constraint: Each task should be placed in exactly one partition among
the N temporal partitions, while selecting one among the various module sets for the
task.
8t 2 T :

P
m2Mt

P
N

p=1
ytpm = 1 (1)

Temporal order Constraint: Because we are partitioning over time, a task t1 on
which another task t2 is dependent cannot be placed in a later partition than the par-
tition in which task t2 is placed. It has to be placed either in the same partition as t2
or in an earlier one.
8t2 ; 8t1 ! t2; 8p2 ; 1 � p2 � N � 1 :P

m12Mt1

P
p2<p1�N

yt1p1m1
+
P

m22Mt2

yt2p2m2
� 1 (2)

Memory Constraint: Data trans-

1

2

3

1

2

3

Temporal
Partitions

Tasks MODELLING EQUATIONS:

212
W *B(1,2) + W * B(1,3) + W * B(2,3) <= M213 223

RESULT EQUATIONS:

212

W *B(1,2) + W * B(1,3) + W * B(2,3) <= M312

W *B(1,2) + W * B(1,3) + W * B(2,3) <= M213 223

313 323W * B(1,3) + W * B(2,3) <= M

313 323 max

max

max

max

Fig. 6. Memory Constraints

fer across partition boundaries will
occur due to two dependent tasks be-
ing placed in di�erent temporal par-
titions. This intermediate data needs
to be stored between partitions and
should be less than the memory,Mmax,
of the recon�gurable processor. The
variable wpt1t2 , if 1, signi�es that t1

and t2 have a data dependency and are being placed across temporal partition p. There-
fore the data being communicated between them, B(t1; t2), will have to be stored in the
memory of partition p. The sum of all the data being communicated across a partition
should be less than the memory constraint of the partition.
8p; 1 � p � N :

P
t2T

P
p�p2�N

ytp2 � B(env; t) +
P

t2T

P
1�p3�p

ytp3 � B(t; env)+P
t22T

P
t1!t2

(wpt1t2 � B(t1; t2)) � Mmax (3)

Note that the variable wpt1t2 has to model communication among tasks which are both
on adjacent and non-adjacent temporal partitions. In Figure 6, we show how this vari-
able models data transfer. We show in the �gure the original equations used to model
the constraints in the example for Temporal Partitions 2 and 3. The result equations

show the variables which will be 1 in the mapping of tasks to partitions shown in the
example and the constraint which has to be satis�ed. wpt1t2 are 0-1 non-linear terms
constrained as -
8p; 1 � p � N; 8t2 2 T; 8t1 ! t2; : wpt1t2 �

P
1�p1<p

yt1p1 �
P

p�p2�N
yt2p2 (4)

8p; 1 � p � N; 8t2 2 T; 8t1 ! t2; : wpt1t2 � yt1p �
P

p+1�p2�N
yt2p2 (5)

Equations (4) and (5) are non-linear. We can use linearization techniques to transform
the non-linear equations into linear ones, so that the model can be solved by a Linear
Program solver. Linearization techniques have been used successfully before in [7] to
solve the combined temporal partitioning and synthesis problem.

Resource Constraint: The sum of area costs

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

300 ns 50 ns

150 ns

200 ns

100 ns

50 ns

200 ns

Total Execution Time = (400*k) + (300*k) + 2 *C

Temporal partition 1
Delay = 400 ns

Temporal partition 2
Delay = 300 ns

50 ns

100 ns

T

Fig. 7. Execution Time Estima-
tion

of all the tasks mapped to a temporal parti-
tion must be less than the overall resource con-
straint of the recon�gurable processor. Typi-
cal FPGA resources include function genera-
tors, con�gurable logic blocks etc. Similar equa-
tions can be added if multiple resource types
exist in the FPGA.
8p; 1 � p � N :P

m2Mt

P
t2T

(ytpm � R(m)) � Rmax (6)

