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Abstract—The goal of this paper is to design a statistical test
for the camera model identification problem. The approach is
based on the heteroscedastic noise model which describes more
accurately a natural raw image. This model is characterized by
only two parameters which are considered as unique fingerprint
to identify camera models. The camera model identification
problem is cast in the framework of hypothesis testing theory.
In an ideal context where all model parameters are perfectly
known, the Likelihood Ratio Test (LRT) is presented and its
performances are theoretically established. For a practical use,
two Generalized Likelihood Ratio Tests (GLRT) are designed to
deal with unknown model parameters so that they can meet a
prescribed false alarm probability while ensuring a high detection
performance. Numerical results on simulated images and real
natural raw images highlight the relevance of the proposed
approach.

Index Terms—Hypothesis Testing, Digital Forensics, Camera
Model Identification, Natural Image Model, Nuisance Parame-
ters.

I. INTRODUCTION

D IGITAL forensics has received a great attention from law
enforcement agencies and academic researchers in the

past decades. Because of dramatic advancement in computing
and network technologies, the accessibility and transmission
of digital images have been increased remarkably. These
technologies have been misused by criminals with unlawful
or unethical activities. Consequently, the reliability and trust-
worthiness of digital images have been questioned when used
as evidence in legal and security domains. Reliable forensic
methods are urgently needed by law enforcement agencies to
deal with criminal and malicious purposes.

A. State of the Art

Digital image forensics concerns two key problems: image
origin identification and image forgery detection (see [1]–[3]
and the references therein for general surveys). The image
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origin identification aims to verify whether a given digital
image was acquired by a specific device or a certain camera
model. The image forgery detection aims to detect any act
of manipulation such as splicing, removal or adding in an
image. There are two approaches to address these problems.
Digital watermarking is regarded as an active approach. It has
some limitations [3] because the embedding mechanism must
be available and the credibility of information embedded in
the image remains questionable. Passive forensics has been
increasingly studied in the past decade since no watermark
or prior information of the image including the availability
of original image is required in its operation mechanism.
Passive forensics methods rely on camera fingerprints left
in the given image to identify its origin and to verify its
authenticity. These fingerprints are extracted by investigating
the image acquisition pipeline; see [4]–[6] for an overview of
the structure and processing stages of a typical digital camera.

Passive forensic methods proposed for the image origin
identification problem can be divided into two following
fundamental categories:

1) Methods in the first category work on the assumption
that there are differences in image processing techniques
and component technologies among device models. Lens
aberration [7], Color Filter Array (CFA) interpolation
and demosaicing algorithms [8]–[12], JPEG compres-
sion [13] are considered as influential factors for camera
model identification while white balancing algorithms
[14] are used for source device identification. Based
on these factors, a forensic feature set is provided
and used in the machine learning algorithm. The main
challenge is that the image processing techniques remain
identical or similar, and the components produced by
a few manufacturers are shared among camera models.
Moreover, as in all application of machine learning, it
is difficult to select an accurate feature set. Besides, the
analytic establishment of detection performance remains
an open problem [15].

2) Methods in the second category aim to identify unique
characteristics or fingerprints of the acquisition device.
Sensor Pattern Noise (SPN) is caused by imperfections
during the manufacturing process and non-uniformity of
photo-electronic conversion due to inhomogeneity of sil-
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icon wafers. This is a unique fingerprint which the meth-
ods are mainly based on to identify the source device.
The reader is referred to [16] for the first version of this
work and [17]–[21] for the enhanced version. Moreover,
the Photo-Response Non-Uniformity noise (PRNU) was
also used in [22] for camera model identification based
on the assumption that the fingerprint obtained from
images in the TIFF or JPEG format contains traces of
post-acquisition processes (e.g. demosaicing) that carry
information about the camera model. It is necessary to
note that the two main components of the SPN are the
Fixed Pattern Noise (FPN) and the PRNU. The FPN,
which was used in [23] for the device identification,
can be compensated by subtracting a dark frame from
the output image. Therefore, the FPN is not a robust
fingerprint and no longer used in later works. The PRNU
is directly exploited in some works [17], [18], [21]. The
ability to reliably extract this noise from the given image
is the main challenge in this category. Another challenge
is the forgery of the image origin due to counter-forensic
activities [24]. However, the existing methods have been
designed with a very limited exploitation of hypothesis
testing theory and statistical image models. Therefore,
their performance remains analytically unestablished.

B. Main Contributions of the Paper
In an operational context, the design of an accurate detector

might not be sufficient. Such context requires a test with
analytically predictable results guaranteeing a prescribed false
alarm rate. This paper aims to design such a statistical test
based on the heteroscedastic noise model for the camera model
identification. The approach involves the theory of statistical
hypothesis testing [25]. Our previous work [26] has designed
a Generalized Likelihood Ratio Test (GLRT) to deal with un-
known image parameters assuming that the camera parameters
are perfectly known. The previous work is extended in this
paper to deal with unknown camera parameters in a practical
context. The main contributions are the following :
• Far from the conventional Additive White Gaussian

Noise (AWGN) model widely used in image processing,
the proposed approach is based on the heteroscedastic
noise model which describes more accurately natural
images [27]–[29]. By physically modeling the image pro-
cessing pipeline, the model consists of a Poissonian part
that addresses the photon shot noise and dark current and
a Gaussian part for the remaining stationary disturbances,
e.g. read-out noise. The heteroscedastic property gives the
noise variance as a linear function of pixel’s mathematical
expectation. The heteroscedastic noise model is charac-
terized by two camera parameters that can be reliably
extracted from a given image and exploited as unique
fingerprint to identify camera models.

• The above parametric image model allows to design an
optimal detector that is given by the Likelihood Ratio Test
(LRT) in an ideal context where all model parameters are
known. This optimal detector serves as an upper-bound
of any statistical test for the camera model identification
problem.
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Fig. 1: Scatter-plot of pixels’ expectation and variance from a
natural raw image [30].

• The paper proposes two Generalized Likelihood Ratio
Tests (GLRT) to be adapted for a practical context. The
first GLRT is designed to deal with unknown image
parameters when assuming that camera parameters are
known and the second one for all unknown model pa-
rameters. The statistical performance of these GLRTs
is analytically established. Moreover, the proposed tests
allow the guaranteeing of a prescribed false-alarm rate
and the setting of decision threshold independently of the
image content, which is crucial for an operation context.

C. Organization of the Paper

The paper is organized as follows. Section II describes
the heteroscedastic noise model and presents camera fin-
gerprints to be exploited in this paper. Section III details
the methodology for an estimation of camera fingerprints.
Section IV states the camera model identification problem
in the framework of hypothesis testing theory and studies
an optimal detector assuming that all model parameters are
known. Section V designs a GLRT to address the difficulty of
unknown image parameters. Section VI addresses the context
where the image parameters and the camera parameters are
all unknown. Section VII presents numerical results of two
proposed GLRTs on simulated and real natural raw images.
Section VIII discusses about strengths and limitations of the
proposed approach. Finally, Section IX concludes the paper.

