
Recovering Model Transformation Traces using
Multi-Objective Optimization

Hajer Saada, Marianne Huchard, Clémentine Nebut
LIRMM, Université Montpellier 2 et CNRS, Montpellier, France

{saada, huchard, nebut}@lirmm.fr

Houari Sahraoui
DIRO, Université de Montréal, Montréal, Canada

sahraouh@iro.umontreal.ca

Abstract—Model Driven Engineering (MDE) is based on a
large set of models that are used and manipulated throughout the
development cycle. These models are manually or automatically
produced and/or exploited using model transformations. To allow
engineers to maintain the models and track their changes,
recovering transformation traces is essential. In this paper,
we propose an automated approach, based on multi-objective
optimization, to recover transformation traces between models.
Our approach takes as input a source model in the form of a
set of fragments (fragments are defined using the source meta-
model cardinalities and OCL constraints), and a target model.
The recovered transformation traces take the form of many-to-
many mappings between the constructs of the two models.

I. INTRODUCTION

MDE involves the construction and manipulation of many
models of different kinds in an engineering process [1]. These
models cover the whole software-development cycle. They
can be manipulated manually or automatically using model
transformations. To ensure those models’ consistency and
maintenance, recovering transformation trace can be essential
in an MDE process.

Recovering transformation traces can be useful for different
tasks [2]: (1) understanding the system complexity by the
navigation on trace links on all the model transformation
chains, (2) locating bugs during the execution of transfor-
mation programs, and (3) checking the coverage of all input
models by a transformation. We can distinguish between two
categories of strategies to generate transformation links: the
first category depends on the transformation program or engine
(e.g., [3], [4], [5]). The corresponding approaches generate
trace links through the execution of a model transformation.
The second category is independent from a transformation
program. In [6], a mechanism is proposed to generate traces
from a requirement model conforming to the meta-model i*
towards the meta-model UML, thus this approach is specific
to two metamodels and cannot be generalized. [2] proposes an
approach based on matching techniques to trace links between
models. This non-scalable approach generates only one-to-one
matching links between models.

In this paper, we are interested in the second category. We
propose to recover a transformation trace independently from
a transformation program. We consider that the transformation
program is missing or the transformation was done manually.
Our approach takes as input a source model and its correspond-
ing target model. The aim is to find the many-to-many match-

ing links between the two models, thus associating a group of
m source elements to a group of n target elements. To this end,
the source model is fragmented using the minimal cardinalities
of its meta-model and the defined OCL constraints. Then,
for each source fragment, we search for a list of potential
transformed fragments in the target model. A solution to our
problem is a set of pairs of source and target fragments that
maximize the lexical and structural similarities between them.
A solution must also cover all of the target model to ensure
its transformation completeness. Due to the very large number
of possible solutions, a multi-objective metaheuristic method
(NSGA-II) is used to solve our problem.

The remainder of this paper is organized as follows. Section
II is dedicated to the problem statement and the overview of
our approach. While section III details our approach, section
IV explains the experimental evaluation. Section V presents
the related work.

II. APPROACH OVERVIEW

This section shows how recovering a transformation trace
between a source model and a target model can be defined as
an optimization problem, and presents our approach.

A. Problem Statement

In our context, a metamodel MM is an instance of the
Ecore [7] meta-metamodel. A model M is an instance of a
metamodel.

Our approach is based on a fragmentation of the source and
target models. A fragment F is a set of connected constructs
of a model M . A construct e ∈ M is an instance of a meta-
class C ∈ MM (e : C). We denote by Frag(M) the set of
all fragments that can be built from M . We denote by R〈C1 :
R,R : C2〉, an e-reference of C1, which has C2 as a type,
and such that R (resp. R) is the minimal (resp. maximal)
cardinality of R. For R〈C1 : R,R : C2〉, eRe′ means that
we have e : C1, e′ : C2 and e is connected to e′ by R. A
meaningful fragment MfF of a model M is a fragment that
respects the minimum cardinalities of the references defined
on the metamodel and the OCL constraints.

