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Neural Dynamic Optimization for Control
Systems—Part I: Background

Chang-Yun Seong, Member, IEEE,and Bernard Widrow, Life Fellow, IEEE

Abstract—The paper presents neural dynamic optimization
(NDO) as a method of optimal feedback control for nonlinear
multi-input-multi-output (MIMO) systems. The main feature
of NDO is that it enables neural networks to approximate the
optimal feedback solution whose existence dynamic programming
(DP) justifies, thereby reducing the complexities of computation
and storage problems of the classical methods such as DP. This
paper mainly describes the background and motivations for the
development of NDO, while the two other subsequent papers of
this topic present the theory of NDO and demonstrate the method
with several applications including control of autonomous vehicles
and of a robot arm, respectively.

Index Terms—Dynamic programming (DP), information time
shift operator, learning operator, neural dynamic optimization
(NDO), neural networks, nonlinear systems, optimal feedback
control.

I. INTRODUCTION

NONLINEAR control system design has been dominated
by linear control techniques, which rely on the key as-

sumption of a small range of operation for the linear model to
be valid. This tradition has produced many reliable and effective
control systems [1]–[4].

However, the demand for control methods of complex non-
linear multi-input-multi-output (MIMO) systems has recently
been increasing for several reasons. First, most real-world
dynamical systems are inherently nonlinear. Second, modern
technology, such as high-performance aircraft and high-speed
high-accuracy robots, demands control systems with much
more stringent design specifications, which are able to handle
nonlinearities of the controlled systems more accurately. Third,
along with the demand for high performance, MIMO control
systems often become preferred or required because of the
availability of cheaper and more reliable sensors and actua-
tors made possible by the advances in such technology. The
challenge for control design is to fully utilize this additional
information and degrees of freedom to achieve the best control
system performance possible. Fourth, controlled systems must
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be able to reject disturbances and uncertainties confronted in
real-world applications.

Unfortunately, there are few general practical feedback con-
trol methods for nonlinear MIMO systems [5], [6], although
many methods exist for linear MIMO systems. The behavior of
nonlinear systems is much more complicated and rich than that
of linear systems because of both the lack of linearity and the
associated superposition property [5], [7].

This paper presents neural dynamic optimization (NDO) as a
practical method for nonlinear MIMO control systems. In order
to handle the complexities of nonlinearity and accommodate the
demand for high-performance MIMO control systems, NDO
takes advantage of brain-like computational structures—neural
networks—as well as optimal control theory. Our formulation
allows neural networks to serve as nonlinear feedback con-
trollers optimizing the performance of the resulting control
systems. NDO is thus an offspring of both neural networks and
optimal control theory.

In optimal control theory [8]–[10], the optimal solution to a
nonlinear MIMO control problem may be obtained from the
Hamilton–Jacobi–Bellman equation (HJB) or the Euler–La-
grange (EL) equations . The two sets of equations provide the
same solution in different forms: EL leads to a sequence of
optimal control vectors, called feedforward optimal control
(FOC); HJB yields a nonlinear optimal feedback controller,
called dynamic programming (DP). DP produces an optimal
solution that is able to reject disturbances and uncertainties as
a result of feedback. Unfortunately, computation and storage
requirements associated with DP solutions can be problematic,
especially for high-order nonlinear systems, a problem known
as the curse of dimensionality [8], [10], [11]. The linear
quadratic regulator (LQR) derived from DP has thus been
applied to designing controllers for nonlinear MIMO systems
through the linearization of the systems around an equilibrium
point [9], [10]. However, such linearization imposes limitations
on the stability and performance of closed-loop systems since
it causes a loss of information about large motions and is valid
only near the equilibrium point.

Neural networks [12]–[14], in contrast, have a massively par-
allel distributed structure, an ability to learn and generalize,1 and
a built-in capability to adapt their synaptic weights to changes in
the surrounding environments. Neural networks are inherently
nonlinear—a very important property, particularly if the under-
lying physical mechanisms for the systems are highly nonlinear.
More importantly, they can approximate any nonlinear function
to a desirable accuracy [15]–[17].

