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Abstract— In this letter, a novel noncoherent detection al-
gorithm for differential space–time modulation (DSTM) over
flat fading multiple–input multiple–output channels is presented.
This algorithm, which is referred to as decision–feedback subset
multiple–symbol differential detection (DF–S–MSDD), combines
ideas from decision–feedback differential detection (DFDD) and
subset multiple–symbol differential detection (S–MSDD).More
specifically, the DF–S–MSDD decision metric includes a number
of previous decisions (i.e. decision feedback) and the optimization
over the remaining hypothetical symbols returns decisionsonly
for a subset of these (i.e. S–MSDD). Furthermore, an implemen-
tation of DF–S–MSDD based on tree–search (TS) methods is
devised. Due to the concept of subset detection, DF–S–MSDD
outperforms MSDD in terms of error–rate performance. At
the same time, due to the use of decision feedback, it also
requires lower computational complexity than the TS–based
MSDD schemes for DSTM proposed recently in the literature.

Index Terms— Differential space–time modulation (DSTM),
multiple–symbol differential detection (MSDD), decision–
feedback differential detection (DFDD), noncoherent detection,
fading channels.

I. I NTRODUCTION

Differential space–time modulation (DSTM) using unitary–
matrix signal constellations is an attractive solution fortrans-
mission over multiple–input multiple–output (MIMO) fading
channels with noncoherent detection, which obviates channel
estimation at the receiver [1]–[3]. To achieve good error–rate
performance with DSTM also in relatively fast MIMO fading
channels, appropriate receiver processing techniques have to
be applied. These can be roughly categorized into noncoherent
sequence detection (NSD) and block–based detection, where
for the latter multiple–symbol differential detection (MSDD)
and decision–feedback differential detection (DFDD) are the
most popular schemes. In NSD the entire transmit sequence is
detected based on a limited tree search (e.g. [4]) or reduced–
state Viterbi decoding (e.g. [5]–[9]). In MSDD (e.g. [10]–
[12]) the transmitted data is estimated in blocks ofN − 1
consecutive symbols based on the observation ofN received
symbols. To reduce the complexity of MSDD, methods from
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tree–search (TS) decoding have been adopted in e.g. [13]–
[15]. While these TS–based algorithms greatly reduce the
average complexity compared to a brute–force search, they
have a number of drawbacks: (i) their average computational
complexity may become prohibitively large inlow signal–
to–noise ratios (SNRs)and (ii) their instantaneouscompu-
tational complexity is a random variable depending on the
instantaneous channel realization. DFDD (e.g. [16]–[18]), on
the other hand, uses decision feedback ofN − 2 previous
symbols to detect only the current symbol and thus complexity
is relatively low and constant, independent of SNR and channel
realization. On the negative side, DFDD leaves a gap in
power efficiency (SNR required to achieve a certain error rate)
compared to MSDD.

In this letter, we propose a novel algorithm for block–based
noncoherent detection, which combines elements from MSDD
and DFDD. More specifically, partial decision feedback of
between 1 andN − 2 symbols is employed and MSDD is
performed for the remaining symbols. Furthermore, motivated
by the observation that estimates of symbols at the edges
of the MSDD window are rather unreliable, decisions are
made only on a subset of data symbols. We refer to this
algorithm as decision–feedback subset multiple–symbol dif-
ferential detection (DF–S–MSDD) and also devise a TS–based
implementation for it. Numerical results show that DF–S–
MSDD is capable of achieving lower error rates than MSDD
with the same observation window length. Furthermore, its
TS–based implementation is advantageous over existing TS–
based MSDD algorithms (cf. [13]–[15]) in that (i) its average
computational complexity is less dependent on the SNR and
(ii) its instantaneous complexity can be limited to values
comparable to the average complexity without negative impact
on the performance.

Organization:The remainder of this letter is organized as
follows. Section II introduces the system model and MSDD
decision rule. The new DF–S–MSDD is presented in Sec-
tion III. Numerical results are shown and discussed in Sec-
tion IV, and conclusions are given in Section V.