II. CAMERA FINGERPRINT

A. Heteroscedastic Noise Model

This paper deals with natural images which are acquired by
a digital imaging sensor. Let us assume that a natural image is
a vector Z = {zi}i∈I of N pixels where I = {1, . . . , N} is
the index set of pixels. By investigating the image acquisition
process, a physical model of natural raw images is given in
[29]. The photo-electron conversion essentially consists in a
counting process which can be modeled as a Poisson process.
The number of collected electrons, denoted Nei, is the sum of
the electrons generated by the incident photons Npi and the
dark electrons Nti generated by thermal noise. Accordingly,
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the number of collected electrons Nei is given by

Nei ∼ P(ηiNpi +Nti) (1)

where P(·) represents the Poisson distribution and ηi is a
conversion factor representing filter transmittance and quantum
efficiency. It is assumed that the photo-sensitivity and the
thermal noise are constant for every pixel. For the sake of
clarity, the index i is therefore omitted from η and Nt. The
number of collected electrons is then transferred to a read-
out unit. During the read-out process, the recorded signal is
corrupted by different sources of electronic noise which all
can be modeled as a zero-mean Gaussian random variable ξi
with variance ω2, (see details in [29]). This Gaussian noise is
stationary and independent of the signal. The noisy raw pixel
intensity zi is finally given by:

zi = g · (Nei + ξi) (2)

where g is the analog gain controlled by the choice of the ISO
sensitivity setting. It is important to note that raw pixels are
statistically independent [28], [29], i.e. the noise corrupting
each pixel is independent of those of neighbor pixels. For
the sake of simplification, the normal approximation of the
Poisson distribution may be exploited because of a large
number of counted electrons. It follows that

zi ∼ N (µi, aµi + b) (3)

where N (·) represents the Gaussian distribution, µi = g ·
(ηNpi + Nt) is the expected value of raw pixel zi and the
parameters (a, b) are given by the following relation

a = g and b = g2ω2. (4)

In this paper it is assumed that the phenomenon of clipping
is absent from a natural raw image, i.e. the probability that
one observation zi exceeds over the boundary 0 or 2B − 1
is negligible (see details about the phenomenon of clipping
in [27], [28]. The statistical distribution of raw pixel and
the heteroscedastic relation become non-linear, which cause
a difficulty of designing the statistical test. This difficulty lies
outside the scope of the paper. Accordingly, the phenomenon
of clipping will not be studied in this paper.

B. Camera Parameter Property

In some digital imaging sensors, the collected electrons Nei
may be added by a base pedestal parameter p0 to constitute
an offset-from-zero of the output pixel [28]

zi = g ·
[
p0 + P(ηiNpi +Nti − p0) +N (0, ω2)

]
. (5)

Hence, the parameters (a, b) are now given by

a = g and b = g2ω2 − g2p0. (6)

Therefore, the parameter b can be negative when p0 > ω2, see
Fig. 2.

From the relation (4) and (6), the camera parameters (a, b)
mainly depend on the ISO sensitivity via the analog gain g. If
the digital imaging sensor does not add a pedestal parameter
p0, the parameter a is proportional to ISO sensitivity while the
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Fig. 2: Estimated camera parameters (a, b) on 20 raw images
of different camera model with ISO 200.
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Fig. 3: Estimated camera parameters (a, b) of different devices
per camera model with ISO 200 and different camera settings.

parameter b is proportional to its square. It should be noted that
other camera settings such as integration time, shutter speed
or focal length can also affect the parameters (a, b). However,
those effects are very small compared with the effect of ISO
sensitivity. Therefore, this paper addresses the effect of ISO
sensitivity and allows a variation of other camera settings.

In fact, in the relation (4) and (6), the parameter a may not
be equal to the analog gain g in practice due to the spatial
variation in the pixel response, e.g. PRNU. However its effect
is negligible in the heteroscedastic noise model. Moreover,
this can be also justified due to the fact that the estimation
methodology of the parameters (a, b) works on assumption
that the pixels are independent and identically distributed in
each homogeneous segment extracted by the segmentation (see
Section III).

The heteroscedastic noise model (3) characterizes the re-
sponse of a digital imaging sensor. This noise model accounts
for the noises corrupting the raw image at the sensor output.
Moreover, this noise model shows a linear relation between
pixel’s expectation and variance. An example is given in
Fig. 1 which illustrates the heteroscedastic relation between
pixels’ expectation and variance for Nikon D70 and Nikon
D200 from the Dresden image database [30]. For a fixed ISO
sensitivity, the camera parameters (a, b) are discriminative for
different camera models. The Fig. 1 and Fig. 2 illustrate the
discriminability of parameters (a, b). However, the parameters
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(a, b) can not separate different devices of the same model
because of the same sensor characteristics, see Fig. 3. This
paper proposes to exploit the camera parameters (a, b) for
camera model identification.

III. CAMERA PARAMETER ESTIMATION

details and edges) in the homogeneous regions. Therefore,
the outliers need to be removed from homogeneous regions
to achieve more accurate local estimates, leading to more
accurate noise model parameters.

It is important to remind that the paper focuses on designing
a GLRT with analytic performance. Therefore, the camera
parameters (a, b) need to be estimated based on the Maximum
Likelihood (ML) approach. The ML estimates of parameters
(a, b) were first proposed in [28]. However, they can not be
analytically given due to a difficulty of finding a solution
of the first derivative of likelihood function. They are only
numerically solved in the framework of maximization problem
of likelihood function by using the Nelder-Mead optimization
method [31]. Although this method estimates the parameters
(a, b) with relative accuracy, it involves three main drawbacks.
First, the convergence of the maximization process and the
sensitivity of the solution to initial conditions have not been
analyzed yet. Second, the Bayesian approach is used in [28]
with a fixed uniform distribution which might be doubtful
in practice. Finally, it is too difficult to provide statistical
properties of the estimates. This leads to an impossibility
of analytically establishing the statistical performance of the
GLRT.

In regards to these drawbacks, this paper proposes an
estimation of parameters (a, b) based on the WLS approach
[32], [33]. As explained in [32], [33], when the weights are
consistently estimated, the WLS estimates are asymptotically
equivalent to the ML estimates in large samples. Accordingly,
they can be used to design the GLRT.

This paper follows the segmentation method proposed
in [28] (see more details in [28]). The image Z is first
transformed into the wavelet domain and then segmented
into K non-overlapping homogeneous segments, denoted Sk,
of size nk, k ∈ {1, . . . ,K}. In each segment Sk, pixels
are supposedly independent and identically distributed. Let
zwapp
k = {zwapp

k,i }
nk
i=1 and zwdet

k = {zwdet
k,i }

nk
i=1 be respectively

the vector of wavelet approximation coefficients and wavelet
detail coefficients representing the segment Sk. Because trans-
formation is linear, the coefficients zwapp

k,i and zwdet
k,i also

follow the Gaussian distribution

zwapp
k,i ∼ N (µk, ‖ϕ‖22 σ2

k) (7)

zwdet
k,i ∼ N (0, σ2

k) (8)

where σ2
k = aµk + b and ϕ is the 2-D normalized wavelet

scaling function. Hence, the ML estimates of local mean µk
and local variance ν̂k are given by

µ̂k =
1

nk

nk∑
i=1

zwapp
k,i (9)

ν̂k =
1

nk − 1

nk∑
i=1

(zwdet
k,i − zwdet

k )2 (10)

where zwdet
k = 1

nk

∑nk
i=1 z

wdet
k,i . The estimate µ̂k is unbiased

and follows the Gaussian distribution

µ̂k ∼ N (µk, ckσ
2
k) (11)

where ck =
‖ϕ‖22
nk

while the estimate ν̂k follows a scale chi-
square distribution with nk − 1 degrees of freedom. This dis-
tribution can also be accurately approximated as the Gaussian
distribution for large nk [34]:

ν̂k ∼ N (σ2
k, ekσ

4
k) (12)

where ek = 2
nk

. The Fig. 1 shows a scatter-plot of all the pairs
{(µ̂k, ν̂k)} extracted from a real natural raw image of Nikon
D70 and Nikon D200 cameras.