Execution Time Constraint: The execution
time of a partition will be the maximum execu-
tion time among all the paths of the task graph
mapped to that partition. In Figure 7, we show
how the execution time for a partition is determined. The �nal mapping of tasks to
partitions, with the latency value for each task, is shown. In partition 1, three paths
are mapped. The latency of this partition is the greatest latency along a path mapped
to the partition, i.e., maximum among 350ns, 400ns, 150ns. The maximum latency in
partition 2 is 300ns. If the block-processing factor is k, then the execution time of the
partition is the latency multiplied to the block-processing factor. Formally the execu-
tion time of a temporal partition is given as -
8p; 1 � p � N; 8(ti

p
! tj) 2 P

l
p
!r

:
P

m2Mt

P
t2ti

p
!tj

(ytpm � D(m) � k) � dp (7)

All temporal partitions 1 � � �N used in the formulation, may not be used in the �nal so-
lution, if the tasks can �t in lesser number of partitions. To calculate the actual number
of partitions used in the solution, we determine the highest numbered partition used
by any leaf level task in the task graph by the following equation -
8t 2 Tl :

P
m2Mt

P
N

p=1
(p � ytpm) � � (8)

Now the execution time constraint on the overall design can be stated in terms of
equations (7) and (8) as -
� � CT +

P
N

p=1
dp � Da (9)

As discussed earlier, this constraint is used to search for a better solution as di�erent
partition bounds are being explored in Algorithm Refine Partition Bound in Figure
5.
Optimality Goal: The most optimal solution will be the design with the least exe-
cution time.
Minimize : � � CT +

P
N

p=1
dp (10)

The solution of this ILP model gives us the optimum temporal partitioning for the
give partition bound N , the block-processing factor k, and the set of design points for
the tasks. If the amount of intermediate memory required to process k computations
exceeds the memory constraint Mmax of the architecture then the user needs to reduce

k and temporally partition the design again.

4 Experimental Results

T1T1

T2T2

T1T1

T2T2

T1T1

T2T2

T1T1

T2T2

++

+

* * **

Const. Const. Const. Const.

++

+

* * **

Const. Const. Const. Const.

T1 = { * [9]; + [15 }; + [16] }

T2 = { * [17]; + [23]; + [24] }

Task Structure

Fig. 8. Task graph for DCT

We performed temporal partitioning on the Discrete Cosine Transform (DCT) [16]
which is the most computationally intensive part of the JPEG [17] algorithm. In this
study, the DCT is a collection of 16 tasks, the structure of a task is shown in Figure 8.
There are two kinds of task in the task graph, T1 and T2, whose structure is similar
but whose operations have di�erent bit widths. We obtained all the design points for
each kind of tasks, by using estimation tools on the individual tasks. The functional
units, area and latency costs for each is shown in Table 1.

Characteristics
Task Desgn. Pt. Area (CLBs) Latency (ns) �9 +16 �16 +24
T1 1 336 375 8 4

2 286 500 6 2
3 220 625 4 2
4 194 750 2 2
5 174 875 1 2

T2 1 396 420 8 4
2 356 560 6 2
3 292 700 4 2
4 276 840 2 2

Table 1. Design Points for DCT tasks

In Tables 2 - 4 we present the results of our temporal partitioning tool. In all the
tables, Rmax is the resource constraint of the FPGA, CT the recon�guration time, k
the block-processing factor, and N the number of partitions onto which the design
is partitioned. The latency of the �nal design (with the recon�guration overhead), is
shown in the column Latency. The execution time of the design for the k blocks of data
is given in the column Design Execution Time. Partitioner Run Time in seconds is the
time taken by our temporal partitioning tool to execute. All experiments were run using
an ILP solver called CPLEX on an UltraSparc Machine running at 175 MHz. In Table
2, we present the result of temporal partitioning and design space exploration of the
DCT for with and without block-processing factors. In Exp. 1, for a block-processing
factor of 3,000, our temporal partitioning tool explores 3 temporal partitions for the
design and results in a latency of 60,795 ns. In Exp. 2, with a block-processing factor
of 1 (i.e., no computations are being sequenced), the tool gives a minimum latency
design of 31,590 ns and uses just one temporal partition. This results in a statically
con�gured design. Even though, the latency of the statically con�gured design in Exp.
2 is less than that of Exp. 1, this is not the best possible solution. This is because,
if multiple computations are computed on both the static and RTR design, the RTR