Notation: Throughout this letter we use the following no-
tation. Bold upper caseX denote matrices.(·)H, tr{·}, ‖·‖,
⊗, andE{·} denote Hermitian transposition, trace, Frobenius
norm, Kronecker product, and expectation, respectively.IL

is the L × L identity matrix anddiag{X1, . . . ,XL} is an
LM × LN block–diagonal matrix with theM ×N matrices
X l on its main diagonal. AsymmetricL×L Toeplitz matrix
is defined bytoeplitz{x1, . . . , xL}.
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II. PRELIMINARIES

In this section, we briefly introduce the MIMO system
model for DSTM with MSDD, and we state the maximum–
likelihood (ML) decision rule for MSDD.

A. System Model

We consider transmission usingNT transmit andNR receive
antennas. At the transmitterNTR bits are mapped toNT ×

NT unitary matricesV [k] which are taken from a setV
△
=

{V (l) | l ∈ {1, . . . , L}, L
△
= 2NTR}. R is the data rate in bit

per channel use. In order to facilitate noncoherent detection
the data symbolsV [k] are differentially encoded into transmit
symbols

S[k] = V [k]S[k − 1], S[0] = INT
. (1)

The NT × NT matricesS[k] are transmitted in a row–by–
row fashion from theNT transmit antennas inNT successive
modulation intervals (cf. e.g. [1]–[3]).

While the transmission channel changes continuously with
time, the design of low–complexity noncoherent detectors
is based on the assumption of quasi–static fading, i.e. the
channel is assumed to be constant duringNT consecutive
modulation intervals.1 In this case, the received signalR[k]
corresponding to the transmission of one DSTM symbolS[k]
can be described via

R[k] = S[k]H [k] + N [k], (2)

whereH[k] denotes theNT × NR matrix of i.i.d. circularly
symmetric complex Gaussian fading gains with temporal auto-

correlation functionψhh[κ]
△
= E

{

hi,j [k + κ]h∗i,j [k]
}

andN [k]
models additive spatially and temporally white Gaussian noise
with varianceσ2

n.

B. Maximum–Likelihood Multiple–Symbol Differential Detec-
tion (ML–MSDD)

MSDD processes blocksR̄[k]
△
=

[

R
H[k − N +

1], . . . ,RH[k]
]H

of N consecutively received matrix symbols

at a time to determine blockŝ̄V [k]
△
=

[

V̂
H
[k − N +

2], . . . , V̂
H
[k]

]H
of N − 1 data symbols. The ML decision

rule is given by (e.g. [15])

ˆ̄
V [k] = argmin

˜̄
V [k]∈VN−1

{

tr
{

R̄
H[k] ˜̄SD[k]

(

C
−1⊗ INT

) ˜̄
S

H

D[k]R̄[k]
}}

(3)
where

C
△
=

(

Ψhh + σ2
nIN

)

, (4)

Ψhh

△
= toeplitz

{

ψhh[0], ψhh[1], . . . , ψhh[N − 1]
}

,(5)

˜̄
SD[k]

△
= diag

{

S̃[k −N + 1], . . . , S̃[k]
}

, (6)

1We note that (i) this assumption is madeonly to simplify the receiver
design for general unitary DSTM codes and (ii) it is not an approximation
for the important class of group (cyclic and dicyclic) DSTM codes [2], [3],
where each antenna is active only once duringNT intervals.

with

S̃[k − κ]
△
=

N−2
∏

ν=κ

Ṽ [k − ν] , 0 ≤ κ ≤ N − 2 , (7)

and S̃[k −N + 1] = INT
.

III. D ECISION–FEEDBACK SUBSET MULTIPLE–SYMBOL

DIFFERENTIAL DETECTION (DF–S–MSDD)

In this section, we present DF–S–MSDD and its TS–based
implementation for low–complexity and reliable noncoherent
detection.