The parameters (a, b) are estimated by considering all the
pairs {(µ̂k, ν̂k)}Kk=1 where the local variance ν̂k is treated as
a heteroscedastic model of the local mean µ̂k. This model is
formulated as follows [33]

ν̂k = aµ̂k + b+ skεk (13)

where εk are independent and identically distributed as stan-
dard Gaussian and sk is a function of the local mean µk. A
direct calculation shows that

s2k = Var
[
ν̂k
]
−Var

[
aµ̂k + b

]
= ekσ

4
k − a2ckσ2

k

= ek(aµk + b)2 − a2ck(aµk + b). (14)

The heteroscedasticity in the model (13) is governed by dif-
ferent sk. The WLS approach aims to minimize the weighted
residuals and provide a fitted model. A popular strategy for
estimating (a, b) is to first obtain estimates ŝ2k of the residuals
s2k and then apply WLS approach using weights ŵk = 1

ŝ2k
. The

residuals s2k are estimated using the Ordinary Least Squares
(OLS) estimates [35] (âL, b̂L) which are given by :(

âL
b̂L

)
= (HTH)−1HTV (15)

where

H =

 µ̂1 1
...

...
µ̂K 1

 V =

 ν̂1
...
ν̂K

 .

Therefore, the consistent estimates ŝ2k can be directly com-
puted as

ŝ2k = ek(âLµ̂k + b̂L)2 − â2Lck(âLµ̂k + b̂L). (16)

By using the estimated weights ŵk = 1
ŝ2k

, the WLS estimates
are defined by (

â

b̂

)
= (HTWH)−1HTWV (17)

where W = diag(ŵ1, . . . , ŵK). The WLS estimates follow
the asymptotic bivariate Gaussian distribution(

â

b̂

)
∼ N

((
a
b

)
,Σab

)
(18)
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where Σab denotes the asymptotic covariance matrix of WLS
estimates (â, b̂)

Σab =

(
σ2
a σab

σab σ2
b

)
.

Here, σ2
a, σ2

b , σab denote respectively the variance of â,
the variance of b̂ and the covariance between â and b̂. The
covariance matrix Σab is defined in Appendix A.

IV. OPTIMAL DETECTOR FOR CAMERA MODEL
IDENTIFICATION PROBLEM

A. Hypothesis Testing Formulation

The paper aims to identify camera models based on the
heteroscedastic noise model (3). The camera model identifi-
cation problem is cast in the framework of hypothesis testing
theory. Let analyze two camera models 0 and 1. Each camera
model j, j ∈ {0, 1} is characterized by two parameters (aj , bj)
for a fixed ISO sensitivity. In a binary hypothesis testing, the
inspected image Z = {zi}i∈I is either acquired by camera
model 0 or camera model 1. The goal of the test is to decide
between two hypotheses defined by ∀i ∈ IH0 =

{
zi ∼ N (µi, a0µi + b0)

}
H1 =

{
zi ∼ N (µi, a1µi + b1), (a1, b1) 6= (a0, b0)

}
.

(19)

As previously explained, this paper focuses on guaranteeing a
prescribed false-alarm probability. Hence, let

Kα0
=
{
δ : sup

θ
PH0

[
δ(Z) = H1

]
≤ α0

}
be the class of tests with a false alarm probability upper-
bounded by α0. Here PHj (E) stands for the probability of
event E under hypothesis Hj , j ∈ {0, 1}, and the supremum
over θ has to be understood as whatever model parameters
might be. Among all the tests in the class Kα0 , it is aimed at
finding a test δ which maximizes the power function, defined
by the correct detection probability:

βδ = PH1

[
δ(Z) = H1

]
.

The problem (19) highlights three fundamental difficulties
of the camera model identification. First, even when all model
parameters (µi, aj , bj), i ∈ I, j ∈ {0, 1}, are known, the most
powerful test, namely the LRT, has never been studied in the
literature.

The second difficulty concerns unknown image parameters
µi in practice. A possible approach to deal with unknown
parameters consists in eliminating them by using the invari-
ance principle [25]. This approach has been discussed in [36],
[37] and has achieved a good performance in some applica-
tions [38]. However, in the heteroscedastic noise model, the
image parameter µi appears in both mathematical expectation
and variance of the pixel zi. The invariant approach may not be
applied due to a difficulty of finding a group of transformation
under which the problem remains invariant. Another approach
is to design a GLRT by replacing the unknown parameters
by ML estimates [39]. The main challenge of this approach
is to provide accurate ML estimates with statistical properties

in order to analytically establish the detection performance of
the GLRT.

Finally, the two hypotheses H0 and H1 are composite be-
cause the camera parameters (a0, b0) and (a1, b1) are unknown
in practice. For the sake of clarity, this paper assumes that the
camera parameters (a0, b0) are known and it only solves the
problem in which the alternative hypothesis H1 is composite,
i.e. the camera parameters (a1, b1) are unknown. It can be
noted that a test that maximizes the detection power whatever
(a1, b1) might scarcely exist. The main goal of this paper is to
study the LRT and to design the GLRT to address the second
and third difficulties.

Moreover, it should be highlighted that the GLRT dealing
with unknown image parameters when the camera parameters
are known can be interpreted as a closed hypothesis testing
where a given image is either acquired by camera model
0 or camera model 1. Meanwhile, the GLRT dealing with
unknown camera parameters (a1, b1) becomes an open hy-
pothesis testing in which whether a given image is acquired
by camera model 0. The given image is allowed to be acquired
by an unknown camera model. Therefore, two proposed tests
can be straightforwardly applied, depending on the demanding
context.

B. Likelihood Ratio Test for Two Simple Hypotheses

When all model parameters are known, in virtue of the
Neyman-Pearson lemma [25, theorem 3.2.1], the most power-
ful test δ solving the problem (19) is the LRT given by the
following decision rule

δ(Z) =


H0 if Λ(Z) =

∑
i∈I

Λ(zi) < τ

H1 if Λ(Z) =
∑
i∈I

Λ(zi) ≥ τ
(20)

where the decision threshold τ is the solution of the equation

PH0

[
Λ(Z) ≥ τ

]
= α0 (21)

to ensure that the LRT is in the class Kα0
. The Likelihood

Ratio (LR) of one observation zi is defined by

Λ(zi) = log
(σi,0
σi,1

)
+
σ2
i,1 − σ2

i,0

2σ2
i,1σ

2
i,0

(zi − µi)2

=
1

2
h1(µi) +

1

2
h2(µi)(zi − µi)2 (22)

where the variance σ2
i,j = ajµi + bj and two functions h1(x)

and h2(x) are defined by

h1(x) = log
a0x+ b0
a1x+ b1

(23)

h2(x) =
1

a0x+ b0
− 1

a1x+ b1
. (24)

In order to analytically establish the statistical performance
of the LRT, it is necessary to characterize the statistical
distribution of the LR Λ(Z) under each hypothesis Hj . From
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zi ∼ N (µi, σ
2
i,j), j ∈ {0, 1}, the two first moments of Λ(zi)

under hypothesis Hj are given by

EHj
[
Λ(zi)

