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Abstract— In this letter, a novel noncoherent detection al-
gorithm for differential space—time modulation (DSTM) over
flat fading multiple—input multiple—output channels is presented.
This algorithm, which is referred to as decision—feedback wset
multiple—symbol differential detection (DF-S—MSDD), conbines
ideas from decision—feedback differential detection (DFD) and
subset multiple—symbol differential detection (S—-MSDD).More
specifically, the DF—S—-MSDD decision metric includes a nungs
of previous decisions (i.e. decision feedback) and the optization
over the remaining hypothetical symbols returns decisionsonly
for a subset of these (i.e. S-MSDD). Furthermore, an implenme

tree—search (TS) decoding have been adopted in e.g. [13]-
[15]. While these TS—based algorithms greatly reduce the
average complexity compared to a brute—force search, they
have a number of drawbacks: (i) their average computational
complexity may become prohibitively large ilow signal—
to—noise ratios (SNRspand (i) their instantaneousompu-
tational complexity is a random variable depending on the
instantaneous channel realization. DFDD (e.g. [16]-[18M)

the other hand, uses decision feedbackNof— 2 previous

tation of DF-S—-MSDD based on tree-search (TS) methods is Symbols to detect only the current symbol and thus complexit
devised. Due to the concept of subset detection, DF-S—-MSDDis relatively low and constant, independent of SNR and ceann

outperforms MSDD in terms of error—rate performance. At

the same time, due to the use of decision feedback, it also

requires lower computational complexity than the TS-based
MSDD schemes for DSTM proposed recently in the literature.

Index Terms— Differential space-time modulation (DSTM),
multiple—symbol differential detection (MSDD), decision
feedback differential detection (DFDD), noncoherent detetion,
fading channels.

I. INTRODUCTION

realization. On the negative side, DFDD leaves a gap in
power efficiency (SNR required to achieve a certain erra)rat
compared to MSDD.

In this letter, we propose a novel algorithm for block—based
noncoherent detection, which combines elements from MSDD
and DFDD. More specifically, partial decision feedback of
between 1 andV — 2 symbols is employed and MSDD is
performed for the remaining symbols. Furthermore, mogigat
by the observation that estimates of symbols at the edges
of the MSDD window are rather unreliable, decisions are

Differential space—time modulation (DSTM) using unitary"ade only on a subset of data symbols. We refer to this

matrix signal constellations is an attractive solution ti@ns-

algorithm as decision—feedback subset multiple—symbiel di

channels with noncoherent detection, which obviates oslanfmplementation for it. Numerical results show that DF-S—
estimation at the receiver [1]-[3]. To achieve good errater MSDD is capable of achieving lower error rates than MSDD

performance with DSTM also in relatively fast MIMO fadingWith the same observation window length. Furthermore, its
channels, appropriate receiver processing techniques toav 1 S—based implementation is advantageous over existing TS—
be applied. These can be roughly categorized into noncnher@ased MSDD algorithms (cf. [13]-[15]) in that (i) its aveeag
sequence detection (NSD) and block-based detection, whepgputational complexity is less dependent on the SNR and
for the latter multiple—symbol differential detection () (i) its instantaneous complexity can be limited to values
and decision—feedback differential detection (DFDD) dre t comparable to the average complexity without negative hpa
most popular schemes. In NSD the entire transmit sequenc@fisthe performance.

detected based on a limited tree search (e.g. [4]) or reduced Organization.The remainder of this letter is organized as
state Viterbi decoding (e.g. [5]-[9]). In MSDD (e.g. [10]_follows. Section Il introduces the system model and MSDD
[12]) the transmitted data is estimated in blocks f— 1 decision rule. The new DF-S-MSDD is presented in Sec-

consecutive Symbo|s based on the observatiofV afeceived tion 1ll. Numerical results are shown and discussed in Sec-

symbols. To reduce the complexity of MSDD, methods froion IV, and conclusions are given in Section V.
Notation: Throughout this letter we use the following no-

tation. Bold upper cas& denote matrices(-)", tr{-}, ||-||,

®, and&{-} denote Hermitian transposition, trace, Frobenius
norm, Kronecker product, and expectation, respectivEly.

is the L x L identity matrix anddiag{X,,..., X} is an
LM x LN block—diagonal matrix with thé/ x N matrices
X on its main diagonal. AssymmetricL. x L. Toeplitz matrix

is defined bytoeplitz{z1,...,z1}.