A. Formulation of DF–S–MSDD

In [15] it was observed that symbol estimates at the edges of
the MSDD observation window are less reliable than estimates
for the center symbols. A modification of MSDD, so–called
subset MSDD (S–MSDD) was devised, which discards those
unreliable decisions. The DF–S–MSDD scheme proposed in
this letter combines the general idea of S–MSDD with the
concept of decision feedback from DFDD as explained in the
following.

As in conventional MSDD, an observation window extend-
ing overN received symbols summarized in̄R[k] is applied.
Instead of optimizing the ML–MSDD metric (3) over allN−1
corresponding data symbols̃V [k − κ], 0 ≤ κ ≤ N − 2,
(N−κU−2) previous decisionŝV [k−κ], κU+1 ≤ κ ≤ N−2,
are fed back and the ML–MSDD metric is optimized only
over the remainingκU +1 symbolsṼ [k−κ], 0 ≤ κ ≤ κU. In
order to exclude the often unreliable symbols at the end of the
observation window, the decoder does not return allκU + 1
decisionsV̂ [k−κ], 0 ≤ κ ≤ κU, but onlyκU−κL+1 decisions
V̂ [k − κ], κL ≤ κ ≤ κU, and discards the remainingκL

decisions at the end of the observation window. Accordingly,
the observation window must slide forward in steps ofκU −
κL + 1 symbols at a time. Figure 1 illustrates the use of
received samples, decision feedback, and subset detectionin
DF–S–MSDD. The two newly introduced parametersκU and
κL need to be adjusted appropriately, which will be illustrated
in Section IV.

B. Tree–Search Based Implementation for DF–S–MSDD

While the use of decision–feedback symbols already lowers
computational complexity of DF–S–MSDD compared to that
of MSDD, further complexity reduction is desirable especially
for larger values ofκU and signal constellation sizesL. For
this purpose, we devise the application of fast tree–search(TS)
decoding to DF–S–MSDD.

Applying the Cholesky factorization of the inverse corre-
lation matrix C

−1 = L
H
L with lower triangular matrixL

[19, Ch. 3.7] with elementsli,j in the (i+ 1)st row (j + 1)st
column, the ML–MSDD metric (3) can be rewritten as

ˆ̄
V [k] = argmin

˜̄
V [k]∈VN−1







N−2
∑

κ=0

∥

∥

∥

∥

∥

N−1
∑

i=κ

lκ,iS̃
H

[k − i]R[k − i]

∥

∥

∥

∥

∥

2






.

(8)
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Fig. 1. Illustration of decision–feedback subset multiple–symbol differential detection (DF–S–MSDD). The observation window slides forward in steps of
κU − κL + 1.

This metric expression allows application of TS decoding to
perform DF–S–MSDD. In case of conventional MSDD consid-
ered in [13]–[15], the symbol̃S[k−N+1] = INT

corresponds
to the root and the sequences

[

S̃[k−N +1], . . . , S̃[k]
]

to the
leaves of a depth–(N − 1) decoding tree. For DF–S–MSDD,
the feedback ofN − κU − 2 previous decisionŝV [k − κ],
κU + 1 ≤ κ ≤ N − 2, corresponds to fixing a node at depth
N − κU − 2 of the tree by fixing

S̃[k − κ] =

N−2
∏

ν=κ

V̂ [k − ν], κU + 1 ≤ κ ≤ N − 2. (9)

This node can be viewed as the root of a tree of depthκU +1,
and the remainingκU + 1 symbolsV̂ [k − κ], 0 ≤ κ ≤ κU,
corresponding to the different levels of the tree, are found
by means of TS decoding in this smaller tree. In (8) this
reflects in the fact that the addends of the outer sum overκ
are independent of the candidatesṼ [k−κ], 0 ≤ κ ≤ κU, and
therefore irrelevant for the metric minimization in (8). Taking
this into account and with the definitions

R̆κ[k − i]
△
= lκ,iR[k − i], (10)