]
=

1

2
h1(µi) +

1

2
h2(µi)σ

2
i,j (25)

VarHj

[
Λ(zi)

]
=

1

2
h22(µi)σ

4
i,j (26)

where EHj [·] and VarHj [·] denote respectively the mathemat-
ical expectation and variance under hypothesis Hj . Because
of a large number of pixels in any natural image, in virtue
of the Lindeberg Central Limit Theorem (CLT) [25, theorem
11.2.5], the statistical distribution of the LR Λ(Z) is given by

Λ(Z)
D−→ N

(
mj , vj

)
under Hj , j ∈ {0, 1}, (27)

where the notation D−→ denotes the convergence in distribution
and

mj =

N∑
i=1

[
1

2
h1(µi) +

1

2
h2(µi)σ

2
i,j

]
(28)

vj =

N∑
i=1

1

2
h22(µi)σ

4
i,j . (29)

Since a natural raw image is heterogeneous, it is proposed to
normalize the LR Λ(Z) in order to set the decision threshold
independently of the image content. The normalized LR is
defined by

Λ?(Z) =
Λ(Z)−m0√

v0
. (30)

Accordingly, the corresponding test δ? is rewritten as follows

δ?(Z) =

{
H0 if Λ?(Z) < τ?

H1 if Λ?(Z) ≥ τ?
(31)

The fact of normalizing the LR Λ(Z) allows the test δ? to
be applicable to any natural raw image since the normalized
LR Λ?(Z) follows the standard Gaussian distribution under
hypothesis H0. The decision threshold τ? and the power
function βδ? are given in two following theorems.

Theorem 1. Assuming that all the model parameters
(µi, aj , bj), i ∈ I, j ∈ {0, 1} are exactly known, the decision
threshold of the test δ? is given by

τ? = Φ−1(1− α0) (32)

where Φ(·) and Φ−1(·) denotes respectively the cumulative
distribution function of the standard Gaussian random vari-
able and its inverse.

Theorem 2. The power function of the test δ? is given by

βδ? = 1− Φ

(
m0 −m1 + τ?

√
v0√

v1

)
. (33)

The detection power βδ? serves as an upper-bound of any
statistical test for the camera model identification problem.
The test δ? allows to warrant a prescribed false alarm rate
and maximizes the detection probability. Since its statistical
performance is analytically established, it can provide an
analytically predictable result for any false alarm probability
α0.

In fact, the LRT aims at finding a decision using the ratio
between the Maximum Likelihood function of a given image
under alternative hypothesis H1 characterized by the camera
parameters (a1, b1) and its Maximum Likelihood function
under null hypothesis H0 characterized by the camera pa-
rameters (a0, b0). If this ratio is smaller than a threshold,
the null hypothesis H0 is accepted. Conversely, the alternative
hypothesis H1 is accepted. Therefore, the smaller the distance
between two points (a0, b0) and (a1, b1) is, the more difficult
the camera model identification is.

V. GENERALIZED LIKELIHOOD RATIO TEST WITH
UNKNOWN IMAGE PARAMETERS

The GLRT designed in this section deals with the difficulty
of unknown image parameters µi assuming that the camera
parameters (a0, b0) and (a1, b1) are known, i.e. the inspected
image Z is either acquired by camera model 0 or camera model
1.

It can be noted that the number of unknown image pa-
rameters µi grows with the number of pixels N . Therefore,
a preprocessing stage consisting in segmenting the inspected
image Z into K non-overlapping homogeneous segments Sk
of size nk is performed to reduce the number of unknown
parameters. Using the ML estimates µ̂k defined in (9), the
GLRT δ̂1 is designed as follows

δ̂1 =


H0 if Λ̂1(Z) =

K∑
k=1

nk∑
i=1

Λ̂1(zwapp
k,i ) < τ̂1

H1 if Λ̂1(Z) =

K∑
k=1

nk∑
i=1

Λ̂1(zwapp
k,i ) ≥ τ̂1

(34)

where, again to ensure δ̂1 to be in the class Kα0
, τ̂1 is the

solution of the equation

PH0

[
Λ̂1(Z) ≥ τ̂1

]
= α0 (35)

and the Generalized Likelihood Ratio (GLR) Λ̂1(zwapp
k,i ) is

given by

Λ̂1(zwapp
k,i ) =

1

2
h1(µ̂k) +

1

2
h2(µ̂k)

(zwapp
k,i − µ̂k)2

‖ϕ‖22
. (36)

By invoking again the Lindeberg CLT, the statistical distribu-
tion of the GLR Λ̂1(Z) under hypothesis Hj , j ∈ {0, 1}, is
given by (see details in Appendix B)

Λ̂1(Z)
D−→ N

(
m

(1)
j , v

(1)
j

)
(37)

where m(1)
j and v(1)j are respectively the mathematical expec-

tation and variance of the GLR Λ̂1(Z)

m
(1)
j =

K∑
k=1

nk
2

[
h1(µk) + h2(µk)σ2

k,j

(
1 +

1

nk

)]
(38)

v
(1)
j =

K∑
k=1

nk
4

[
(h′1(µk))2ckσ

2
k,j + 2h22(µk)σ4

k,j

(
1 +

1

nk

)2
+ 3(h′2(µk))2ckσ

6
k,j

(
1 +

1

nk

)2]
(39)
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Fig. 4: The detection performance of the test δ̂?1 with 50 pixels
selected randomly on simulated images.

where σ2
k,j = ajµk + bj and two derivatives h′1(x) and h′2(x)

are defined in (101) and (102), respectively.
Similar to the LRT, the normalized GLR Λ̂?1(Z) is given by

Λ̂?1(Z) =
Λ̂1(Z)−m(1)

0√
v
(1)
0

. (40)

However, the expectation m
(1)
0 and the variance v

(1)
0 are

not defined since the image parameters µk are unknown in
practice. It is proposed to replace µk by µ̂k to obtain the
estimates of m(1)

0 and v(1)0 , denoted m̂(1)
0 and v̂(1)0 respectively

Λ̂?1(Z) =
Λ̂1(Z)− m̂(1)

0√
v̂
(1)
0

. (41)

The corresponding test δ̂?1 is rewritten as follows

δ̂?1(Z) =

{
H0 if Λ̂?1(Z) < τ̂?1

H1 if Λ̂?1(Z) ≥ τ̂?1
(42)

From the Slutsky’s theorem [25, theorem 11.2.11], one ob-
tains straightforwardly the decision threshold and the power
function of the test δ̂?1

Theorem 3. When the parameters (a0, b0) and (a1, b1) are
known, the decision threshold of the test δ̂?1 is given by

τ̂?1 = Φ−1(1− α0). (43)

Theorem 4. The power function of the test δ̂?1 is given by

βδ̂?1
= 1− Φ

m(1)
0 −m

(1)
1 + τ̂?1

√
v
(1)
0√

v
(1)
1

 . (44)

VI. GENERALIZED LIKELIHOOD RATIO TEST WITH
UNKNOWN IMAGE AND CAMERA PARAMETERS

This section designs a GLRT when the image parameters µi
and the camera parameters (a1, b1) are unknown. The goal of
this GLRT is to verify whether the inspected image is acquired
by the camera model 0. The inspected image Z is allowed to
be taken from an unknown camera model.

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

a1 = 0.012
a1 = 0.015
a1 = 0.0195

α0

β
δ̂
? 1

Fig. 5: The detection performance of the test δ̂?1 with 200
pixels selected randomly on simulated images for a0 = 0.0115
and different parameters a1.

