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Abstract 

The capability of fault tolerance is one of the ad- 
vantages of multiprocessor systems. In this paper, we 
shall prove the fault tolerance of star graphs is 2n - 5 

shall propose an algorithm for examining the connec- 

algorithm requires O(n310gn) tame. Besides, we im- 

Bagherzadeh et al. [5] by  calculating the cycle structure 

sage to a node without another nonfaulty neighbors. 

we shall propose an efficient fault-tolerant broadcast- 
ing algorithm. When no fault occurs, our broadcasting 
algorithm remains optimal. And the penalty is O(n2) 
i f  at most n - 2 faults exist. 

with restriction to the forbidden faulty set. And we 1324 4321 

tivity of star graphs when 2n - 4 faults exist. The 3412 2413 

prove the fault-tolerant routing algorithm proposed by  1423 

of a permutation and the avoidance of routing mes- 4123 

b 
This calculation needs only constant time. And then, 3142 2143 

Figure 1: A 4-dimensional star graph, S4. 

1 Introduction 

A multiprocessor system consists of a set of process- 
ing units and each of them has its own local memory. 
The processing units in a multiprocessor system are 
linked in some topology. What we are interested in is 
a topology proposed by Akers et al. [2,3], called star 
graph. 
An n-dimensional star graph can be represented by 

S,, = (V,,, E,,), where V,, consists of n! nodes in which 
each node is identified by one of the permutations of 
{ 1 , 2 , - . - , n ) .  For any a,b E V,,, (a ,b)  E E,, if and 
only if there exists some i ,  2 5 i L n,  such that a 
and b are identified as (p1 p2 ... pi-1 pi pi+l .. . p,,) 
and (pi p2 * * pi-1 p i  pj+l p n )  respectively. We 
write it as gi(a) = b. The notation SL represents 
an m-substar in S,, in which the (m + 1)th position 

symbol is 6. We illustrate S4 in Figure 1. The star 
graph is comparable to the hypercube in many as- 
pects. For example, both of them are edge symmetric, 
node symmetric, strongly hierarchical, bipartite and 
optimally fault tolerant. But star graphs offer a bet- 
ter degree and diameter than hypercubes. So the star 
graph structure has been considered as an attractive 
alternative to the hypercube structure. 

The rest of this paper is organized as follows. In 
Section 2 ,  we shall introduce previous work. In Sec- 
tion 3, we shall propose a generalized measures of fault 
tolerance. In Section 4, an improved fault-tolerant 
routing algorithm will be proposed. In Section 5,  a 
new fault-tolerant broadcasting algorithm will be pro- 
posed. Finally, this paper will be concluded in Section 
6. 
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2 Previous Work 
The optimal broadcasting algorithm on fault-free 

star graphs has been proposed by Mendia et al. [8]. 
Their algorithm can be done in the following two 
phases. First, they route the message to n - 2 nodes 
in S, with the first symbols coinciding with the sym- 
bols from second through (n - 1)th positions of the 
source node. These nodes are called relay nodes. 
Second, by applying gnl each of the n - 2 nodes will 
route the message to a unique sub-star. After these 
two phases, each Sn-1 of Sn has a COPY of the me5 
sage in one of their nodes. These nodes are called 
leader nodes which are responsible for broadcasting 
message in their own sub-stars. The same skill can be 
recursively applied until the dimension of the sub-stars 
becomes 1. 

The routing algorithm on faulty star graphs is pro- 
posed by Bagherradeh et al. [5], which is based on the 
greedy routing algorithm combined with depth first 
search [ 2 , 6 ] .  When there are at most n - 2 faults, the 
algorithm has penalty O(&. 

3 Generalized Measures of 
Fault Tolerance 

The fault tolerance of a star graph is equal to its 
connectivity minus 1 [1,4]. It is assumed that any sub- 
set of nodes in a star graph may be faulty at the same 
time. We can generalize the measure by restricting 
some subsets of nodes not to fail at the same time. 
Similar research on hypercubes has been proposed by 
Esfahanian [7]. 

Definition 1 [7] In a multiprocessor system, a sub- 
set of system components is  said to be a forbidden 
faulty set if the set of nodes does not potentially fail 
at the same tame. 