Consequently, a fragment F of a model M which conforms
to a metamodel MM (with OCL constraints) is a MfF iff:
∀e : C1 ∈ F, (∃C2|R〈C1 : R,R : C2〉 ∈ MM) ⇒ |{e′ : C2 ∈
F |eRe′}|≥ R. We denote by MeanFrag(M) the set of all
meaningful fragments that can be built from M .

Reservation: Association

type

Client: Class

name = "sRoom"
property: Property

type

SimpleRoom: Class

name="client"
property:Property

F1

F2

RoomType: Generalization

Room: Class

specific general

F3

Fig. 1. An instance diagram of the class diagram metamodel of Figure 2

Let us consider the instance diagram of Figure 1 that
conforms to the simplified UML class diagram metamodel
CDMM of Figure 2. Three fragments are circled, F1, F2,
and F3. F1 (resp. F2) is a meaningful fragment because it
satisfies the minimal cardinalities defined on association (resp.
generalization) meta-class in CDMM . An association must
have two properties of type class. So, association Reservation,
property client of type Client class and property sRoom of
type SimpleRoom class form a meaningful fragment (F1). A
generalization consists of a relation between a general class
and a specific class. Thus, the generalization between the Class
Room and the class SimpleRoom constitutes a meaningful
fragment (F2). F3 is composed of two connected constructs
in the instance diagram (the association Reservation and its
property named client). It is not meaningful fragment, because
the metamodel CDMM , an association must have at least two
properties.

11

1

0..1

specific

association
0..1

<<invariant>>
self.association --> notEmpty()

implies
self.type --> notEmpty()

Fig. 2. A meta model for UML class diagrams

Definition 1: A transformation trace between a source model
Ms and a target model Mt is a set of pairs connecting a
source meaningful fragment to a target fragment. A specific
transformation trace of n pairs takes the form {(MfF si , Fti) |

i ∈ {1..n}} ⊆MeanFrag(MS)× Frag(MT).
The size of the set of possible transformation traces is

2MeanFrag(Ms)×Frag(Mt). Searching this space is hard to
perform with an exhaustive search method. This led us to use
a metaheuristic search to solve the trace recovery problem.

B. Approach Overview

A first step of our approach consists in the decomposition of
the source model into meaningful fragments according to the
constraints of the metamodel. Then, a metaheuristic method is
used to search for the best match between the identified source
meaningful fragments and all the possible target fragments. To
evaluate the quality of a match (candidate trace) two factors
are considered: 1) Lexical similarity between fragments in
each pair and 2) Structural consistency in the mapping of
similar source fragments, i.e., similar source fragments should
be associated to similar target fragments.

In addition to the lexical and structural factors, to be
acceptable, a candidate trace Trace = {(MfF si , Fti) |
i ∈ {1..nTrace}} ⊆ MeanFrag(Ms) × Frag(Mt) should
satisfy the completeness constraints, formalized as follows:
(
⋃nTrace

i=1 MfF si = Ms) ∧ (
⋃nTrace

i=1 Fti = Mt)
Figure 3 illustrates an example of transformation trace

between a simplified UML class diagram and its corresponding
entity-relationship model. Note that the choice of this example
is only motivated by clarity considerations. Our approach does
not depend on specific source and target metamodels.
The class diagram is decomposed into three meaningful frag-
ments according to the constraints of the metamodel of Figure
2. In terms of lexical similarity, MfF 1 matches well F1 as
they both contain the same identifiers. Comparable lexical
similarities could be observed respectively between MfF 2

and F2, and between MfF 3 and F3. In terms of structural
consistency, MfF 2 and MfF 3, which are fragments of the
same type (a one-to-many association between two classes)
are consistently matched to two fragments F2 and F3, which
are also of the same type (a relation between two entities).

To find the good transformation trace between a pair of
source and target models, we perform the heuristic search
guided by the lexical and structural factors as well as by the
completeness constraints. Thus, the trace recovery can be seen
as a multi-objective optimization problem.