Using the ML estimates µ̂k and WLS estimates (â1, b̂1)
proposed in Section III, the GLRT δ̂2 is given as follows

δ̂2 =


H0 if Λ̂2(Z) =

K∑
k=1

nk∑
i=1

Λ̂2(zwapp
k,i ) < τ̂2

H1 if Λ̂2(Z) =

K∑
k=1

nk∑
i=1

Λ̂2(zwapp
k,i ) ≥ τ̂2

(45)

where τ̂2 is the solution of the equation

PH0

[
Λ̂2(Z) ≥ τ̂2

]
= α0 (46)

and the GLR Λ̂2(zwapp
k,i ) is defined by

Λ̂2(zwapp
k,i ) = log

σ̂k,0
σ̂k,1

+
σ̂2
k,1 − σ̂2

k,0

2‖ϕ‖22σ̂2
k,1σ̂

2
k,0

(zwapp
k,i − µ̂k)2 (47)

where σ̂2
k,0 = a0µ̂k + b0 and σ̂2

k,1 = â1µ̂k + b̂1. For brevity,
let denote

ζk = log
σ̂2
k,0

σ̂2
k,1

(48)

γk =
1

σ̂2
k,0

− 1

σ̂2
k,1

(49)

The GLR Λ̂2(zwapp
k,i ) (47) can be written as

Λ̂2(zwapp
k,i ) =

1

2
ζk +

1

2
γk

(zwapp
k,i − µ̂k)2

‖ϕ‖22
. (50)

Firstly, it follows from the classical Delta method [25,
theorem 11.2.14] that

σ̂2
k,0 ∼ N

(
σ2
k,0, a

2
0ckσ

2
k,j

)
(51)

log(σ̂2
k,0)

D−→ N

(
log(σ2

k,0),
a20ckσ

2
k,j

σ4
k,0

)
(52)

1

σ̂2
k,0

D−→ N

(
1

σ2
k,0

,
a20ckσ

2
k,j

σ8
k,0

)
. (53)
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Based on the definitions of expectation and variance, a short
algebra shows that

EHj
[
σ̂2
k,1

]
= σ2

k,1 (54)

VarHj
[
σ̂2
k,1

]
= a2ckσ

2
k,j + (µ2

k + ckσ
2
k,j)σ

2
a1

+ 2µkσa1b1 + σ2
b1 . (55)

Moreover, from the Delta method [40], one obtains

EHj
[

log(σ̂2
k,1)
]

= log(σ2
k,1) (56)

VarHj

[
log(σ̂2

k,1)
]

=
Varθk,j

[
σ̂2
k,1

]
σ4
k,1

(57)

EHj
[ 1

σ̂2
k,1

]
=

1

σ2
k,1

(58)

VarHj

[ 1

σ̂2
k,1

]
=

Varθk,j
[
σ̂2
k,1

]
σ8
k,1

. (59)

Therefore, the expectation and the variance of ζk under
hypothesis Hj are defined by

EHj
[
ζk
]

= log
σ2
k,0

σ2
k,1

= h1(µk) (60)

VarHj
[
ζk
]

=
a20ckσ

2
k,j

σ4
k,0

+
VarHj [σ̂

2
k,1]

σ4
k,1

. (61)

The expectation and the variance of γk under hypothesis Hj
are defined by

EHj [γk] =
1

σ2
k,0

− 1

σ2
k,1

= h2(µk) (62)

VarHj [γk] =
a20ckσ

2
k,j

σ8
k,0

+
VarHj

[
σ̂2
k,1

]
σ8
k,1

. (63)

From (106), (107) and (60)-(63), one derives the two first
moments of Λ̂3(zwapp

k,i )

EHj
[
Λ̂2(zwapp

k,i )
]

=
1

2
h1(µk)

+
1

2
h2(µk)σ2

k,j

(
1 +

1

nk,j

)
(64)

VarHj

[
Λ̂2(zwapp

k,i )
]

=
1

4
VarHj

[
ζk
]

+
1

2
h22(µk)σ4

k,j

(
1 +

1

nk

)2
+

3

4
σ4
k,j

(
1 +

1

nk

)2
VarHj

[
γk
]
. (65)

Finally, it follows from the Lindeberg CLT that the statistical
distribution of the GLR Λ̂2(Z) is given by

Λ̂2(Z)
D−→ N

(
m

(2)
j , v

(2)
j

)
under Hj , j ∈ {0, 1} (66)

where m(2)
j and v

(2)
j are respectively the asymptotic mathe-

matical expectation and variance of the GLR Λ̂2(Z)

m
(2)
j =

K∑
k=1

nkEHj
[
Λ̂2(zwapp

k,i )
]

(67)

v
(2)
j =

K∑
k=1

nkVarHj

[
Λ̂2(zwapp

k,i )
]
. (68)
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Fig. 6: The detection performance of the test δ̂?2 with 50 pixels
selected randomly on simulated images.

Here, the expectation m(2)
j and the variance v(2)j of the GLR

Λ̂2(Z) will not be explicitly written due to the complicated
form of EHj

[
Λ̂2(zwapp

k,i )
]

and VarHj

[
Λ̂2(zwapp

k,i )
]
, see (64)

and (65).
Similarly, the normalized GLR Λ̂?2(Z) is defined by

Λ̂?2(Z) =
Λ̂2(Z)− m̂(2)

0√
v̂
(2)
0

(69)

where m̂(2)
0 and v̂(2)0 are the estimates of expectation m(2)

0 and
variance v(2)0 by replacing µk by µ̂k and (a1, b1) by (â1, b̂1).
The corresponding test δ̂?2 is rewritten as follows

δ̂?2(Z) =

{
H0 if Λ̂?2(Z) < τ̂?2

H1 if Λ̂?2(Z) ≥ τ̂?2
(70)

From the Slutsky’s theorem, the decision threshold and the
power function of the test δ̂?2 are given in the following
theorems.

Theorem 5. When the camera parameters (a0, b0) are known
and (a1, b1) are unknown, the decision threshold of the test
δ̂?2 is given by

τ̂?2 = Φ−1(1− α0). (71)

Theorem 6. The power function of the test δ̂?2 is given by

βδ̂?2
= 1− Φ

m(2)
0 −m

(2)
1 + τ̂?2

√
v
(2)
0√

v
(2)
1

 . (72)

VII. NUMERICAL EXPERIMENTS

A. Experimental Dataset

The test set includes cameras from Dresden image database
[30], BOSS base [41] and our own database. Technical spec-
ifications of the cameras are shown in Table I. The test set
covers different devices per camera model, different imaged
scenes, different camera settings and different environmental
conditions. The Dresden database [30] contains two devices
per camera model. In case of the Nikon D200 camera, two
SLR-camera bodies were used with interchanging two differ-
ent lenses for each acquired scene. Note that the BOSS base
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TABLE I: Camera Model Used in Experiments (the symbol * indicates our own camera)

Camera Model No. devices Sensor size Bit Depth ISO Sensitivity No. images

Nikon D70 [30], [41] N70 3 23.7× 15.6 mm CCD 12 200-400-800 1300
Nikon D90* N90 2 23.6× 15.8 mm CMOS 12 200-400-800 800
Nikon D200 [30] N200 2 23.6× 15.8 mm CCD 12 200 750
Canon 7D [41] C7 1 22.3× 14.9 mm CMOS 14 100 250
Canon 40D* C40 2 22.2× 14.8 mm CMOS 14 200-400-800 800
Canon 400D [41] C400 1 22.2× 14.8 mm CMOS 12 100-200-800 1300
Canon 450D* C450 2 22.2× 14.8 mm CMOS 14 100-400 800
Pentax K20D [41] P 1 23.4× 15.6 mm CMOS 12 100-200-400 1200

α0

β
δ
(α

0
)

10−3 10−2 10−1 1

1

0.5
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δ̂?1 : 50 pixels
δ̂?1 : 100 pixels
δ̂?1 : 200 pixels
δ̂?2 : 50 pixels
δ̂?2 : 100 pixels
δ̂?2 : 200 pixels

Fig. 7: The detection performance of the test δ̂?1 and δ̂?2 on
simulated images for different numbers of pixels.
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Fig. 8: The detection performance of the test δ̂?1 and δ̂?2 on the
Dresden database for different numbers of pixels.