The connectivity of an Sn is n - 1 [1,4]. There are 
(,Tl) node subsets of size n - 1, only n! of them can 
disconnect S, (This will be proved later.). This ratio 
is very small, and it is getting smaller as n increases. 
Motived by above, for a node in Snl we define the 
forbidden faulty set as the set of the n - 1 neighbors 
of that node. For the convenience of representation, 
we define the following symbols. Let K'(S,) denote 
the number of faulty nodes needed to disconnect an 
S, with restriction of the forbidden faulty sets. Let 
A(G,v) denote the set of all nodes adjacent to v in 
G. And let FA-l denote the set of faulty nodes in the 
g-1. 

Figure 2: Two kinds of paths connecting U, to another 
node yn in some Sn-1 through xn. 

Theorem 1 K'(Sn) = 2n-4. 

Proof: Suppose F is the set of faulty nodes in S,. 
If IF1 = 2n - 4. We can derive that if the 2n - 4 
nodes adjacent to either node U or U, where U and v 
are adjacent, then the S, is disconnected. 

Now we want to show that S, is connected if 
IF1 5 2n - 5. An Sn can be decomposed into n Sn-1, 

say If there is no such i so 
thatlFA_,I 2 n - 2 (lF,!,-ll 5 n - 3 for all i), then 
S, is connected. So we suppose that there exists i 
such that lF,!,-ll 2 n - 2.  Without loss of generality, 
we assume that i = n.  Now we want to prove that 
each node in x-l - F,"_l is connected via a path to 
a node in S, - x-l. 

Let U, be an arbitrary node in graph xd1 - F,"_, 
and (U,, ui) be an edge from z-l to $,-1 for some 
i # n .  If ui 9 F, we have done. So assume that 
ui E F. Besides, A(Snr U,) is not a subset of F due to 
the forbidden faulty set. Hence - F,"_l , U,) is 
not empty. See Figure 2. Let Wn E A(%-, - F,"- 1, U,) 

and (wn , wj) be an edge from 5':- to Si-l for some 
j # n. If W j  9 F, we have done. So assume that w, E 
F. Let X = (A(Si-1, U n )  - {wn}) U (A(si-1, wn) - 
{un}). That is, X is the set of neighbors of Wn and U, 

in S:-, excluding themselves. Since there are n - 2 
neighbors for a node in %-l. So 1x1 = 2(n  - 2) - 2 = 
2 n - 6 .  Let F ' =  F-{ui,wj}. WehaveIF'I=2n-7. 
Thus, There must be at least one node in XI say x,, 
and (Xn,yk) is an edge from x-l to s:-l for some 
k # n ,  such that both Xn and yk are nonfaulty. This 

Si-1, . . . , x-l. 



Figure 3: Two paths from x to y. 

implies that in S, - F, a node U, is connected to 
another node in S, - S:-l via a path of length at 
most 3.  We complete our proof. I 

In Theorem 1, we have shown that an S, in which 
no node has all faulty neighbors can tolerate 2n - 5 
faulty nodes. Next, we shall propose an algorithm 
for determining whether an Sn is connected or not if 
2n - 4 faults exist. For identifying the correctness of 
our algorithm, three lemmas are needed. 

Lemma 1 Let F be the set of faulty nodes in S,. If 
F = A(Sn, v)U{v} for some v in S,, then graph Sn-F 
i s  connected. 

Proof: We shall prove the lemma by showing that for 
any pair of nonfaulty nodes in S, , there exists a path 
connecting them. 

Let z and y be two nonfaulty nodes in S,. We can 
construct a path from 2 to y by applying the optimal 
routing algorithm. If the path does not contain any 
node in F. We have done. Otherwise, there is at least 
one fault on the path. It must be one of the following 
two cases: 

and 
z+-..-+Z1-+gi(v)-by1 +. . .  + Y  

x + . . . -+ 21 ---* gi(v) + v + gj (v) + y1 + . . . -+Y 
where 21 denotes the last nonfaulty node before the 
faulty nodes and yl denotes the first nonfaulty node 
after the faulty nodes. In the first case, the path from 
x1 to y1 can be substituted by 2 1  -+ a1 -+ a2 + 03 + 

y1 where z ~ , u ~ , Q ~ , c I ~ ,  y1 and gi(v) form an S3. And 
in the second case, the distance between x1 and y1 is 
4. We can find nodes b l ,  b2 and b3 such that the path 
2 1  -+ bl + b2 -+ b3 -+ yl can be constructed.(See 
Figure 3.)  We complete our proof. I 

Lemma 2 Let F be the set of faulty nodes in S,. 
IF1 = n - 1 and S, - F is  disconnected if and only 
i f  F is a set of all neighbors of some node v in S,. 
S,, - F has exactly two components, one consisting of 
v, and the other consisting of Sn - F - {U}. 