Manuscript received November 7, 2007; revised May 14, 200& work
was supported by the Deutsche Forschungsgemeinschaft)(Dfider grant
HU 634/6.

V. Pauli was with the Lehrstuhl fur Informationstbertuag, Universitat
Erlangen—Nurnberg, Germany. He is now with Nomor GmbH.ubeét is with
the Lehrstuhl fur Informationsiibertragung, UniveasiErlangen—Nurnberg,
Germany. L. Lampe is with the Deptartment of Electrical andm@uter
Engineering, University of British Columbia, Canada. Eméhuber@Int.de,
lampe@ece.ubc.¢a



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX 2

Il. PRELIMINARIES with
In this section, we briefly introduce the MIMO system - A N2
model for DSTM with MSDD, and we state the maximum— Sk—rl=[] VIk-v], 0<k<N=2, (7)
likelihood (ML) decision rule for MSDD. v=r

andS[k — N + 1] = Iy,.
A. System Model

. o . . . I11. DECISION-FEEDBACK SUBSET MULTIPLE—SYMBOL
We consider transmission usiigr transmit andVg receive

antennas. At the transmitté¥-R bits are mapped tdVr x DIFFERENTIAL DETECTION (DF-S-MSDD)
7AN In this section, we present DF—S—-MSDD and its TS—-based

Nr unitary matricesV’[k] which are taken from a s = implementation for low—complexity and reliable noncolmre
. Lo [ W— Xi [
(VO |1 e{1,...,L},L £ 2Mr R}, R is the data rate in bit deft)ection R

per channel use. In order to facilitate noncoherent detecti

the data symbol¥/[k] are differentially encoded into transmit
symbols A. Formulation of DF-S-MSDD

B B In [15] it was observed that symbol estimates at the edges of
Slk] = VI[k]S[k — 1], S[0] = Iy, @ the MSDD observation window are less reliable than estimate
The Np x Ny matrices S[k] are transmitted in a row—by—for the center symbols. A modification of MSDD, so—called
row fashion from theV:y transmit antennas itV successive Subset MSDD (S-MSDD) was devised, which discards those
modulation intervals (cf. e.g. [1]-[3]). unreliable decisions. The DF-S-MSDD scheme proposed in
While the transmission channel changes continuously withis letter combines the general idea of S-MSDD with the

is based on the assumption of quasi—static fading, i.e. tﬁglow_ing. . . _
channel is assumed to be constant duriNg consecutive As in conventional MSDD, an observation window extend-

modulation intervald. In this case, the received sign&[k] Ing overN received symbols summarized R[k] is applied.

can be described via corresponding data symbol%[k —k,0 < kK <N -2,
(N —rky—2) previous decision¥ [k—k], ky+1 < k < N—2,
R[k] = S[k|H k] + N k], (2) are fed back and the ML-MSDD metric is optimized only

here HTk! d h i of iid. circularl over the remaining.y + 1 symbolsV [k —«], 0 < k < ky. In
where H [] denotes theVr x N matrix of i.id. circularly o 46 45 exclude the often unreliable symbols at the endef th
symmetric complex GaussAan fading gains with temporal"'J‘m((?bservation window, the decoder does not returnsall+ 1
correlation function)yu[x] = E{hi [k + x]h;[k]} andN[k]  decisionsV [k—#], 0 < k < ku, but onlysy —ry +1 decisions
models additive spatially and temporally white Gaussiais@o v/ [;, — ), k;, < x < sy, and discards the remaining,
with varianceo. decisions at the end of the observation window. Accordingly
the observation window must slide forward in steps«ef—