1Generalization refers to the neural network producing reasonable outputs for
inputs not encountered during training (or learning).
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Thus, we propose an approximate technique for solving the
DP problem based on neural network techniques that provides
many of the performance benefits (e.g., optimality and feed-
back) of DP and benefits from the numerical properties of neural
networks. We formulate neural networks to approximate op-
timal feedback solutions whose existence DP justifies. In other
words, neural networks serve as building blocks for finding the
optimal solution. As a result, NDO closely approximates—with
a reasonable amount of computation and storage—optimal feed-
back solutions to nonlinear MIMO control problems that would
be very difficult to implement in real-time with DP.

Incidentally, the method developed in the paper is not the
same as neurodynamic programming [18], which involves
approximating the optimal solutions for discrete-state systems
where the number of states is finite and the number of available
controls at each state is also finite. However, the two methods
are related since they try to achieve the same goal: approxi-
mating the optimal feedback solution using neural networks.

The research presented in this paper was inspired by the
works of Nguyen [19] and Plumer [20]. Nguyen showed
the possibility of using neural networks in controlling a
system with high nonlinearities by training them successfully
to back up a trailer-truck to a loading dock. He primarily
introduced a time-horizon-control concept tostatic neural
network controllers, unraveling in time the feedback loop of
the system-controller configuration to produce a large equiv-
alent feedforward network. He applied the backpropagation
algorithm [21], [22] to the large network to train the neural
controller, which is called the backpropagation-through-time
algorithm. He also pointed out the possibility of a connection
between his work and optimal control theory. Plumer [20]
extended Nguyen’s work; he explored a connection between
the neural network control and optimal feedback control.
He illustrated their connection by applying thestatic neural
network controller to some nonlinear SISO systems in finite
horizon problems, such as terminal control. However, static
controllers may have limitations in finite horizon problems
because the optimal feedback solutions to such problems are
inherentlytime-varying[8], [9].

NDO can produce the time-varying as well as time-invariant
optimal feedback solutions to nonlinear MIMO control prob-
lems. NDO can handle not only finite-horizon problems (e.g.,
terminal control) but also infinite-horizon problems (e.g., regu-
lation and tracking control). NDO can produce the neural con-
trollers that are able to minimize the effect of disturbances and
uncertainties that may be confronted in real-world applications.

This paper mainly describes the background and motivations
for the development of NDO, while the two other subsequent
papers [23], [24] of this topic present the theory of NDO and
demonstrate the method with several applications including
control of autonomous vehicles and of a robot arm, respectively.

Four sections comprise this paper. Section II is an overview
of optimal control theory, including DP, the LQR, and FOC.
We point out the problematic aspects of optimal control theory,
which in turn provide the motivation for this research. In any
case, optimal control theory remains useful because it provides
theoretical limits to the performance of NDO, the method pre-
sented in the paper. Section III reviews neural networks and their

Fig. 1. NTV-MIMO system.

properties, emphasizing their capability as general function ap-
proximators. Section IV provides conclusions.

II. OPTIMAL CONTROL THEORY

This section overviews optimal control theory, especially DP,
the LQR, and FOC.

A. Dynamic Programming (DP)

DP finds optimal feedback solutions to nonlinear MIMO con-
trol problems. This approach fully exploits the state concept.
Bellman derived the optimality condition for the optimal value
of a cost function, and the control as a function of state using
the principle of optimality [11], [25], [26]. A more descriptive
name would benonlinear optimal feedback control.

Suppose we have a discrete nonlinear-time-varying (NTV)
MIMO system described by a state equation of the form

(1)

where is the state vector, and is the con-
trol input vector. The future state depends on the current
state and the current input vector through a nonlinear
function , which may have explicit time dependency. Fig. 1
represents the NTV-MIMO system.

A fairly general optimization approach finds the optimal feed-
back control to minimize a cost function of the form

(2)

subject to (1) with the time horizon and the function spec-
ified. The function penalizes the state at the time
horizon , and the function penalizes the states

and the control inputs through to . The
functions and may have explicit time dependency, ac-
cording to the goal of control.

The optimal solution to the problem can be obtained by
solving the discrete HJB equation.

Theorem 1: For the given dynamic optimization problem of
minimizing the cost function

(3)

subject to

(4)
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where and the function are specified, the optimal feedback
solutions are obtained from the discrete HJB equation

(5)

with the initial condition

(6)

Proof: The proof of the theorem is given in the literature
[9], [11], [27].