During the past two decades, evolutionary algorithms (EAs)
have gained popularity in dealing with software engineering
tasks that could be modeled as optimization problems. For
problems with multiple (possibly conflicting) objectives, like
the one studied in this paper, it is usually difficult to find
a single optimal solution. Such kind of problems gives rise
to a whole set of solutions, known as Pareto-optimal solu-
tions [8]. In this context, a number of multi-objective EAs have
been proposed. The non-dominated sorting genetic algorithm
(NSGA-II) [8] is the one that is the most applied in the SBSE
community [9]. It allows to easily model the trace recovery as
a multiobjective optimization problem.

NSGA-II procedure. First, an initial population P0 of N
solutions is created. This population is sorted based on the

Title
Text Genre

Novel Poem

1*
text

Genre

MfF1

MfF2

Text has a

Novel Poem

is a is a

(0,N) (1,1)

(0,1)

(1,1)

(0,1)

(1,1)

title

F2

F1

genre

Form

poem

form

MfF3

has a Form
(0,N)(1,1)

F3

1

*

Fig. 3. An example of transformation links

non-domination. The first non-dominating front is assigned a
rank of one, the second has a rank of two and so on. Then,
a crowding distance is calculated for each solution [10]. A
binary tournament selection operator, based on the crowding
distance, is used to select the best solutions and an offspring
population Q0 of size N is created by crossover and mutation
operators. P0 and Q0 are combined to form the population R0.
The best individuals in terms of non-dominance and diversity
are chosen from R0. Then those steps are repeated till the
termination criteria are satisfied.

III. ADAPTING NSGA-II TO TRACE RECOVERY

In this section, we describe the adaptation of NSGA-II to
recover transformation traces.

A. Solution representation

A crucial element in our approach is encoding of a trans-
formation trace between the source and target models for
each candidate solution. In our case, a solution s, is a set of
fragment pairs, s = {fpi, i ∈ {1, 2, ...ns}}. Each fragment
pair fpi is, in turn, encoded as a pair fpi = (MfF i, Fi)
where MfF i is a source meaningful fragment in the source
model and Fi is its corresponding fragment in the target
model. As stated in Section II, the source model is divided
into fragments according to three criteria: 1) compliance with
the minimum cardinalities defined in the source meta-model,
2) compliance with the OCL constraints specified in the source
meta-model and 3) source model coverage. The target model
is randomly divided to associate a fragment to each source
meaningful fragment. We conjecture that dependent constructs
(with cardinality constraints) in the source model have to be
transformed together and the corresponding constructs in the
target model do not necessarily need to form a meaningful

fragment. Additionally, when transforming a source model,
some constructs may not have corresponding constructs in the
target model, and some new constructs in the target model
may be created independently from the source ones.

Thus, after obtaining the ns source meaningful fragments,
an integer x is generated randomly in [−y, y], y being a
parameter of our algorithm indicating the maximum variation
of the number of target fragments with respect to the source
ones. More concretely, for each target-model fragment f , we
start by randomly select its size t between 1 and 4. If t = 3
for instance, we select randomly a construct, call it c, from
the target model. Then, if c is connected to other constructs,
we extend the fragment by randomly selecting two of them.
If c is connected to just one construct c1, we can extend the
fragment by one of the constructs connected to c1. Then, c is
removed from the set of potential starting constructs for the
next fragments. Nevertheless, c can still be included in other
fragments thanks to its connections with other constructs.

When both source and target fragment sets are created,
each source MfF is randomly associated with a target model
fragment F. A solution is then a vector whose dimensions are
the MfFs and values are the Fs.

To create the initial population of N solutions, our algorithm
randomly generates a set of solutions si, i ∈ {1, 2, ..N}.

B. Solution evaluation

The fitness functions evaluate a candidate trace solution
s. We defined three fitness functions corresponding to three
objectives:

1) An MfF in a source model corresponds to a F in a target
model when MfF and F use similar vocabulary, i.e., are
similar in terms of property values of type string.

2) In s, a set of MfF of the same type, i.e., same construct
types with the same connections, must be matched to a
set of F of the same type in the target model.

3) In s, the obtained fragments must cover the target model.
The two first objectives approximate the semantic equiv-

alence between model fragments belonging to two different
metamodels. The third objective ensures that a solution is
complete as it recovers all the transformation trace. The three
objectives should be maximized.