Proof: (e) It is trivial. 
(a) Suppose there exists U, a neighbor of v, is non- 
faulty. It is not hard to see that U connects to all other 
nodes in S, - F, by an argument similar to the proof 
of Lemma 1. Thus Sn - F is connected. This is a 
contradiction. We complete our proof. I 

Lemma 3 Let F be the set of faulty nodes in Sn. 
Suppose that IF1 = 2n - 4 and for every node in S,, 
A(Sn,v) is not a subset of F .  S, - F is disconnected 
if and only if there exists an edge ( u , v )  in Sn such 
that F = (A(&, TI) - {U}) U (A(&, U) - {v}). 

Proof: (e) It is trivial. 
(a) Suppose it is not thecase, F # (A(S,,v)-{u})U 
(A(Sn,u) - {v}). We want to prove that S, - F is 
connected. If no S,- 1 has more than n - 2 faults, Sn - 
F is connected. And if only one Sn-l has more than 
n - 2 faults, applying the same proof technique as that 
of Theorem 1, we can show that S, - F is connected. 
So we suppose that there are two S,-ls having n - 2 
faults. Without loss of generality, we assume the two 
S,,-ls are and x-l. From Lemma 2, the two 
S,-ls are disconnected if and only if there exist nodes 
U and v such that the neighbors of both nodes in the 
same Sn-l are faulty. According to  our assumption, 
(u,v) is not an edge in S,. If both U and v connect 
to the Sn-l without fault, then S, - F is connected. 
Otherwise, either U or v connect to each other’s Sn-1 
or both. In this case, U or v can start from itself 
through w (w is a node in Sz-l - F - {v} or - 
F - {U}.) via a path to a node in S, - 
So S, - F is connected. This is a contradiction. We 
complete our proof. I 

whether S, - F is connected when IF1 5 2n - 4. 

- 

Now we shall propose an algorithm to determine 

Algorithm 1. Determine if S, is connected or not 
when IF[ 5 2n - 4. 

Case 1. IF1 < n - 1. S, - F is connected. 

Case 2. (n-1) 5 IF1 < (2n-4). Check ifthere exists 
a node v E S,, such that v # F and A(&,  U) in Sn 
is a subset of F. If the answer is yes, then Sn - F 
is disconnected; otherwise Sn - F is connected. 

Case 3. IF1 = 2n - 4. Check if there exists an 
edge (u ,v )  E S, such that (A(Sn,v) - {U}) U 
(A(Sn, U) - {v}) = F. If the answer is yes, then 
S, - F is disconnected; otherwise, S, - F is con- 
nected. 
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The detail of Case 3 in algorithm 1 is as follows. 

Algorithm 2. Algorithm of Case 3. 

Step 3.1 Select an arbitrary node x from F. 

Step 3.2 If F contains a node y whose distance to x 
is 3, then go to the next step. Otherwise return 
NO. 

Step 3.3 Find one pair of nodes, say U and w ,  be- 
tween z and y. 

Step 3.4 If (A(Sn,U) - { U ) )  U (A(Sn,V) - {U}) = F 
then return YES; otherwise return NO. 

Now we can analyze the time complexity of Algo- 
rithm l. In Case 2,  there are (n - 1)IFI nodes with 
at least one faulty neighbor. And each of these nodes 
has n - 2 neighbors to determine whether they are 
faulty nodes in F. The label of a node can be viewed 
as an unsigned real, and F is a sorted list. So it 
needs O(( (n  - l)IFl)(n - 2)log n) .  It is not diffi- 
cult to see that Case 3 requires O(n2)  time. We can 
conclude that the time complexity of Algorithm 1 is 
O(((n  - 1)IFl)(n - 2)log n) = 0(n310g n) .  