Y κ
△
=

N−1
∑

i=κU+1

S̃
H
[k − i]R̆κ[k − i], (11)

Xκ
△
= S̃[k − κ− 1]

(

Y κ + (12)

κU
∑

i=κ+1

S̃
H
[k − i]R̆κ[k − i]

)

, (13)

0 ≤ κ ≤ κU, we can write the DF–S–MSDD decision rule as

[

V̂
[

k − κU

]

, . . . , V̂ [k]
]

= argmin
Ṽ [k−κ]∈V

∀κ∈{0,...,κU}

{

κU
∑

κ=0

δκ

}

(14)

with

δκ
△
=

∥

∥

∥
Ṽ

H

[k − κ]R̆κ[k − κ] + Xκ

∥

∥

∥

2

. (15)

We note that all termsδκ in the sum in (14) are non–negative
and that δκ only depends on[Ṽ [k − κ], . . . , Ṽ [k − κU]].
Therefore, DF–S–MSDD can be interpreted as a(κU + 1)–
dimensional tree–search problem with branch metricδκ. In
consequence, the methods recently devised in [13]–[15] to
solve the regular MSDD problem by means of TS decoding
can be readily applied to efficiently solve the DF–S–MSDD
problem in (14). In particular, the use of a Fano–type metric
defined in the same way as for regular tree–search based
MSDD in [15, Section III-B.2] is possible and will turn out

beneficial in terms of performance vs. complexity tradeoff
(see the results in Section IV). Furthermore, we note that the
matricesY κ, 0 ≤ κ ≤ κU, defined in (11) are independent
of the particular candidate under consideration, which means
that they need to be computed only once at the beginning of
the tree search.

C. Discussion

A similar feedback–aided MSDD algorithm for DSTM has
been proposed as MSD4 in [14]. There, DSTM was limited
to only diagonalconstellations, while DF–S–MSDD proposed
here comprises general unitary DSTM constellations. The
authors suggested to feed backN−2−κU previously detected
symbols and return decisions onall remainingκU + 1 data
symbols in the observation window. Therefore, MSD4 can be
considered as a special case of DF–S–MSDD withκL = 0, and
as such it is strictly inferior to conventional MSDD applying
the same window sizeN . DF–S–MSDD, on the other hand,
typically achieves an error–rate performance close to that
of S–MSDD, which is better than that of MSDD. This is
true especially in rapid fading scenarios, where the error rate
of conventional MSDD is degraded severely by unreliable
decisions at the edges of the observation window. At the
same time, computational complexity is significantly reduced
compared to MSDD and S–MSDD as the dimension of the
search space isκU + 1 instead ofN − 1, i.e. there areLκU+1

relevant candidates instead ofLN−1.
Furthermore, it is clear from the problem formulation of

MSDD that DF–S–MSDD is related to well–known sequential
and reduced–state algorithms used for sequence estimation
for coded transmission and transmission over intersymbol–
interference channels, cf. e.g. [20], [21]. We note that this is
true for (almost) all improved noncoherent receivers, and the
actual task in noncoherent detection is to devise schemes with
favorable tradeoffs between detection complexity and error–
rate performance. As we exemplarily show in the next section,
the proposed DF–S–MSDD achieves the best performance–
complexity tradeoff among the improved detectors for DSTM.

Finally, we note that for a quickapproximationof the
symbol–error rate of DF–S–MSDD the expression

SER ≈
1

κU − κL + 1

κU
∑

κ=κL

SERN−1−κ , (16)

could be evaluated, whereSERn are the SERs in the individual
positions of the MSDD observation window according to
[15, Eq. (26)]. In doing so, error-free feedback needs to be
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Fig. 2. Results for DF–S–MSDD withκL = 1 and different values ofκU.
Left: SER, center: average complexityCav , right: minimal allowed limiting
complexity C′

lim
(see text). With ML–MSDD metric (solid lines) and with

Fano–type metric (dashed lines).

assumed, which results in some underestimation of the true
error rate. We therefore present simulation results to discuss
the actual performance of DF-S-MSDD in the next section.