B. Maximum-—Likelihood Multiple—Symbol Differential Dete #1 + 1 Symbols at a time. Figure 1 illustrates the use of

tion (ML-MSDD) received samples, decision feedback, and subset deteation
B A Ny DF-S—MSDD. The two newly introduced paramete(s and
MSDD processes blocksR[k] = [R"'[k — N + g need to be adjusted appropriately, which will be illustdate
1],..., R" [k]]H of N consecutively received matrix symbolsn Section V.
at a time to determine blockd[k] 2 [VH[k - N+
2], .. .,VH[k]]H of N — 1 data symbols. The ML decision B. Tree-Search Based Implementation for DF-S-MSDD
rule is given by (e.g. [15]) While the use of decision—feedback symbols already lowers

N ] S = SHo - computational complexity of DF-S—-MSDD compared to that

VK] = argmin {tr{R [k1Splk] (C™'® In.) Sp [k]R[k]}} of MSDD, further complexity reduction is desirable esplygia

Vikevy 3) for larger values ofky and signal constellation sizds. For
this purpose, we devise the application of fast tree—sgdigh

where :
decoding to DF—-S—-MSDD.
c & (\Ilhh + aiIN) , (4) Applying the Cholesky factorization of the inverse corre-
@ A . 5 lation matrix C~! = L"L with lower triangular matrixL
Wan = ftoep itz {ynn (0], nn[l], - [N = 11},(8) [19, Ch. 3.7] with elements ; in the (i + 1)st row (j + 1)st
Splk] = diag{S[k — N +1],...,S[k]}, (6) column, the ML-MSDD metric (3) can be rewritten as

2
N-2||N-1

IWe note that (i) this assumption is madaly to simplify the receiver > _ . o . .

designfor general unitary DSTM codes and (ii) it is not an approxiora V[k] - :argmln Z l'WS [k - Z]R[k - Z]

for the important class of group (cyclic and dicyclic) DSTMdes [2], [3], VIKeVN ! k=0 |l i=x

where each antenna is active only once durivg intervals. (8)
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R[k—N-+1] o RIK]

&

VIk-N42] - Vkrsu-1] B) Vikso] - Vikse] | Viks VK

Fig. 1. lllustration of decision—feedback subset multigfgmbol differential detection (DF-S—MSDD). The obsepratwindow slides forward in steps of
Ky — kL + 1.

This metric expression allows application of TS decoding teeneficial in terms of performance vs. complexity tradeoff
perform DF—S—MSDD. In case of conventional MSDD considsee the results in Section 1V). Furthermore, we note that th
ered in [13]-[15], the symboﬁi‘[k—N+1] = Iy, corresponds matricesY ., 0 < k < ky, defined in (11) are independent
to the root and the sequencﬁﬁ[k -N+1],..., S’[kﬂ to the of the particular candidate under consideration, whichrmsea
leaves of a depth?V — 1) decoding tree. For DF-S—-MSDD, that they need to be computed only once at the beginning of
the feedback ofV — ky — 2 previous decisiond/[k — «], the tree search.

ku + 1 <k < N — 2, corresponds to fixing a node at depth

N — ky — 2 of the tree by fixing C. Discussion

A similar feedback—aided MSDD algorithm for DSTM has
been proposed as MSD4 in [14]. There, DSTM was limited
_ ] to only diagonalconstellations, while DF-S—MSDD proposed
This node can be viewed as the root of a tree of depth-1,  here comprises general unitary DSTM constellations. The
and the remaining:y + 1 symbolsV[k — x|, 0 < x < KU,  authors suggested to feed ba¥k-2 — x; previously detected
corresponding to the different levels of the tree, are f°“’§§/mbols and return decisions @il remainingsy + 1 data
by means of TS decoding in this smaller tree. In (8) thisympols in the observation window. Therefore, MSD4 can be
reflects in the fact that the addends of the outer sum ever,gnsidered as a special case of DF-S—MSDD with= 0, and
are independent of the candidalésk — x], 0 < x < ru, and 55 guch it is strictly inferior to conventional MSDD applgin
therefore irrelevant for the metric minimization in (8).Klag  ihe same window siz&. DF—=S—MSDD. on the other hand

N-—-2
Sk—rl= [ VIk—v], su+1<k<N-2 (9)

this into account and with the definitions typically achieves an error—rate performance close to that
R.[k —i] L LRk — 1), (10) of S—MSD_D, Which i_s bet_ter than that of MSDD. This is
N1 true especially in rapid fading scenarios, where the et r