First, HJB justifies the existence of a nonlinear optimal feed-
back solution. Second, in order to obtain the optimal solution,
we need to find the optimal cost function2 at the
state at the time horizon as an initial condition.
Then, we solve HJB recursively backward in time over state
space.

However, HJB can be very difficult to solve for high-order
nonlinear systems. To make the computational procedure fea-
sible it is necessary to quantize the admissible state and control
values into a finite number of levels. The computational pro-
cedure does not yield an analytical expression, but the optimal
feedback control law is implemented by extracting the control
values from a storage device that contains the solution of HJB
in tabular form. To calculate the optimal control sequence for
a given initial condition, we enter the storage location corre-
sponding to the specified initial condition and extract the con-
trol value and the minimum cost. Next, by solving the state
equation we determine the state of the system at , which
results from applying at . The resulting value of
is then used to reenter the table and extract, and so on. The
optimal controller is physically realized by a table look-up de-
vice.

In addition, storage requirements of the HJP solutions in-
crease very rapidly with the state dimension. Bellman referred
to this drawback asthe curse of dimensionality. To appreciate
the nature of the problem, we may consider a fourth-order SISO
system with 0 quantization levels in each state coordinate as well
as 0 time steps. The solution of HJB to the control problem re-
quires at least storage
locations. Interpolation may also be required when one is using
stored data to compute an optimal control sequence. For ex-
ample, if the optimal control applied at some value of drives
the system to a state value that is halfway between two
points where the optimal controls are 1 and 0, then by linear
interpolation the optimal control is 0.5. Naturally, the degree
of approximation depends on the separation of the grid points
in state coordinates, the interpolation scheme used, the system
dynamics, and the cost function. A finer grid generally means
greater accuracy, but also means increased storage requirements
and computation time.

Linear Quadratic Problems:DP can be subject to intensive
computation and extensive storage requirements, especially for
high-order nonlinear systems. However, it produces important
results forlinear quadratic problemswhere systems are linear
and cost functions are quadratic.

2The optimal cost function is also called the optimal return function or the
optimal cost-to-go function.

Fig. 2. LTI-MIMO system.

Consider a discrete linear-time-invariant (LTI) MIMO system
described by a state equation of the form

(7)

where is the state vector and is the con-
trol input vector. Fig. 2 depicts the discrete LTI-MIMO system.
We want to find the optimal feedback control to minimize a con-
stant-coefficient quadratic cost function

(8)
with , , and .3

By applying the HJB (5) to the linear quadratic problem we
may obtain the following result.

Theorem 2: For the linear quadratic dynamic optimization
problem of minimizing the cost function

(9)
subject to

(10)

the optimal feedback controls are obtained from the following
set of equations:

(11)

(12)

(13)

(14)

where the final condition for (14) is given in (9).
Proof: The proof of the theorem is given in [9] and [10].

The HJB equation produces the set of solution equations for
the linear quadratic problems. In order to obtain the optimal so-
lution to the linear quadratic problems, we need to solve the Ric-
cati (14) recursively backward in time. Then, we compute the

3If the system and weighting matrices vary according to time, the result to
follow still holds.
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time-varying Kalman gain , using (12). The Riccati equa-
tion is much easier to solve than the HJB equation.

We point out that the optimal feedback solution to the linear
quadratic problem is a linear function of the state rather
than a nonlinear one. In other words, DP shows that linear state
feedback is the best form of feedback for linear quadratic prob-
lems. Thus the resulting closed-loop system is alsolinear like
the open-loop system, which is an important result for linear
control systems. Note also that optimal feedback controls for
LTI systems withconstant-coefficientquadratic cost functions
are time-varyingbecause the Kalman gain has explicit
time-dependency. However, we may prefer a constant Kalman
gain , which enables the closed-loop system to be LTI like the
open-loop system. The next subsection will discuss the condi-
tions under which we can obtain a constant Kalman gain for the
linear quadratic problem.

B. Linear Quadratic Regulator (LQR)

In Section II-A, where we considered the application of DP
to linear quadratic problems, the closed-loop system is given by

(15)

The resulting closed-loop system istime-varying since the
optimal gain is time-varying even though the open-loop
system istime invariant.