4 An Improved Fault-tolerant 
Routing Algorithm (IDSR) 

Before proposing our algorithm, we define some ter- 
minologies and give some assumptions first. 

Definition 2 A node which has a copy of message is 
said t o  be blocked if it cannot forward the message 
any further, that is, all i ts  neighbor nodes except the 
one it received message from, is faulty. 

Definition 3 A node of Sn is useless on dimen- 
sion i if the node connected t o  it by link i is faulty. 

Recall the two phases of the optimal broadcast- 
ing algorithm on fault-free star graphs 181. Any node 
which receives message from its ith dimension leader 
will then apply gi to transmit message to ( i  - 1)th 
dimension leader. If a node is useless on dimension i, 
then it cannot finish phase 2. Therefore it is useless 
for us, though it is nonfaulty. Assume that a node has 
a knowledge of which neighbor node is faulty. And a 
list of bits, useless list, is used to record the status 
of neighbors of one node. 

In our fault-tolerant broadcasting algorithm, there 
are two basic assumptions: (1) Faults are assumed to 
be in one or more nodes and with slight modification, 
we can also take link failures into consideration. ( 2 )  
A node has only the knowledge of the status of its 
neighbors. The status includes which one is faulty 
and which one is nonfaulty. Each node also maintains 
the useless lists of its neighbors. With the useless list, 
the blocked neighbors can be found out. 

The fault-tolerant routing algorithm proposed by 
Bagherzadeh et al. [5] is based on the depth first search 
strategy. The major overhead of this kind of algorithm 
is backtracking. What we focus on is how to decrease 
backtracking under limited information. This can be 
done by avoiding routing along blocked nodes. Be- 
sides, in their algorithm whenever a node p' of Sn 
receives a copy of message from another node p ,  it has 
to compute the cycle structure of p'. To achieve this 
purpose, it has to scan all n symbols of p'. In fact, this 
can be done more efficiently by working on p. In our 
algorithm, the cycle structure of the next node will 
be calculated by current node and form a part of the 
message. 

5 A Fault-tolerant Broadcast- 
ing Algorithm 

In the first phase of the broadcasting algorithm on 
fault-free star graphs proposed by Mendia et al. [8], 
they embed the relay nodes on a tree. Applying the 
rule on an SI,, we can derive a broadcasting tree. By 
preserving the leftmost symbol of each node and omit- 
ting the others, the tree is shown in Figure 4(a). These 
numbers can be viewed as positions. In other words, 
number i in the tree represents some node whose left- 
most symbol is the same as the i-th symbol of the 
source node. To achieve the purpose of phase one, we 
have to construct a tree in which all nodes are labeled 
from 1 to n - 1 and the root is always 1. We will 
define a variable 1. The 1 of the source (leader) node 
will be set to 1. When any other node receives the 
message, its 1 will be set to the dimension of the link 
from which that node received the message. At step 
i ,  1 5 i 5 [log(n - 1)1, the nodes storing the mes- 
sage will send the message through the link g1+2,-1 if 
1 +2'-' 5 2f'09(n-')1. However the tree is not unique. 
If any node represented by a number in the original 
tree is invalid (We will define it in the next para- 
graph.). It can be substituted if we can construct an 
isomorphic tree. Therefore, in our mechanism, when 
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16 12 14 10 15 11 13 9 

Figure 4: Broadcasting trees.(a) A broadcasting tree 
of SIT. (b) A broadcasting tree obtained from (a) after 
substituting 4 by 8 and 7 by 15. 

one or more faults occur, any faulty node can be s u b  
stituted by any one of its children in the tree. Af- 
ter the substitution, we can do the same calculation 
but if 1 + 2i-1 > 2r'Og("-')1 then the message will be 
send through (g~+~,-l )mo~(2r109(n-1)l 1) if the neighbor 
is valid. Otherwise we will do the substitution again. 
For example, in Figure 4(a), if the node represented 
by 2 is faulty, any even number smaller than 16 can 
substitute 2; if the node represented by 3 is faulty, 3 
can be substituted by 7,11 and 15, and so on. Figure 
4(b) is the tree obtained from Figure 4(a) when nodes 
represented by 4 and 7 are faulty. Our algorithm can 
also handle the case when n is not a power of 2. 