Y, A Z S’H[k—z]RH[k—z], (11) of (?o_nventional MSDD is degraded sevgrely _by unreliable
imro 1 decisions at the edges of the observation window. At the

A same time, computational complexity is significantly restlic
X, = Sk-r-1] (YN + (12) compared to MSDD and S-MSDD as the dimension of the

. search space isy + 1 instead of N — 1, i.e. there arg "v+!
Z gt = i]R,i[k . Z-])’ (13) relevant candidgte§ instead bf' 1. _
Furthermore, it is clear from the problem formulation of

e th decisi | MSDD that DF—S—MSDD is related to well-known sequential
0 < r < ry, we can write the DF-S-MSDD decision rule a§y requced-state algorithms used for sequence estimation

Ky for coded transmission and transmission over intersymbol—

O (14) interference channels, cf. e.g. [20], [21]. We note thas fhi
true for (almost) all improved noncoherent receivers, dre t
actual task in noncoherent detection is to devise schentes wi
2 favorable tradeoffs between detection complexity andrerro
(15) rate performance. As we exemplarily show in the next section

W te that all terms. in th in (14 i the proposed DF—-S—-MSDD achieves the best performance—

e note that all terms,; in the sum in (14) are non-nega IVecomplexity tradeoff among the improved detectors for DSTM.
and thato, only depends onfV[k — x],...,V[k — ku]l. , . o

. Finally, we note that for a quiclkapproximationof the

Therefore, DF-S—-MSDD can be interpreted at<g + 1)— :

. . . . symbol—error rate of DF-S—-MSDD the expression
dimensional tree—search problem with branch medyic In
consequence, the methods recently devised in [13]-[15] to 1 =u
solve the regular MSDD problem by means of TS decoding SER ~ Ky — KL + 1 Z SERN-1- ,
can be readily applied to efficiently solve the DF-S—MSDD RERL
problem in (14). In particular, the use of a Fano—type metraould be evaluated, whef#R,, are the SERs in the individual
defined in the same way as for regular tree—search bageditions of the MSDD observation window according to
MSDD in [15, Section IlI-B.2] is possible and will turn out[15, Eq. (26)]. In doing so, error-free feedback needs to be

[V [k —kul, ..., V[k]] = Va{zgﬁm}ienv
Vke{0,...,ku }

k=0

with
5. 2 HVH[k — KRk — K]+ X,

(16)
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Fig. 3. Comparison of various detectors with respect to SERFy, /Aj.

Fig. 2. Results for DF-S—-MSDD with;, = 1 and different values ofy.

Left: SER, center: average complexiys., right: minimal allowed limiting . . . .
complexity CY; = (see text). With ML-MSDD metric (solid lines) and with the overlap between consecutive observation windows. This

Fano—type metric (dashed lines). coincides with the findings in [24], where it was shown
that in fast—fading scenarios the reliability of the demis
is roughly independent of the position in the observation

assumed, which results in some underestimation of the tiyghdow with the exception of the edge positions. Fixing
error rate. We therefore present simulation results toudisc #r. = 1, Figure 2 shows (i) the symbol—error rate (SER) (left),
the actual performance of DF-S-MSDD in the next section.(ii) the average numbef’,, of examined nodes per decoded
symbol (center), and (iii) a quantity’y],  defined as the
IV. NUMERICAL RESULTS AND DISCUSSION minimal number of examined nodes per decoded symbol, after
. . . . . which the tree search can be terminated without noteworthy
In this section, we show simulation results to illustrate th. o S
error—rate performance and the complexity of DF-S—MSD pact on the SER.Solid lines |n_d|cate the use of the ML—
SDD metric, whereas dashed lines correspond to the Fano—

For this purpose, we consider a system with the foIIowin[%;/pe metric. Three different SNR values are considerid (

para_meters as an e>_<ampIZ§:T =3 transmltter andvVg = 1 and Ny denote the received energy per information bit and
receiver antennas, diagonal DSTM with= 2 (and therefore ; . N .
the two-sided noise—power spectral density in the equivale