However, this time-varying feedback is not always conve-
nient to implement: it requires the storage of an entire sequence
of matrices. Accordingly, we are interested in a constant
feedback gain. As one candidate for a constant feedback gain,
we consider the limit of the optimal as the time horizon
goes to infinity. We call this case the LQR [8]–[10].

If does converge, then for a large
. Thus, in the limit, the Riccati (14) becomes the algebraic

Riccati equation (ARE)

(16)

which does not depend on time. The limiting solutionto the
Riccati (14) is clearly a solution of the ARE (16). The corre-
sponding steady-stateKalman gainis

(17)

which is a constant feedback gain. The resulting closed-loop
system is

(18)

which is also linear time invariant like the open-loop system.
The following theorem tells us when there exists a bounded

limiting solution .
Theorem 3: Let be controllable, then there is a

bounded limiting solution to (14). Furthermore, is a
positive semidefinite solution to the ARE (16).

Proof: The proof of the theorem is given in [9] and [10].

The next theorem provides us with the conditions on the
uniqueness of the bounded limiting solutionas well as the
asymptotical stability of the closed-loop system in terms of the
observability of the system through the fictitious output.

Theorem 4: Let be a square root of the intermediate-state
weighting matrix, so that , and suppose .
Suppose is observable. Then is controllable if
and only if we have the following:

1) There is a unique positive definite limiting solutionto
the Riccati (14). Furthermore, is the unique positive
definite solution to the ARE (16).

2) The closed-loop system

is asymptotically stable, where is given by (17).

Proof: The proof of the theorem is given in [9] and [10].

The controllability of , which is a dynamical property
of the open-loop system, is crucial to guarantee that there ex-
ists a unique stabilizing optimal feedback solution to the linear
quadratic regulation problem. We can pick without any difficul-
ties a proper such that the observability of is
guaranteed. In other words, the open-loop system at least needs
to be controllable to guarantee the unique optimal solution. We
also point out that the ARE (16) is nonlinear with respect to un-
known parameter . However, we can solve it easily using the
DLQR command in MATLAB.

The LQR has been applied to nonlinear MIMO feedback con-
trol design through linearization around an equilibrium point.
However, such linearization may impose limitations on the sta-
bility and performance of closed-loop systems since it causes a
loss of information about large motions and is valid only near
the equilibrium point.

C. Feedforward Optimal Control (FOC)

FOC is an alternative method for nonlinear MIMO control
problems. It treats the same dynamic optimization problem as
DP and provides the same optimal solution in a different form:
it finds the sequence of optimal control vectors with a speci-
fied initial state instead of the feedback solution for all possible
initial states [8], [10]. It finds the optimal control solution rela-
tively easily. However, its solution can be very sensitive to dis-
turbances and uncertainties because of the lack of a feedback
mechanism.

Let us consider the same form of the discrete NTV-MIMO
system as in the case of DP

(19)

with

(20)

where is the state vector and is the
control input vector. Note that an initial stateis specified here
and this was not done in the case of DP.
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Here, we want to find the sequence of optimal control vectors
for to minimize the same form of the cost

function as in the case of DP.

(21)

subject to (19) and (20) with , and the function speci-
fied. Thus its optimal solution is not closed-loop but open-loop
because is no longer a function of the state . However,
this control problem is relatively easy to solve because it be-
comes a parameter optimization problem by treating as
a set of unknown parameters.

The optimal control vector sequence is obtained by
solving the discrete EL equations.

Theorem 5: For the given dynamic optimization problem of
minimizing the cost function

(22)

subject to

(23)

with

(24)

where , and the function are specified, the sequence
of the optimal control vectors can be obtained from the
discrete EL equations.

Proof: The proof of the theorem is given in [8].
Note that the EL equations consist of the system equation, the

adjoint system equation, and the optimality condition:
the system equation—

(25)

with ,
the adjoint system equation—

(26)

with
and the optimality condition—

(27)
where we define

(28)

(29)

(30)

The system equation has an initial condition at the initial time
, while the adjoint system equation has an initial condi-

tion at the end of the time horizon . This is a two-point
boundary value problem (TPBVP). Since both and
have dimension, has dimension , and ,
this TPBVP has unknowns and an equal number of

Fig. 3. Forward sweep of FOC.

equations. It can be solved as a large set of simultaneous non-
linear algebraic equations (e.g., using the command FSOLVE in
MATLAB). However, a more efficient method of solution, to be
described in the next subsection, exploits the sequential nature
of the problem.