A node is valid if (1) it is nonfaulty, (2) it is not 
useless on dimension n and (3) at least one of its chil- 
dren in the broadcasting tree are nonfaulty. And a 
node is sub-valid if it only satisfies the first two con- 
ditions. 

Nevertheless, if the substitution cannot work. For 
example, if some leaf node is invalid. Since it has no 
children in the broadcasting tree, there is no substitu- 
tion can be done. Under the situation, we need to do 
backtracking. Figure 5 show an example of backtrack- 

Figure 5: Broadcasting trees of 
tively. 

and SI6 respec- 

ing: the 5'17 in Figure 5, which is the same as Figure 
4(b), if the node represented by 4 is still invalid, the 
node represented by 12 sends a backtracking message 
back to its parent node. If the parent node has a valid 
or subvalid neighbor of link 4, send the broadcasting 
message to that node. Otherwise, send the backtrack- 
ing message upward. The same skill can be recursively 
applied until the root node. Besides, when the node 
represented by 12 sends a backtracking message, it 
will let the node represented by 8 know that it has no 
valid children. Thus, in the next recursion, the node 
represented by 8 will try to send message along link 4 
first as shown the sl6 in Figure 5. 

After the backtracking has been done, the root node 
will has the collection of all lacking numbers if we still 
cannot build a complete broadcasting tree. Note that 
a complete broadcasting tree should have all nodes 
labeled with 1 through n - 1. At this moment, the 
root node has to do routing. Let U be the root node 
and i be one of the lacking numbers, U will route mes- 
sage to w(= gngi(u)) which is the closest node to U 
in the SA-l. The routing to several destinations can 
be done in pipeline. Since U has the knowledge of 
useless list of gi(u). If w is faulty, we will select a 
neighbor of w ,  says w', which is in the same smallest 
sub-star with w. The reason why we select such a w' 
is, in this way, we can localize the influence of w. Note 
that w' becomes the leader node if it is nonfaulty, and 
w' and w are in the same smallest sub-star. If the se- 
lected node cannot be reached, U will route message to 
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gn-1g2(uf), gn-1g3(vt),.. . i gn-1gn-2(vt), gn-l(v’) and 
some neighbor node of U’ in the same Sn-2 in the next 
recursion. That is, U will take the responsibility of U’ 
in route message to  exactly one node in each 
Sn-2 of Our algorithm can be divided into two 
phases as follows. 

Algorithm FTB (Fault-tolerant Broadcasting Al- 
gorithm) 

Phase 1 : 

1.1 If the source (leader) node has only one non- 
faulty neighbor then select the nonfaulty 
neighbor as a new source (leader) node. 

1.2 Construct the broadcasting tree and if in- 
valid nodes are encountered, try to do a 
substitution if possible. 

1.3 If there still is one or more nodes cannot 
be reached, keep track of the lacking num- 
bers. Note that a complete broadcasting 
tree should have all nodes labeled with 1 
through n - 1. 

Phase 2 : 

2.1 For any node which has recorded the lack- 
ing numbers, send the numbers and the 
FaultyChildren bit, which is set to 1 if 
all children of the node are invalid, to its 
parent. And when a node receives such a 
message, if there are some neighbor nodes 
whose leftmost symbol are the same as 
some lacking numbers, forward the mes- 
sage to those nodes and delete those lack- 
ing numbers. 

2.2 Each relay node forwards the message to a 
unique sub-star. 

2.3 For every lacking number i, the source 
(leader) node route the message to a node 
with the n-th symbol i using IDSR. If 
the selected node d cannot be reached, 
the source (leader) node will route mes- 
sage to nodes gn-l92(d), gn-lg3(d), . * * 1 

gn-lgn-~(d), gn-l(d) and some neighbor 
node of d in the same Sn-2 in the next 
recursion. 

If there is no faulty node in the star graph, algo- 
rithm FTB is optimal. Since under this condition, 
FTB is the same as the optimal broadcasting algo- 
rithm on fault-free star graphs. Therefore, FTB is 
optimal. 