Exp. Rmax (CLBs) CT (�s) k N Latency (ns) Design Execution Time Partitioner Run Time (s)
1 4,000 30 3,000 1 31,590 4,800 �s 1

2 60,795 2,445 �s 1
3 Infeasible

2 4,000 30 1 1 31,590 1
3 2,304 30 3,000 2 61,590 4,830 �s 11

3 91,215 3,735 �s 22
4 Infeasible

4 2,304 30 1 2 61,590 57

Table 2. Results for combined design-space exploration and block-processing

design will outperform the static design. For executing 3,000 computations, the RTR
design will take 2,445 � sec, while the static design will take 4,800 � sec. This is a 49%
improvement of the RTR design over the static design. Exp. 3 and 4 were performed
for di�erent FPGA size of 2,304 CLBs. In Exp. 3, again with a block-processing factor
of 3000, the optimal design takes 3 temporal partitions with the latency of the design
being 91,215 ns. For Exp. 4, the optimal latency of the design is 61,590 ns. Again, the
actual execution time of the design when the block-processing factor is considered while
exploring the design space is superior. In all experiments in Table 2 the recon�guration
time considered is similar to the Xilinx 6000 series FPGAs.

The experiments in Table 2 illustrate that combining block-processing and design
space exploration gives better temporal partitioning solutions. If the block-processing
factor is equal to 1, then the temporal partitioning tool will tend to pick the design
with minimum number of temporal partitions. If a relevant block-processing factor is
given the tool will search for a design with more temporal partitions, because block-
processing will amortize the e�ects of recon�guration overhead. So, since we understand
that the block-processing is necessary for good performance of a temporally partitioned
design, we must integrate this idea early in the design process, while partitioning and
design point selection is being performed.

Similar results will hold if the recon�guration overheads are varied. In Table 3,
we show results for di�erent recon�guration overheads. In Exp. 5 and 6, the recon-
�guration overhead is in nano-seconds (similar to the recon�guration overheads of
context-switching FPGAs like the Time Multiplexed FPGA [14]). In Exp. 7 and 8, the
recon�guration overhead is in milli-seconds (similar to commercially available recon�g-
urable hardware [15]). As the recon�guration overhead decreases we observe that for
small values of k, the exploration process chooses more temporal partitions. However,
for the recon�guration overheads in milli-seconds even for values of k as large as 3,000
the temporal partitioner chooses designs with minimum temporal partitions.
Exp. Rmax (CLBs) CT k N Latency (ns) Design Execution Time Partitioner Run Time (s)
5 2,304 30 ns 300 2 1,650 477.06 �s 17

3 1,305 364.59 �s 19
6 2,304 30 ns 50 2 1,650 79.56 �s 25

3 1,305 60.84 �s 7
7 2,304 3 ms 3,000 2 6,001,590 10,770 �s 80
8 2,304 3 ms 30,000 2 6,001,590 53,700 �s 29

3 9001,215 45,450 �s 36

Table 3. Results for di�erent recon�guration overheads

In Table 4, we illustrate how design space exploration is bene�cial. For same values
of the block-processing factor k, we perform experiment with and without design space
exploration. In Exp. 9, temporal partitioning is performed with only one design point
for each task, the minimal area design point. In Exp. 10, all the design points are
used. Again we observe that the tool chooses the most appropriate design points for
the given constraints, when multiple design points are given to it, and results in a 27%

improvement of the design in Exp. 10. Therefore design space exploration must be
integrated in the temporal partitioning process, rather than choosing the design point
before temporal partitioning is performed.
Exp. Rmax (CLBs) CT (�s) k N Latency (ns) Design Execution Time Partitioner Run Time (s)
9 2,304 30 3,000 2 31,715 5,145.6 �s 1

10 2,304 30 3,000 2 61,590 4,830 �s 22
3 91,215 3,735 �s 204

Table 4. Results for design-space exploration

5 Conclusion
The algorithms presented in this paper are integrated in the SPARCS (Synthesis

and Partitioning for Adaptive Recon�gurable Computing Systems) [5, 6] design en-
vironment being developed at the University of Cincinnati. SPARCS is an integrated
design system for automatically partitioning and synthesizing designs for recon�gurable
boards with multiple �eld-programmable devices (FPGAs). The SPARCS system con-
tains a temporal partitioning tool, a spatial partitioning tool, and a high-level synthesis
tool. For more details go to http://www.ececs.uc.edu/�ddel/projects/sparcs/sparcs.html.