1) Numerical Solution with Steepest Descent Method:We
may apply steepest descent to obtain a numerical algorithm. The
steepest descent algorithm for FOC, which exploits the sequen-
tial nature of EL, consists of three steps:

1) forward sweep;
2) backward sweep;
3) update of control vector sequence.

Step 1) Forward sweep

(31)

with .
The forward sweep equation is the same as the

system equation. First of all, we need to make a rea-
sonable guess about from through .
Then with the specified initial state , we can com-
pute through to , using the system
equation. Fig. 3 depicts the forward sweep.

Step 2) Backward sweep

(32)

(33)

with .
The backward sweep equations consist of the

adjoint system equation and the optimality con-
dition. These equations can be represented by a
block diagram, as illustrated in Fig. 4. We have the
co-state , two co-inputs and

derived from the cost function,
and the co-output .

This system is anti-causal and linear-time-varying
(LTV) because the current co-state depends
on the future co-state through (32)
and the coefficients such as and

are explicitly time-dependent.
However, we can compute and back-
ward in time because we have already obtained the
sequences of and from the forward sweep.
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Fig. 4. Backward sweep of FOC.

Step 3) Update of control vector sequence

(34)

(35)

Then we update using (34) and (35). We re-
peat the three steps until is small.

FOC is an alternative method for nonlinear
MIMO control problems because it is relatively
easy and computationally tractable to find its so-
lution. The computation requirement of the FOC
algorithm for each iteration is composed of three
components: forward sweep, backward sweep, up-
date of control vector sequence. The forward sweep
requires approximately multiplica-
tions and additions because it evaluates the system
equation from to . The backward sweep
needs roughly operations
because it computes Jacobians
and at each time step. The update
of control vector sequence needs approximately

operations. So the total number of multi-
plications and additions for each iteration using the
FOC algorithm is approximately

(36)

The memory requirement of the algorithm is approx-
imately

(37)

since it needs to store the state and the con-
trol input from to . Note that the
memory requirement of FOC depends linearly on the
dimension of the state and on the number of con-
trol inputs , while that of DP increases exponen-
tially with and .

However, FOC finds just a single trajectory for a
given initial state. A severe problem for FOC is that
its solutions are very sensitive to disturbances and
uncertainties because of the lack of feedback.

2) Linear Quadratic Problems:The application of FOC
to linear quadratic problems reveals—because FOC employs

Fig. 5. Forward sweep of FOC for linear quadratic problems.

a simpler form of the equations—an important structural
property of computation, the so-calledduality of the forward
and the backward sweeps.

By applying EL and the steepest descent method to the linear
quadratic problem, we obtain the following three steps.

Step 1) Forward sweep

(38)

with .
The forward sweep equation is the same as the

system equation. Fig. 5 depicts the forward sweep
for linear quadratic problems.

Step 2) Backward sweep

(39)

(40)

with .
The backward sweep equations consist of the ad-

joint system equation and the optimality condition
as in the general case of FOC. These equations can
be represented by the block diagram illustrated in
Fig. 6. We have the co-state , two co-inputs

and derived from the cost function, and
the co-output . Comparing Fig. 5 with Fig. 6
reveals the duality of the backward and the forward
sweeps.

• The coefficient matrices of the backward
sweep are the transpose of the coefficient
matrices of the forward sweep.

• The time advance operator in the backward
sweep replaces the time delay operator in the
forward sweep.

• The directions of signal flows in the backward
sweep are reversed to those in the feedforward
sweep.

• The summing junctions in the backward sweep
replace the branching points in the forward
sweep, and vice versa.

Step 3 Update of control vector sequence:

(41)

(42)

The update equations are the same as in the gen-
eral case of FOC.
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Fig. 6. Backward sweep of FOC for linear quadratic problems.