[41] also contains a Nikon D70 camera device. Therefore, the
test set finally contains 3 different devices of the Nikon D70
camera model.

B. Simulated Images

The detection performance of the proposed tests δ̂?1 and δ̂?2
is first theoretically studied on a simulated data. The camera
model 0 and 1 are respectively characterized by a0 = 0.0115,
b0 = 0.0002, a1 = 0.0195, b1 = 0.00025. These parameters
respectively correspond to Nikon D70 and Nikon D200 with
ISO 200 estimated from the Dresden image database [30], see
Fig. 1. Moreover, the values correspond to an 8-bit image in
the normalized [0,1] scale. The camera parameters are used
with 8-bit synthetic image of size 512 × 512 to generate

-3 -2 -1 0 1 2 310−3

10−2

10−1

1

Theoretical FAR
Test δ̂1: Empirical FAR

Test δ̂2: Empirical FAR

Threshold τ

FA
R

:
α
(τ

)

Fig. 9: Empirical false alarm probability from real images
of Dresden database [30] plotted as a function of decision
threshold.

randomly 5000 images for camera model 0 and 5000 images
for camera model 1. The number of segments K is set to
K = 28. The Fig. 4 and Fig. 6 illustrate respectively the
detection performance of the tests δ̂?1 and δ̂?2 with 50 pixels
selected randomly on the synthetic images. The segmentation
method [28] used to obtain homogeneous segments is probably
not perfect. Therefore, a slight error in the estimation of local
means in each segment leads to a small loss of optimality.
A perfect segmentation is not available in practice due to
the difficulty of controlling noise in natural images and the
influence of image content. The perfect segmentation can
be performed in this simulation since the original synthetic
image used to generate random images is available. The
empirical power with perfect segmentation fits accurately to
the theoretical power.

Additionally, it is desirable to observe the detection per-
formance for different camera parameters. The test δ̂?1 is
conducted by keeping the parameters (a0, b0) and setting a1
to {0.0195, 0.015, 0.012}. As expected, the Fig. 5 shows that
when the parameter a1 tends to a0, the power function of
the test δ̂?1 declines and the Receiver Operating Characteristic
(ROC) curves tends to βδ̂?1

= α0. In other words, the
detection performance of the proposed tests depends on the
discriminability of camera parameters (a, b).

The Fig. 7 illustrates in log-log scale the detection perfor-
mance of the test δ̂?1 and δ̂?2 for {50, 100, 200} pixels. A small
loss of power is obviously revealed in case of 50 and 100
pixels between the tests δ̂?1 and δ̂?2 due to insufficient statistics.
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TABLE II: Confusion matrix for ISO 100

H1

C7 C400 C450 P

H0

C7 97.3 0 0 0
C400 0 99.7 0 0
C450 1.7 0 100 0

P 0 0 0 99.8

TABLE III: Confusion matrix for ISO 200

H1

N70 N90 N200 C40 C400 P

H0

N70 99.6 1.1 0.2 0 0 0
N90 1.1 100 0 0 0 0
N200 0 0 99.6 0 0 0
C40 0 0 0 100 0 0
C400 0 0 0 0 99.8 0

P 0.7 0 0 0 0 99.8

Both tests are identical with 200 pixels. Besides, the proposed
tests are perfect with 500 pixels, i.e. no error of detection
on 5000 simulated images from camera model 0 and 5000
simulated images from camera model 1.

Actually, the fact of selecting a number of pixels (e.g. 50,
100, 200 pixels) for the tests on the simulated data allows a
better visibility since the empirical power function of the tests
on 5000 simulated images is perfect (e.g. βδ = 1) with only
500 pixels. Moreover, on the contrary to other methods that
exploit all the pixels, only a small number of pixels is used
to achieve a perfect detection performance, which emphasizes
the sharpness of the proposed tests.

C. Real Image Database

The experiments on simulated data give us an important
insight : the proposed segmentation is probably not perfect,
which leads to an error on pixels’ expectation estimation. In
practice, for real images, this task is more difficult since the
presence of edges or details can cause poor estimates. Those
outliers need to be removed because they can dramatically
affect the detection performance of the proposed tests. This
paper proposes to remove those outliers by the classical three-
sigma rule [42]. Under normality, a pixel is considered as non-
outlier if both following conditions are satisfied :

∣∣zwapp
k,i − µ̂k

∣∣ ≤ 3‖ϕ‖2
√
âµ̂k + b̂∣∣zwdet

k,i

∣∣ ≤ 3

√
âµ̂k + b̂

(73)

After outlier removal, all remaining pixels are used for the
proposed tests.

To highlight the relevance of the proposed tests, two camera
models from the same brand Nikon D70 and Nikon D200
of the Dresden image database [30] are chosen to conduct
experiments since two camera models of the same brand are
expected to exhibit similar characteristics. These cameras are
set at the same ISO 200. Prior to our experiments, every
raw image was converted to an uncompressed format using

TABLE IV: Confusion matrix for ISO 400

H1

N70 N90 C40 P

H0

N70 100 0 0 0
N90 0 100 0 0
C40 0 0 100 0

P 0 0 0 100

TABLE V: Confusion matrix for ISO 800

H1

N70 N90 C40 C400

H0

N70 100 0 0 0
N90 0 100 0 0
C40 0 0 100 0
C400 0 0 0 99.5

Dcraw (with parameters -D - T -4 -j -v) and was decomposed
into 4 sub-images. Only the red color channel is used in
experiments. The Nikon D70 and Nikon D200 cameras are
respectively set at H0 and H1. The camera parameters are
estimated on each image following the WLS approach. The
parameters (a0, b0) and (a1, b1) are obtained by averaging
the previously estimated values over 300 images. The Fig. 8
shows the detection performance of the test δ̂?1 and δ̂?2 for
different numbers of pixels. Obviously, there is a small loss
of power between the two power functions since the test
δ̂?2 takes into account different estimates (â1, b̂1) that are
influenced by the image content. Nevertheless, two proposed
tests are nearly perfect with 500 pixels, which is similar to the
case of simulation. Besides, the Fig. 9 shows the comparison
between the theoretical and empirical false alarm probability
as a function of decision threshold α0(τ). While the test δ̂?1
shows its capacity of guaranteeing a prescribed false alarm
rate, the test δ̂?2 fails in some cases (e.g. −1 ≤ τ ≤ 0) due
to the influence of image content and the presence of weak
outliers that can not be detected by the above outlier removal
process.