IV. N UMERICAL RESULTS AND DISCUSSION

In this section, we show simulation results to illustrate the
error–rate performance and the complexity of DF–S–MSDD.
For this purpose, we consider a system with the following
parameters as an example:NT = 3 transmitter andNR = 1
receiver antennas, diagonal DSTM withR = 2 (and therefore
L = 64) according to [3, Table I], Clarke’s fading with
normalized fading bandwidthBhT = 0.03, i.e. ψhh[κ] =
J0(0.06πNTκ), where J0(x) denotes the 0th–order Bessel
function of the 1st kind, and an observation window length
N = 10. As benchmark detectors, we consider conventional
differential detection (CDD,N = 2), DFDD, conventional
MSDD, S–MSDD, MSD4, and (differentially) coherent detec-
tion with perfect channel state information (CSI). All schemes
are implemented with the efficient TS decoding from [15,
Section III-B] and with lattice–detector (LD) based symbol
search, cf. [15], [22], [23]. In case of MSD4, this TS decoding
is preferable in terms of performance–complexity tradeoff
to the bound–intersection detection (BID) based algorithms
originally suggested for MSD4 in [14]. Furthermore, besides
the ML–MSDD metric, TS decoding with the Fano–type
metric (cf. [15, Section III-B.2]) is also used. As a simple
measure of computational complexity, we consider the number
of examined nodes in the tree per decoded symbol.

Let us first discuss appropriate choices for the parameters
κU and κL. We overall found that usingκL = 1, i.e. only
the decision for the last symbol in the observation window
is discarded, yields almost all the achievable gain in error–
rate performance over conventional MSDD while minimizing
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Fig. 3. Comparison of various detectors with respect to SER vs. Eb/N0.

the overlap between consecutive observation windows. This
coincides with the findings in [24], where it was shown
that in fast–fading scenarios the reliability of the decisions
is roughly independent of the position in the observation
window with the exception of the edge positions. Fixing
κL = 1, Figure 2 shows (i) the symbol–error rate (SER) (left),
(ii) the average numberCav of examined nodes per decoded
symbol (center), and (iii) a quantityC′

lim defined as the
minimal number of examined nodes per decoded symbol, after
which the tree search can be terminated without noteworthy
impact on the SER.2 Solid lines indicate the use of the ML–
MSDD metric, whereas dashed lines correspond to the Fano–
type metric. Three different SNR values are considered (Eb

and N0 denote the received energy per information bit and
the two–sided noise–power spectral density in the equivalent
complex baseband, respectively). The SER results in the left
subplot show that the performance somewhat improves ifκU is
increased, which is due to a slightly improved reliability of the
decisions towards the center of the observation window and
reduced error propagation if fewer previous decisions are fed
back into the DF–S–MSDD metric. The results forCav show
that for relatively low SNR the average complexity of DF–
S–MSDSD exhibits the behavior typical for TS algorithms,
i.e. the complexity is an increasing function of the tree depth
κU+1. In high SNR, on the other hand, the average complexity
of DF–S–MSDD even decreases with growingκU, as here
the average complexity per decoded symbol of (unlimited)
DF–S–MSDD is close to its minimum of2 + 1/κU. Finally,
the results forC′

lim clearly show that small values ofκU are
preferable. WithκU = 1 we can see that the tree search can be
terminated after only 6 (at 17 dB) to 13 (at 27 dB) examined
candidates per decoded symbol without noteworthy impact on
the error–rate performance, while a full search would examine
L2 = 4096 candidates to achieve the same performance. (We
note that, since the SER atEb/N0 = 7 dB is about 0.5, the

2More specifically,C′

lim
is determined such that the SER is increased by

no more than a factor of1.1 compared to the unlimited search.
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complexity curves for this case are only included to illustrate
the trend with increasing SNR.)