Lexical similarity. For this fitness function, we take our
inspiration from information retrieval methods, which sort
documents according to queries by extracting information
about the terms’ occurrences within documents. The extracted
information is used to find the similarity between queries and
documents. In our case, the similarity is used to compare the
property values of MfF i and Fi in each fpi in a solution s. All
the terms (distinct property values) in s are extracted in a list
l. l defines the dimensions of vectors associated to each source
or target fragment in s. For each fragment and each term, the
corresponding dimension is set to 1 if the term exists in the
fragment or to 0 otherwise. Then, the similarity is calculated
between each pair MfF i and Fi using the cosine similarity
between the two concerned vectors. The resulting similarity
ranges from −1, meaning that MfF i and Fi do not share any

term, to 1, meaning that MfF i and Fi use exactly the same
terms. The lexical similarity LexSim(s) of a solution s equals
the average of the contained pairs’ lexical similarities.

Structure similarity. In order to measure the structure
similarity in a solution s, we start by classifying the set of
its fragment pairs per type of their respective meaningful
fragments MfF i. After classifying the solutions per type of
their MfF, we measure for each two pairs of fragments, which
have the same type of MfF , the structural similarity of the
matched target models. To this end, we use also the cosine
similarity, but between vectors whose dimensions are the
construct types in the metamodel. Indeed, for each construct
type instantiated in the target model a term is created. Then
for each target model fragment, the dimension is set to 1 if
it contains a construct of the corresponding type, and to 0
otherwise. The structural similarity StrSim(s) of a solution
s is the average of the target-fragment similarities of the pairs
having the same MfF type.

Target model coverage The coverage of the target model
is the most important objective because it ensures that the
fragments obtained in the solution cover all the target model.
The coverage Cov(s) of a solution s is measured by the
number of distinct constructs in the matched target fragments
divided by the number of constructs in the target model.

C. Operators definition

In NSGA-II, in each iteration, the N solutions selected from
the previous generation are used to create new N solutions
using genetic operators. This improves the existing solutions
by mixing their genetic material (crossover) and/or by creating
new material (mutation). Before applying the operators, the
solutions are selected according to their fitness values.

In our work, binary tournament selection is used. It consists
of choosing some solutions at random in the population, and
selecting the fittest two for reproduction. The selection criteria
are the rank of the containing front and the crowding distance
for solutions within the same front. Several tournaments are
run to produce the N needed solutions.

The crossover consists of producing new solutions from the
existing ones. When two solutions are selected using the binary
tournament method, two offspring solutions are created, with a
given crossover probability, by exchanging parts of the parent
solutions. This consists in randomly selecting a cut point in
the solution vector, and all the target fragments beyond that
point in either parent are swapped between the two parents.

After performing the crossover, the obtained solutions could
be mutated with a given mutation probability. For our problem,
we define two mutation strategies: extending a target fragment
with a new construct or deleting a construct from a target
fragment. Recall that a transformation-trace solution is a set
of fragment pairs; each one contains a source and a target
fragment (MfF and F). Like a MfF , a target fragment contains
constructs connected with references. For the first mutation
strategy, a pair fpi = (MfF i, Fi) is chosen randomly. Two
kinds of construct can be added to fpi: a randomly chosen
construct, not already included in Fi, or a construct which has

a reference to another one in Fi. The second mutation strategy
consists of deleting a construct from a target fragment Fi in a
pair fpi = (MfF i, Fi) also randomly chosen from a solution.
We randomly select a construct c from Fi. Then, we check if
c is connected at least to one construct in Fi. If we find that
c is not linked to any construct in Fi, it will be deleted.

IV. EVALUATION

To evaluate the feasibility of our approach for recovering
transformation traces, we conducted an experiment which is
reported in this section.