Experiments are then conducted on a large database to
verify the efficiency of the proposed approach. Prior to the
experiments, a training stage involves using 50 raw images
per ISO sensitivity and per camera model to estimate the
camera parameters (a0, b0). In the experiments, the test δ̂?2 is
used to verify whether a given image is acquired by a certain
camera model. The decision threshold τ̂?2 is given by the
Theorem 5 corresponding to the false alarm rate α0 = 10−5.
If the normalized GLR Λ̂?2(Z) is smaller than the decision
threshold τ̂?2 , the hypothesis H0 is accepted. On the contrary,
the hypothesis H1 is accepted. In the confusion matrix, each
camera model is considered as hypothesis H0 (row) and all
images that play a role as hypothesis H1 (column) are tested
against H0. The values in the confusion matrix indicate the
percentage of images that are detected taken from the camera
model H0. It should be noted that the confusion matrix in
this paper is not used in the same way as in the classification
where the sum for each class yields 100%. This paper is based
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TABLE VI: Confusion matrix by PRNU-based detector [18]
for ISO 200

H1

N70 N90 N200 C40 C400 P

H0

N70 97.9 0 0 0 0 0
N90 0 85.5 0 0 0 0

N200 0 0 100 0 0 0
C40 0 0 0 100 0 0

C400 0 0 0 0 99.8 0
P 0 0 0 0 0 99.3

on a binary hypothesis testing in which the hypothesis H0 is
always known in advance. The inspected image is brought
into the testing between the hypothesis H0 against the others.
Therefore, the sum of a class may not yield 100%. The results
for each ISO 100, 200, 400, 800 are shown respectively in
Table II, III, IV and V.

Potentially, there are many detectors in the literature for
camera model identification, such as PRNU-based detector
[22] and CFA-based detector [10], [11]. However, they are
based on the fact that the fingerprint obtained from images in
the TIFF or JPEG format contains traces of post-acquisition
processes (e.g. demosaicing) that carry information about
the camera model. This paper only focuses on raw images
that have not gone through post-acquisition operations yet.
Therefore, those detectors are not relevant to compare with
the proposed detector. To the best of our knowledge, the
proposed detector is the only one that focuses on raw images to
identify camera models. The PRNU-based detector proposed
in [17], [18] can deal with raw images but it was proposed for
source device identification, which differs from camera model
identification. Nevertheless, this detector is performed on the
test set to compare with the proposed detector. Note that when
the PRNU-based detector [22] for camera model identification
is used for raw images that do not contain traces of post-
acquisition processes, that detector reduces back to the one
for source device identification. This paper uses 50 images per
camera model to calculate a reference PRNU. Instead of the
normalized correlation [17], the Peak to Correlation Energy
(PCE) [18] is used as a test statistic for the decision problem.
According to [18], the PCE is a more stable test statistic as
it is independent of the image size and has other advantages
such as its response to the presence of weak periodic signals.
The decision threshold is given by τ = (Φ−1(α0))2 where
α0 = 10−5. If the test statistic PCE is greater than the
decision threshold τ , the inspected image is detected taken
from the camera H0. On the contrary, the image is detected
taken from another camera. It should be noted that this detector
does not depend on ISO sensitivity. However, to ensure that
the experiments are conducted in the same scenario for the
two detectors, only images with the same ISO from the same
device are taken into account. Table VI shows the detection
performance of the PRNU-based detector [18] for all images
from the same device per camera model with ISO 200.

experiment is only performed on the cameras with at least
three values of ISO sensitivity. The Pentax K20D camera is

excluded from this experiment because the scatter-plots of
(â, b̂) for ISO 100 and ISO 200 are very close for an unknown
reason. The detection performance decreases significantly in
case of the Canon brand when we mix all ISO sensitivity.
In fact, the test δ̂?2 proposed here is rather sensible to the
parameter a, see (19). We believe that the fact of adding
a pedestal parameter causes an instability of the parameters
(a, b). A significant difference between the estimate â and
the true value a leads to a dramatic decline of detection
performance.

VIII. DISCUSSION

In the literature, most image forensic methods are based on
imaging noise (e.g. PRNU) or post-acquisition operations (e.g.
CFA interpolation) to identify a source device or a certain cam-
era model. This paper relies on a different approach using the
heteroscedastic noise model. In fact, this noise model accounts
for all the noises corrupting the raw image at the sensor output.
The parameters (a, b) characterizing the heteroscedastic noise
model are considered as fingerprint to discriminate camera
models. The main strength of the proposed approach is the
designing of two GLRTs with analytic performance and the
guaranteeing of a prescribed false alarm rate.

The main limitation is that the proposed approach mainly
focuses on raw images that may not be available in practice.
Since the proposed approach shows a nearly perfect detection
performance, it is worth extending it to other image formats,
e.g. TIFF and JPEG. The most challenging part when extend-
ing this work is the impact of post-acquisition enhancement
and compression processes, see [4], [6] for a detailed study
of image acquisition pipeline and statistical model of natural
images after each process. Non-linear processes (e.g. gamma
correction) modify the heteroscedastic noise model. Moreover,
the spatial correlation caused by the demosaicing can lead to
a difficulty of estimating accurately noise parameters. Another
limitation is the dependence of the proposed approach on
ISO sensitivity. However, this is not crucial because there
are not many ISO sensitivity for a camera and only a small
number of images are sufficient to estimate the parameters
(a0, b0) (e.g. 50 images in this paper). Additionally, we can
also exploit the relation between the camera parameters (a, b)
and ISO sensitivity, as discussed in Section II-B, to avoid the
dependence of the proposed detectors. However, the design of
such detector lies out of the scope of the paper.

In terms of computational complexity, the algorithm de-
pends on the number of segments K and the image size. In
this paper, the number of segments K is set to the number of
quantization levels, e.g. K = 2B . Therefore, the algorithm is
of the order of O(N · 2B).

IX. CONCLUSION

This paper proposes a novel methodology for the camera
model identification problem. The problem is cast in the
framework of hypothesis testing theory. The approach is based
on the heteroscedastic noise model. Two parameters (a, b)
characterizing the heteroscedastic noise model are exploited
as unique fingerprint for camera model identification. The
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main strength of the proposed approach is the designing of
two GLRTs with analytic performance that can be straightfor-
wardly applied in the practical context. The main limitation is
that this approach mainly focuses on raw images that may not
be available in practice. Since the proposed approach shows a
nearly perfect detection performance, it is worth extending it
to other image formats, e.g. TIFF and JPEG. Moreover, future
researches can also exploit this approach for the image forgery
detection problem.

APPENDIX A
ASYMPTOTIC COVARIANCE MATRIX OF WLS ESTIMATES

Alternatively, the WLS estimates can be rewritten as

â =

∑K
k=1 ŵk(µ̂k − µ̂)ν̂k∑K
k=1 ŵk(µ̂k − µ̂)2

(74)

b̂ = ν̂ − âµ̂. (75)

where

µ̂ =

∑K
k=1 ŵkµ̂k∑K
k=1 ŵk

(76)

ν̂ =

∑K
k=1 ŵkν̂k∑K
k=1 ŵk

. (77)

For brevity, let denote

U1 =

K∑
k=1

ŵk(µ̂k− µ̂)ν̂k and U2 =

K∑
k=1

ŵk(µ̂k− µ̂)2 (78)

such that â = U1/U2.