L = 64) according to [3, Table I], Clarke’s fading with . :
. . . - : ~ complex baseband, respectively). The SER results in the lef
normalized fading bandwidtt, T = 0.03, i.e. ¥nnlx] = Fubplot show that the performance somewhat improves i

Jo(0.06mN1k), where Jo(z) denotes the Oth—order Besse . . . -
function of the 1st kind, and an observation window lengtncreased, which is due to a slightly improved reliabilifyloe

. . ?cisions towards the center of the observation window and
N = 10. As benchmark detectors, we consider COnvemlonr%duced error propagation if fewer previous decisions ade f
differential detection (CDD,N = 2), DFDD, conventional propag P

MSDD, S-MSDD, MSD4, and (differentially) coherent detecl@Ck into the DF-S-MSDD metric. The results @, show

. : A . I that for relatively low SNR the average complexity of DF—
tion \.N'th perfect chapnel state .|n.format|on (CSI).' All s 5S—MSDSD exhibits the behavior typical for TS algorithms,
are implemented with the efficient TS decoding from [1 I'e. the complexity is an increasing function of the treette

Section IlI-B] and with lattice—detector (LD) based symbol ™ piexity 9 b

. . ry+1.In high SNR, on the other hand, the average complexit
gearch, cf. [15].' [22], [23]. In case of MSD4, this TS deccgjm%fU DF—S—I\/?SDD even decreases with growilagg as hgre ’
is preferable n terms. of perfor_mance—complexny tradeothe average complexity per decoded symbol of (unlimited)
to the bound—intersection detection (BID) based algorith F-S—MSDD is close to its minimum &+ 1/ry. Finally
originally suggested f_or MSDA4 in [1.4]' Fgrthermore, beSidethe results forC|, . clearly show that small valugé afy aré
:':ztr:\é”_(; fMS[ESD Srz(e;g:)c,; I-:— EB dzt]a)ctinsd|gﬁsowlljtge;heAstn2i—r;yple referable. With«y = 1 we can see that the tree search can be

' ' . ’ . . P erminated after only 6 (at 17 dB) to 13 (at 27 dB) examined
measure of computational complexity, we consider the numbg . . .
of examined nodes in the tree per decoded symbol candidates per decoded symbql without noteworthy |mpact_0n
. : . . ' the error—rate performance, while a full search would exami
Let us first discuss appropriate choices for the paramettaLr§: 4096 candidates to achieve the same performance. (We

ku and k. We overall found that using;, = 1, i.e. only : - .
the decision for the last symbol in the observation WindO\pvOte that, since the SER &,/ N = 7 dB is about 0.5, the

is discarded, yields almost all _the achlevable.galn_ IN &ITOT 2p10re specifically,CY,, is determined such that the SER is increased by
rate performance over conventional MSDD while minimizingo more than a factor of.1 compared to the unlimited search.
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Fig. 4. Performance vs. maximal allowed complexdy;,, per decoded o | } 1
symbol for different SNRs10log,,(FL,/No). Dashed lines: SER when 10 20 25 30 35
Clim — oo. TS decoding with Fano—type metric is applied.
10° ; 1 —
‘ SER =10
) ) ) ) SER = 1072
complexity curves for this case are only included to illagtr 10" ~
the trend with increasing SNR.)

In summary, it can be concluded that = x;, = 1, i.e. 100 L } : ‘ ]
the tree searched in DF-S—-MSDD is of depth two, leads to a 20 25 30 35
very favorable performance—complexity tradeoff regessllef By/No [dB]  —
the SNR. Hence the following comparisons with benchmark
detectors we considery = sy, = 1 Fig. 5. Complexity range (number of examined candidates demoded

. . symbol) required to achieve an SER dd~2 and 10—%, respectively, vs.
Figure 3 compares the error—rate performance of the VariodiR 10log, o (B, /No) for different detectors. TS decoding with Fano-type
detectors. Both ML and Fano-type metric are consideredetric is applied.