A. Experimental settings

a) Experimental data: Our case study is composed of six
existing model transformations collected from the literature or
written by the authors in previous projects.
• UML class-diagram to relational schema (Cl2Rs).
• Ecore meta-model to Jess [11] meta-model (Ec2Je).
• Relational schema to Jess model (Rs2Je).
• UML state machine to labeled transition System (St2Lt)

[12].
• Abstract syntax examples to graphical syntax examples

(As2Gs) [13].
• Application of the design pattern State to a UML model

owning at least one class with a StateMachine (St2St).
For each of the above-mentioned model transformations, we

wrote a source model. To have realistic models, we decided
to set their size to at least 50 constructs. As the selected
transformations are implemented, we applied them to the
source models to generate their counterpart target models.
Afterwards, we used each pair of source/target models as a
case to test the trace recovery approach.

b) Experimental protocol: In order to evaluate the rele-
vance of the transformation trace generated by our approach,
we also defined, for each pair of models, the actual trans-
formation trace. For the two model transformations Cl2Rs
and Rs2Je, we used the transformation rules generated in
our previous work [14] which provide for each meaningful
fragment its corresponding fragment using the Jess rule engine
[11]. For the rest of the model transformations used in this
evaluation, a domain expert manually built the actual trace.

Descriptive statistics about the actual (expected) traces are
given in Table I. The number of fragment mappings in each
trace is given in column Nbrtrace. This ranges from 19 for
the Cl2Rs transformation to 25 for the St2St one. The size
of the source fragments in the actual traces varies in general
from 2 (minF) to 4 (maxF). The variation in size for
target fragments is larger, with fragments containing up to
7 constructs (for St2Lt), which makes the mapping recovery
more difficult.

For each source and its corresponding target model, we
use our algorithm to generate a transformation trace. As we
are dealing with multiobjective optimization, usually, many
solutions are present in the Pareto front. Usually, a user could
look at the proposed solutions and select one. In the case of
problems for which the user does not have enough knowledge

Examples Nbrtrace
Source Fragments Target Fragments

(minF) (maxF) (minF) (maxF)
Cl2Rs 19 2 4 1 4
Ec2Je 22 1 3 1 2
Rs2Je 21 2 4 1 3
St2Lt 22 3 4 2 7
As2Gs 20 2 4 1 4
St2St 25 2 3 3 5

TABLE I
THE ACTUAL TRACES OF OUR EXAMPLES

to choose a solution, a ranking could be necessary to make a
recommendation. For the purpose of this evaluation, as our
three objectives are normalized in the interval [0, 1], it is
possible to calculate a distance to the optimal solution so,
i.e., the one having LexSim(so) = 1, StrSim(so) = 1, and
Cov(so) = 1. For a candidate solution s, such a distance d(s)
could be calculated as follows:√

(1− LexSim(s))2 + (1− StrSim(s))2 + (1− Cov(s))2

(1)
Distance d gives equal importance to all the objectives.

However, we believe that consistency and completeness are
very important when selecting the final solution. Indeed,
having incomplete solutions or similar fragments that are
transformed differently could invalidate a solution. Therefore,
we propose a variation d2 of the distance d where only the
consistency and completeness objectives are considered. d2(s)
of a candidate solution s is defined as follows:√

(1− StrSim(s))2 + (1− Cov(s))2 (2)

The solution having the minimal d2 distance is then evalu-
ated by computing its precision and recall. The precision of a
solution s is defined as the average precision of its fragment-
pairs. For a pair fpi = (MfF i, Fi) ∈ s and the expected
mapping (MfF i,EF i), the mapping precision of fpi is defined
as the number of correctly assigned constructs in Fi among
the total number of constructs in Fi.

Like for the precision, we evaluate also the pairs’ average
recall of a solution. For a pair fpi = (MfF i, Fi) ∈ s and the
expected mapping (MfF i,EF i), the mapping recall of fpi is
defined as the number of correctly assigned constructs in Fi

among the total number of constructs in EF i.
According to Section III, the trace recovery algorithm uses

the following parameters:
• Crossover probability is usually high. It is set to 0.8.
• Mutation probability is set to 0.4.
• In each transformation example, a population of 500

solutions was randomly generated, from which we kept
only those having a score above a threshold for the three
objectives. This ensures an initial decent genetic material.