A. Statistical Properties of U1 and U2

It can be noted that µ̂k and ν̂k are mutually independent due
to the orthogonality of the wavelets [28]. Moreover, the pair
(µ̂i, ν̂i) and (µ̂j , ν̂j) are also mutually independent because the
corresponding segment Si and Sj are non-overlapping.

Because (âL, b̂L) are the consistent estimates of (a, b), it
follows from the Continuous Mapping Theorem [25, theorem
11.2.13] that

ŝ2k
P−→ s2k (79)

ŵk
P−→ wk (80)

where the notation P−→ denotes the convergence in probability.
It follows from the Slutsky’s Theorem [25, theorem 11.2.11]
that

µ̂
D−→ N

µ, ∑K
k=1 w

2
kckσ

2
k(∑K

k=1 wk

)2
 (81)

ν̂
D−→ N

ν, ∑K
k=1 w

2
kekσ

4
k(∑K

k=1 wk

)2
 (82)

where

µ =

∑K
k=1 wkµk∑K
k=1 wk

(83)

ν =

∑K
k=1 wkσ

2
k∑K

k=1 wk
= aµ+ b. (84)

Based on the linearity property of the Gaussian distribution,
it is easily shown that

µ̂k − µ̂ ∼ N
(
µk − µ, ckσ2

k + Var[µ̂]
)
. (85)

Combining (12) and (85), a direct calculation yields to

E
[
(µ̂k − µ̂)ν̂k

]
= (µk − µ)σ2

k (86)

Var
[
(µ̂k − µ̂)ν̂k

]
= σ4

k

[
ek(µk − µ)2 + ckσ

2
kVar

[
µ̂
]]

+ o(n−2k ). (87)

where the notation x = o(y), with y > 0, means that x
y tends

to 0 as y tends to 0. Hence, the expectation and variance of
U1 are defined by

E
[
U1

]
=

K∑
k=1

wk(µk − µ)σ2
k (88)

Var
[
U1

]
=

K∑
k=1

w2
kσ

4
k

[
ek(µk − µ)2 + ckσ

2
k + Var

[
µ̂
]]
. (89)

From (85), based on the definitions of the mathematical
expectation and the variance, one obtains

E
[
(µ̂k − µ̂)2

]
= (µk − µ)2 + ckσ

2
k + Var

[
µ̂
]

(90)

Var
[
(µ̂k − µ̂)2

]
= 4(µk − µ)2

[
ckσ

2
k + Var

[
µ̂
]]

+ o(n−2k ).

(91)

Hence, the expectation and variance of U2 are defined by

E
[
U2

]
=

K∑
k=1

wk

[
(µk − µ)2 + ckσ

2
k + Var

[
µ̂
]]

(92)

Var
[
U2

]
=

K∑
k=1

4w2
k(µk − µ)2

[
ckσ

2
k + Var

[
µ̂
]]
. (93)

Based on the definition of the covariance, a direct calcula-
tion yields to

Cov
[
(µ̂k − µ̂)ν̂k, (µ̂k − µ̂)2

]
= E

[
(µ̂k − µ̂)3ν̂k

]
− E

[
(µ̂k − µ̂)ν̂k

]
E
[
(µ̂k − µ̂)2

]
= σ2

kE
[
(µ̂k − µ̂)3

]
− σ2

kE
[
(µ̂k − µ̂)

]
E
[
(µ̂k − µ̂)2

]
= 2σ2

k(µk − µ)
(
ckσ

2
k + Var

[
µ̂
])
. (94)

Hence, the covariance between U1 and U2 is defined by

Cov
[
U1, U2

]
=

K∑
k=1

w2
kCov

[
(µ̂k − µ̂)ν̂k, (µ̂k − µ̂)2

]
=

K∑
k=1

2w2
kσ

2
k(µk − µ)

(
ckσ

2
k + Var

[
µ̂
])
. (95)
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B. Covariance Matrix Calculation

Therefore, from the classical Delta method [40] one can
derive the variance σ2

a

σ2
a = Var

[U1

U2

]
=

Var
[
U1

]
E2
[
U2

] − 2E
[
U1

]
E3
[
U2

]Cov
[
U1, U2

]
+

E2
[
U1

]
E4
[
U2

]Var
[
U2

]
+ o
(( K∑

k=1

n2k

)−2)
(96)

Additionally, the variance σ2
b and the covariance σab are

defined by

σ2
b = Var

[
ν̂ − âµ̂

]
= Var

[
ν̂
]

+ a2Var
[
µ̂
]

+ µ2σ2
a

+ σ2
aVar

[
µ̂
]

(97)

σab = Cov
[
â, ν̂ − âµ̂

]
= −µσ2

a. (98)

APPENDIX B
STATISTICAL DISTRIBUTION OF THE GLR Λ̂1(Z)

For brevity, let denote

ρk,i =
(zwapp
k,i − µ̂k)2

‖ϕ‖22
(99)

such that

Λ̂1(zwapp
k,i ) =

1

2
h1(µ̂k) +

1

2
h2(µ̂k)ρk,i. (100)

It can be noted that two functions h1 and h2 are contin-
uous and differentiable on R+. Their first derivative can be
expressed as

h′1(x) =
a0b1 − a1b0

(a0x+ b0)(a1x+ b1)
(101)

h′2(x) =
a1

(a1x+ b1)2
− a0

(a0x+ b0)2
. (102)

These derivatives are equal to zero if and only if two cameras
0 and 1 are identical, i.e. (a0, b0) = (a1, b1) . For obvious
reasons, this case is not considered in the present paper. Using
the Delta method [25, theorem 11.2.14], it follows from (11)
that

h1(µ̂k)
D−→ N

(
h1(µk), (h′1(µk))2ckσ

2
k,j

)
(103)

h2(µ̂k)
D−→ N

(
h2(µk), (h′2(µk))2ckσ

2
k,j

)
. (104)

From (7) and (11), one obtains

zwapp
k,i − µ̂k ∼ N

(
0, ‖ϕ‖22σ2

k,j

(
1 +

1

nk

))
(105)

Therefore, the mathematical expectation and variance of ρk,i
are given by

EHj
[
ρk,i
]

= σ2
k,j

(
1 +

1

nk

)
(106)

VarHj
[
ρk,i
]

= 2σ4
k,j

(
1 +

1

nk

)2
. (107)

Consequently, the two first moments of Λ̂1(zwapp
k,i ) under

hypothesis Hj are given by

EHj
[
Λ̂1(zwapp

k,i )
]

=
1

2
h1(µk)

+
1

2
h2(µk)σ2

k,j

(
1 +

1

nk

)
(108)

VarHj

[
Λ̂1(zwapp

k,i )
]

=
1

4
(h′1(µk))2ckσ

2
k,j

+
1

2
h22(µk)σ4

k,j

(
1 +

1

nk

)2
+

3

4
(h′2(µk))2ckσ

6
k,j

(
1 +

1

nk

)2
.

(109)

In virtue of the Lindeberg CLT, it follows that under hypothesis
Hj : Λ̂1(Z)

D−→ N
(
m

(1)
j , v

(1)
j

)
where

m
(1)
j =

K∑
k=1

nk
2

[
h1(µk) + h2(µk)σ2

k,j

(
1 +

1

nk

)]
(110)

v
(1)
j =

K∑
k=1

nk
4

[
(h′1(µk))2ckσ

2
k,j + 2h22(µk)σ4

k,j

(
1 +

1

nk

)2
+ 3(h′2(µk))2ckσ

6
k,j

(
1 +

1

nk

)2]
. (111)
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