MSD4 usesN — 3 feedback symbols (like DF-S—MSDD) and

returns decisions for the last two symbols in the obsermatio ] ]

window. We observe that MSDD clearly outperforms DFDD 7 dB and27 dB, respectively, whil&,, = 80...100 has to
and CDD, which suffers from a very high error floor. It caP€ allowed for MSDD and S-MSDD. Although the maximal
further be seen that the use of the Fano-type metric restigguired complexity of MSD4 is slightly below that of S-DF—
in relatively small performance losses of about — 1.0dB. MSDD, the performan_ce saturates at considerably higher err
Interestingly, the performance loss due to the Fano-tyieiene fates (as also shown in Figure 3). - _

is almost negligible for DF~S—MSDD, which can be attributed Finally, Figure 5 compares the complexities required to
to the very low dimension (two) of the TS decoding problerichiéve an SER of, respectively) > and10~* as function of
in this case. This way, DF-S—-MSDD with Fano-type metrid® SNR. Since the instantaneous complexny is a r_andom vari
achieves almost the same performance as S—-MSDD, whiiple depending on the channel and noise realization, F!?gurg
is within approximately 3 dB of idealized coherent detettio Shows the measured ranges of complexity. The left bourslarie
while MSD4 (with ML and Fano—type metric) operates at gf the shaded areas indicate the cutoff SNRs below which

significantly higher SNR compared to S-MSDD due to thibe target SERs cannot be achieved. It can be seen that the
poor reliability of the last decision in the observation daw. CUtoff SNRs for DF-S-MSDD are much lower than those for

In Figure 4 we consider the performance that can B4SDD and MSD4, and very close to those for S-MSDD. At

achieved if the maximal number of examined candidates g8¢ Same time the complexities for DF-S-MSDD extend over
decoded symbol is limited to a finit&;,., i.€. if the TS process significantly smaller ranges with much lower apsolute value

is terminated aftetN — 1)Ciin (MSDD), (ku — k1, + 1)Clim than those for S-MSDD and MSD_D, and are qt_ute comparable
(DF=S-MSDD) 2C};, (MSD4) and(N — 3)Cli (S-MSDD) to those for MSD4. Thus, this figure nicely |Ilustr_ates that

examined candidates. The Fano—type metric is applied for F~S—MSDD offers the best performance—complexity traideof

detectors. The dashed horizontal lines mark the SER wh@fong the different detectors.

Ciim — oo. We observe that the maximal instantaneous

complexities necessary to avoid performance degradations V. CONCLUSIONS

compared toC);,, — oo are much larger for MSDD and S— In this letter, we have introduced a novel noncoherent
MSDD than for the new DF—-S—MSDD. For examplg,,, = 4 detection algorithm for DSTM, which we have named DF-

and Cy;,,, = 10 are sufficient for DF-S—-MSDD ak}, /Ay = S—-MSDD. It combines ideas of DFDD and subset MSDD by
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feeding back a number of previous decisions into the MSDP1] M. V. Eyuboglu and S. U. H. Qureshi. Reduced-State 8eoe

metric, optimizing the latter only over the remaining syrsho E(S)trinmn?ﬂgns‘é"(“lf)‘. lSSEtzga’thr?S;g fggSDECiSiO” FeedbalkEE Trans.
and returning decisions only on a subset of these symbols. %’2] K L Cla.rkson,.W. Sv(/eldens, and A, Zheng. Fast Multiplatenna

to the relationship with subset MSDD error—rate perfornesnc Differential Decoding.|[EEE Trans. Commun49(2):253—261, February

even better than those of MSDD are feasible, especially in 2001 . .
id fadi . At th . h ductio g3] C. Ling, W. H. Mow, K. H. Li, and A. C. Kot. Multiple-Antena
rapid fading environments. At the same time, the reduction Differential Lattice DecodinglEEE J. Select. Areas Commu@3:1821—

the search space dimension in conjunction with an apprigpria 1829, September 2005.

implementation based on tree—search decoding results if?4 V- Pauli, R. Schober, and L. Lampe. A Unified Performancealysis
. . . Framework for Differential Detection in MIMO Rayleigh Fadj Chan-
very low average complexity, and instantaneous complexity o5 |EEE Trans. CommunTo be published 2008.

can be limited to very small values without affecting detect
performance. This is true for a relatively wide range ofvate
SNRs and constitutes an important advantage over existing
TS—based MSDD algorithms.
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