In summary, it can be concluded thatκU = κL = 1, i.e.
the tree searched in DF–S–MSDD is of depth two, leads to a
very favorable performance–complexity tradeoff regardless of
the SNR. Hence the following comparisons with benchmark
detectors we considerκU = κL = 1.

Figure 3 compares the error–rate performance of the various
detectors. Both ML and Fano–type metric are considered.
MSD4 usesN −3 feedback symbols (like DF–S–MSDD) and
returns decisions for the last two symbols in the observation
window. We observe that MSDD clearly outperforms DFDD
and CDD, which suffers from a very high error floor. It can
further be seen that the use of the Fano–type metric results
in relatively small performance losses of about0.5 − 1.0 dB.
Interestingly, the performance loss due to the Fano–type metric
is almost negligible for DF–S–MSDD, which can be attributed
to the very low dimension (two) of the TS decoding problem
in this case. This way, DF–S–MSDD with Fano–type metric
achieves almost the same performance as S–MSDD, which
is within approximately 3 dB of idealized coherent detection,
while MSD4 (with ML and Fano–type metric) operates at a
significantly higher SNR compared to S–MSDD due to the
poor reliability of the last decision in the observation window.

In Figure 4 we consider the performance that can be
achieved if the maximal number of examined candidates per
decoded symbol is limited to a finiteClim, i.e. if the TS process
is terminated after(N − 1)Clim (MSDD), (κU − κL + 1)Clim

(DF–S–MSDD),2Clim (MSD4) and(N − 3)Clim (S–MSDD)
examined candidates. The Fano–type metric is applied for all
detectors. The dashed horizontal lines mark the SER when
Clim → ∞. We observe that the maximal instantaneous
complexities necessary to avoid performance degradations
compared toClim → ∞ are much larger for MSDD and S–
MSDD than for the new DF–S–MSDD. For example,Clim = 4
andClim = 10 are sufficient for DF–S–MSDD atEb/N0 =
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Fig. 5. Complexity range (number of examined candidates perdecoded
symbol) required to achieve an SER of10−2 and 10−4, respectively, vs.
SNR 10 log10(Eb/N0) for different detectors. TS decoding with Fano–type
metric is applied.

17 dB and27 dB, respectively, whileClim = 80 . . .100 has to
be allowed for MSDD and S–MSDD. Although the maximal
required complexity of MSD4 is slightly below that of S–DF–
MSDD, the performance saturates at considerably higher error
rates (as also shown in Figure 3).

Finally, Figure 5 compares the complexities required to
achieve an SER of, respectively,10−2 and10−4 as function of
the SNR. Since the instantaneous complexity is a random vari-
able depending on the channel and noise realization, Figure5
shows the measured ranges of complexity. The left boundaries
of the shaded areas indicate the cutoff SNRs below which
the target SERs cannot be achieved. It can be seen that the
cutoff SNRs for DF–S–MSDD are much lower than those for
MSDD and MSD4, and very close to those for S–MSDD. At
the same time the complexities for DF–S–MSDD extend over
significantly smaller ranges with much lower absolute values
than those for S–MSDD and MSDD, and are quite comparable
to those for MSD4. Thus, this figure nicely illustrates that
DF–S–MSDD offers the best performance–complexity tradeoff
among the different detectors.

V. CONCLUSIONS

In this letter, we have introduced a novel noncoherent
detection algorithm for DSTM, which we have named DF–
S–MSDD. It combines ideas of DFDD and subset MSDD by
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feeding back a number of previous decisions into the MSDD
metric, optimizing the latter only over the remaining symbols,
and returning decisions only on a subset of these symbols. Due
to the relationship with subset MSDD error–rate performances
even better than those of MSDD are feasible, especially in
rapid fading environments. At the same time, the reduction of
the search space dimension in conjunction with an appropriate
implementation based on tree–search decoding results in a
very low average complexity, and instantaneous complexity
can be limited to very small values without affecting detector
performance. This is true for a relatively wide range of relevant
SNRs and constitutes an important advantage over existing
TS–based MSDD algorithms.
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