References
1. R. D. Hudson, D. I. Lehn and P. M. Athanas, \A Run-Time Recon�gurable Engine for Image
Interpolation", IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998,
pp. 88-95.

2. M. Vasiliko and D. Ait-Boudaoud, \Architectural Synthesis for Dynamically Recon�gurable
Logic",International Workshop on Field-Programmable Logic and Applications, FPL 1996, pp.
290-296.

3. M. B. Gokhale and J. M. Stone, \NAPA C:Compiling for Hybrid RISC/FPGA Architectures",
IEEE Symposium on FPGAs for Custom Computing Machines, FCCM 1998, pp. 126-135.

4. I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri, \A Uni�ed Speci�cation
Model of Concurrency and Coordination for Synthesis from VHDL", International Conference
on Information Systems, Analysis and Synthesis, ISAS 1998, pp. 771-778.

5. I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and R. Vemuri, \An Integrated Partitioning
and Synthesis System for Dynamically Recon�gurableMulti-FPGA Architectures",Recon�gurable
Architectures Workshop in 12th International Parallel Processing Symposium and 9th Sympo-
sium on Parallel and Distributed Processing, IPPS/SPDP 1998, pp. 37-42.

6. S. Govindarajan, I. Ouaiss, M. Kaul, V. Srinivasan and R. Vemuri, \An E�ective Design Ap-
proach for Dynamically Recon�gurable Architectures", IEEE Symposium on FPGAs for Custom
Computing Machines, FCCM 1998, pp.312-313.

7. M. Kaul and R. Vemuri, \Optimal Temporal Partitioning and Synthesis for Recon�gurable Ar-
chitectures", Design and Test in Europe, DATE 1998, pp. 389-396.

8. M. Kaul, R. Vemuri, S. Govindarajan and I. Ouaiss, \An Automated Temporal Partitioning
Tool for a class of DSP applications", Workshop on Recon�gurable Computing in International
Conference on Parallel Architectures and Compilation Techniques, PACT 1998, pp. 22-27.

9. S. Trimberger, \Scheduling designs into a Time-Multiplexed FPGA", ACM/SIGDA Interna-
tional Symposium on Field Programmable Gate Arrays, FPGA 1998, pp. 153-160.

10. J. Roy, N. Kumar and R. Vemuri, \DSS: A Distributed High-Level Synthesis System for V HDL
Speci�cations", IEEE Design and Test of Computers, v9, n2, June 1992, pp. 18-32.

11. R. Dutta et. al, \Distributed Design Space Exploration for High-Level Synthesis Systems", 29th
Design Automation Conference, DAC 1992, pp. 644-650.

12. M. Wolf, High Performance Compilers for Parallel Computing, Addison-Wesley Publishers,
1996.

13. S. Y. Kung, VLSI Array Processors, Prentice Hall 1988.
14. S. Trimberger, \A Time-Multiplexed FPGA", IEEE Symposium on FPGAs for Custom Com-
puting Machines, FCCM 1997, pp. 22-28.

15. WILDFORCE Reference Manual, Document #1189 - Release Notes, Annapolis Micro Sys-
tems, Inc..

16. N. Narasimhan, V. Srinivasan, M. Vootukuru, J. Walrath, S. Govindarajan and R. Vemuri,
\Rapid Prototyping of Recon�gurable Coprocessors", International Conference on Application-
Speci�c Systems, Architectures and Processors, 1996.

17. G.K. Wallace, \The JPEG Still Picture Compression Standard", ACM Communications, 1991.

This article was processed using the LaTEX macro package with LLNCS style