• The iteration number is equal to twice the size of the
population.

• The maximal variation y of the number of target frag-
ments with respect to the source ones is set to 1. This
means that in a solution, we could have a MfF without
assigned F or a F without any MfF .

• As our algorithm is probabilistic by nature, we took the
best result from three executions.

B. Results and Discussion

Due to lack of space, we present a summary of the results
for the six case studies.

Distance d2 from our best solution to the ideal one
SCl2Rs 0.09
SEc2Je 0.13
SRs2Je 0.19
SSt2Lt 0.35
SAs2Gs 0.21
SSt2St 0.23

TABLE II
DISTANCE FROM OUR BEST SOLUTIONS TO THE OPTIMAL ONES

1) Results for the six examples: Table II shows the best
obtained solutions. The distances varies from 0.09 for Cl2Rs
to 0.35 for St2Lt. The distance results are confirmed by the
precision and recall scores reported in Figure 4.

Except for St2Lt, the precision scores are at least equal to
90% and the recall scores are equal to 84% or more. This is
very encouraging since the examples involve different types of
transformations. The scores of St2Lt are intriguing although
both precision (75%) and recall (70%) are interesting. In this
transformation, many events are generated and synthetically
labeled ”i”, and the states are indicated by numbers. In this
context, our lexical and structural approximations are limited
to capture the semantic equivalence between some fragments.

 0

 0.2

 0.4

 0.6

 0.8

 1

Cl2Rs Ec2Js Rs2Je St2Lt As2Gs St2St

Precision Average
Recall Average

Fig. 4. Evaluation results

2) Performance: The execution time is very important since
we use a metaheuristic search to explore a large space. In our
experiments, we used a simple MacBook (2.4GHz CPU and
2G of RAM). The execution time for recovering a transfor-
mation trace on our examples (about 50 constructs), with a
number of iterations up to 1000, is less than 120 seconds. This
is very acceptable since the recovery process is not intended
to be executed on a short-period basis. With models having
different sizes and with the same parameter values (population
size and number of iterations), the execution time increases
quasi linearly with the models’ size.

C. Threats to validity

The experiment is here conducted on six examples of model
transformations. The choice of the transformation examples

could be a threat to the validity of our evaluation. To circum-
vent this threat, we carefully chose examples from different
transformations (structural/behavioral, exogenous/endogenous,
different fragment sizes, etc.). The only possible limitation to
the generalizability is the relatively fixed size of the examples
(about 50 constructs). We plan to try our approach with
models having a larger variation in size in the future. Another
threat concerns the fact that our experimental setting is semi-
real as all the target models are generated using the known
transformation mechanisms, and none was derived manually
by an expert. A possible issue is that transformation engines
tend to use the vocabulary of the source model whereas
a human expert could use derived vocabulary (synonyms,
abbreviations, etc.). These situations could be handled by a
more subtle way to measure the lexical similarity.

V. RELATED WORK

Some model transformation tools provide integrated support
for traceability such as QVT [15] and MOFScript [16]. With
[17], developers can encode a trace as an output model or
attach traceability generation code to ATL program [18].
Grammel et al. [3] propose a generic framework for aug-
menting arbitrary model transformation approaches with a
traceability mechanism. This framework is based on a domain-
specific language for traceability. In [19], the authors focus
on generated trace relations as part of QVT transformations.
In the same context, Amar et al. [4] present an approach
to automatically trace imperative model transformation in a
Java/EMF environment. Finally, a recent work [5] consists in
visualizing traceability in model transformations after adding
a trace generator to the transformation engine of ATL. All
those solutions generate trace links in parallel with the trans-
formations. They depend on the existence of a transformation
engine and could not be applied for trace recovery.

Another category consists in generating transformation trace
independently of the transformations. This allows to han-
dle cases where only source and target models are present
without a knowledge on how the transformation was per-
formed. Our contribution falls within this category. In [6],
the authors present an approach to support generation of bi-
directional traceability relations between organizational re-
quirements modeled in i*, and UML use cases and class
diagrams. This approach is applied to a specific type of
transformation whereas our approach is independent of trans-
formation languages and problems. The work in [2] is probably
the one that is the closest to our contribution. It uses graph-
based model matching techniques to generate trace links.
This approach may have a higher complexity, especially when
manipulating large-size models. In addition, it produces one-
to-one matching links whereas our approach can generate
many-to-many mappings.