Theorem 2 In an S,,, if  there is  only one fault, FTB 
has penalty at most 2n + 2. 
Proof: First we consider the case: n = 2m + 1 for 
some m E N 

Recall the tree constructed in phase 1 of FTB. The 
more children the faulty node has , the less penalty 
will be caused by it. Note that the only node which 
cannot be substituted and cannot do backtracking is 
the one with leftmost symbol y, denoted as U. 

If v is the faulty node, gn(v) and itself cannot be 
a leader in smaller sub-stars any more. Then from 
dimension n to 9, each has one node needed to 
route. The distance from the source to  those nodes 
is 2. Routing to these nodes needs 4 hops. So the 
total penalty is 

4 ( 9 )  = 2n + 2 
For the case when n is between 2m +2 and 2m+1 + 1 

for some m E N, the penalty is no more than 2n + 2. 
The proof is similar. I 

Theorem 3 In an S,,, if the number of faults i s  at 
most n - 2, FTB has penalty O(n2). 

Proof: Let r be the total number of nodes to which 
we should route data.Let d be the maximum distance 
from the source (leader) node to the destination for 
routing and p be the maximum number of penalty 
hops for routing one data element. Since the routing 
is performed in pipeline, total routing time needed in 
Step 2.3 is O(r + n(d + p)). And the routing is an 
extra work to broadcasting. Thus, the total penalty 
of FTB is O(r + n(d + p ) ) .  

Our IDSR has penalty a t  most O(fi), so p = 
O(Js;). The distance of nodes in S,, is O(n) .  Thus 
d = O(n) .  Since there are at most n - 2 faults, we 
want to find out the upper bound of r .  Let U de- 
note the source (leader) node. Suppose i is one of 
the lacking number such that gi(u) and gngi(u) are 
faulty. In the nth recursion, U originally has to route 
data to g,,gi(u). However, U has to route data to 

is also faulty. In the (n - 1)th recursion, U has to 
broadcast the message to n - 1 leader nodes by our 
IDSR. With this argument, U has to do extra routing 
to O(n)  nodes when a faulty node exists. It follows 
that r = O(n2) since there are a t  most n - 2 faults. 
Thus, the total penalty is O(n2). I 

We show an example in Figure 6, in which the 
source node is 12345. In the first phase of the 5th 

g2gn si( U) since gngi ( U) is faulty. Suppose g2gngi ( U) 
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broadcasting tree when faults are encountered. In 
this way, we can localize the influence of faulty nodes. 
Based on that, we proposed an efficient broadcasting 
algorithm on faulty star graphs. Our algorithm re- 
mains optimal when no fault occurs. And the total 
penalty is O(n2) if at most n - 2 faults exist. 

Although the star graph structure has been pro- 
posed for a couple of years. There are still a lot of 
open problems in this field, We would be glad to see 
that more and more researchers pay attention to the 
nice properties of star graph structure and work on 
it. 

Figure 6: An example of FTB on S5. 

recursion, since 21345 is faulty, 42315 takes its place. 
In the second phase, applying 95, each S4 has a unique 
leader node. We omit the further progress in S4 with- 
out fault. In the 4th recursion, 12345 is the leader 
node of St. Since 21345 is faulty and no substi- 
tution can be found, 12345 needs to route message 
to g4g2(12345) = 41325. Since the leader node of 
Si is 52314, and 25314 is uselees on dimension 4, 
52314 should route data to g2g4g2(52314) = 51324. 
In 3rd recursion, since 51324 is faulty, 52314 should 
route to {g~g2(51324), gs(51324)) = (35124,31524). 
Again, since 21345 is faulty, 12345 should route.to 
gs(21345) = 31245. 

6 Concluding Remarks 

In this paper, we have introduced a generalized 
fault tolerance measure, the forbidden faulty set, for 
star graphs. We proved that the fault tolerance of 
S, is 2n - 5 with restriction to the forbidden faulty 
sets. We also proposed an algorithm for determining 
whether an S, is connected if a set of 2n - 4 faults is 
given. The algorithm requires O(n310g n) time. 

Data routing and broadcasting are two basic and 
important issues in multiprocessor systems. We im- 
proved the fault-tolerant routing algorithm proposed 
by Bagherzadeh et al. [5] to make it more efficient. We 
also proposed a mechanism to generate a fault-tolerant 
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