III. N EURAL NETWORKS

This section reviews artificial neural networks, commonly
referred to asneural networks. Neural networks are attractive in
that they can approximate any nonlinear function to a desirable
accuracy. In addition, neural networks possess other important
properties. Neural networks have massively parallel distributed
structures; implemented in hardware form, they can be inher-
ently fault tolerantin the sense that their performance degrades
gracefully under adverse operating conditions [28]. Neural
networks can learn and generalize; generalization refers to the
neural network producing reasonable interpolated outputs for
inputs not encountered during learning (training) [29]. Neural
networks are inherently nonlinear—a very important property,
particularly if the underlying physical mechanism responsible
for the generation of signals (e.g., a nonlinear MIMO system) is
highly nonlinear. Neural networks have the built-in capability
to adapt their synaptic weights to changes in the surrounding
environment; a neural network trained to operate in a specific
environment can be easilyretrainedto deal with minor changes
in the operating environmental conditions [12].

An artificial neural network results from arranging a neuron
model into various configurations. The most popular configura-
tion is the multilayer feedforward network [12], [13], [29]. As
illustrated in Fig. 7, it has layers of neurons, where the inputs
to each neuron on a layer are identical, and equal to the col-
lection of outputs from the previous layer (plus the augmented
value “1”). The beginning layer of the network is called theinput
layer, its final layer is called theoutput layer, and all other layers
of neurons are called thehidden layers. For multilayer neural
networks, we use the following notation: . This means:
The neural network has external inputs. There are neurons
in the network’s first layer, neurons in the second layer, and
so on.

In addition, a single neuron extracted from theth layer of an
-layer network is depicted in Fig. 7. The weight denotes

connections between neuronin layer and neuron in
layer . The weights are arranged in the form of the column

vector such that . The weight vector is an
-dimensional vector where is the total number of weights

in the network. The output (activation value) of the-th neuron
in layer is represented by the variable . Note that the th
neuron in layer performs a weighted sum on its own input
signals and passes the sum through an activation function( ) to
generate its own output . The outputs in the final -th
layer corresponding to the overall outputs of the network. For

Fig. 7. Multilayer feedforward neural network consists of layers of neurons
with each layer fully connected to the next layer. The network receives its
q-dimensional input vector and generates itsr-dimensional output vector.

TABLE I
MULTILAYER NEURAL NETWORK NOTATION

convenience we define a variablefor the outputs. Thus
. We also define as the external inputs to the network.

The inputs may be viewed as a 0th layer that gives the relation
This notation is summarized in Table I.

Now define an input vector and output vector as follows
(see Fig. 7):

Then, the feedforward network forms a mapping,
, from the inputs of the input layer to the

outputs of the final layer parameterized by the weight vector
. Given the current model of the neuron, with fixed weights,

this mapping is ; there are no internal dynamics or
memory devices. Nevertheless, the following theorem makes
the multilayer feedforward neural network a powerful tool for
computation.

Theorem 6: (General function approximators):
Given any and any function
, there exists a two-layer feedforward neural network that

can approximate to within mean squared error accuracy.
Proof: The proof of the theorem is given in [15]–[17].

functions are square-integrable functions over a bounded
set . The function space includes every function
that could ever arise in a practical problem. For example, it in-
cludes continuous functions and all discontinuous functions that
are piecewise continuous on a finite number of subsets of a set

. also includes more complicated functions that are only
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of mathematical interest. Thus, the neural network can approxi-
mate practically any nonlinear function to a desirable accuracy.
Theoretically, two types of nonlinear activation function can be
used: one is a signum (i.e., threshold) function and the other
is a sigmoid function [12], [16], [22]. In practice, however, we
desire activation functions that are sigmoidal. As a special case,
linear neural networks—i.e., matrices that have linear activation
functions—can approximate any linear function. However, this
theorem does not explain how to find the weights of the neural
network to approximate a nonlinear function to a desirable ac-
curacy.

IV. CONCLUSION

As part of the background for the development of NDO, we
overview optimal control theory, especially DP, the LQR, and
FOC. We point out the problematic aspects as well as the perfor-
mance benefits of each individual method. In particular, DP pro-
duces the optimal solution that is able to reject disturbances and
uncertainties as a result of feedback. However, computation and
storage requirement associated with DP solutions can be prob-
lematic, especially for high-order nonlinear systems. Thus, in
the companion papers [23], [24], we propose NDO as an approx-
imate technique for solving the DP problem based on neural net-
work techniques that provides many of the performance benefits
(e.g., optimality and feedback) of DP and benefits from the nu-
merical properties of neural networks. Reference [23] presents
the theory of NDO, and [24] demonstrates the method on sev-
eral applications including control of autonomous vehicles and
of a robot arm, respectively.
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