VI. CONCLUSION

In this paper, we proposed a novel approach for the recovery
of a transformation trace for two arbitrary source and target
models. Our approach does not require any knowledge of

the transformation. We adapted the NSGA-II algorithm to
explore the space of mapping possibilities between the two
models. We evaluated our approach on six different cases.
The obtained results indicate that recovered traces are very
similar to the expected ones. Despite the encouraging results,
there is still a room for improvement. First, we plan to
conduct more experiments to test our approach on other
transformation types and compare our results with the ones
of the other approaches. From the algorithmic perspective,
we will explore other functions to approximate the semantic
equivalence between the source and target model.

REFERENCES

[1] R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power,
G. K. Olsen, and S. Zschaler, “Rigorous identification and encoding of
trace-links in model-driven engineering,” Softw. Syst. Model., vol. 10,
pp. 469–487, Oct. 2011.

[2] B. Grammel, S. Kastenholz, and K. Voigt, “Model matching for trace
link generation in model-driven software development,” in Proceedings
of the 15th international conference on Model Driven Engineering
Languages and Systems, MODELS’12, pp. 609–625, 2012.

[3] B. Grammel and S. Kastenholz, “A generic traceability framework
for facet-based traceability data extraction in model-driven software
development,” in Proceedings of the 6th ECMFA Traceability Workshop,
ECMFA-TW ’10, pp. 7–14, ACM, 2010.

[4] B. Amar, H. Leblanc, B. Coulette, and C. Nebut, “Using aspect-oriented
programming to trace imperative transformations,” in Proceedings of the
2010 14th IEEE International Enterprise Distributed Object Computing
Conference, pp. 143–152, 2010.

[5] M. van Amstel, M. G. J. van den Brand, and A. Serebrenik, “Traceability
visualization in model transformations with tracevis,” in ICMT, pp. 152–
159, 2012.

[6] G. A. A. Cysneiros, F. Andrea, and Z. G. Spanoudakis, “Traceability
approach for i* and UML models,” in in Proceedings of 2nd Interna-
tional Workshop on Software Engineering for Large-Scale Multi-Agent
Systems (SELMAS03, 2003.

[7] B. Frank, Eclipse Modeling Framework (Eclipse Series).
[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elist

multiobjective genetic algorithm: Nsga-II,” IEEE Trans, Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[9] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 11:1–11:61, 2012.

[10] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, pp. 263–282, 2002.

[11] “Jess rule engine.” http://herzberg.ca.sandia.gov/jess.
[12] H.-V. Luong, T. Lambolais, and A.-L. Courbis, “Implementation of

the conformance relation for incremental development of behavioural
models,” in MoDELS, pp. 356–370, 2008.

[13] F. Pfister, V. Chapurlat, M. H. Huchard, and C. Nebut, “A proposed tool
and process to design domain specific modeling languages,” tech. rep.,
LGI2P, Ecole Des Mines, 2012.

[14] H. Saada, X. Dolques, M. Huchard, C. Nebut, and H. Sahraoui,
“Generation of operational transformation rules from examples of model
transformations,” in MoDELS, pp. 546–561, 2012.

[15] “Object management group: Mof 2.0 query view transformation.”
[16] “Mofscript, http://www.eclipse.org/gmt/mofscript/.”
[17] “Atlas transformation language, http://www.eclipse.org/m2m/atl.”
[18] F. Jouault, “Loosely coupled traceability for ATL,” in In Proceedings

of the European Conference on Model Driven Architecture (ECMDA)
workshop on traceability, pp. 29–37, 2005.

[19] I. Kurtev, M. Dee, A. Göknil, and K. B. van den, “Traceability-based
change management in operational mappings,” in ECMDA Traceability
Workshop 2007, pp. 57–67, 2007.

