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Abstract—Classification of remotely sensed hyperspectral im-
ages calls for a classifier that gracefully handles high-dimensional
data, where the amount of samples available for training might
be very low relative to the dimension. Even when using simple
parametric classifiers such as the Gaussian maximume-likelihood
rule, the large number of bands leads to copious amounts of
parameters to estimate. Most of these parameters are measures of
correlations between features. The covariance structure of a mul-
tivariate normal population can be simplified by setting elements
of the inverse covariance matrix to zero. Well-known results from
time series analysis relates the estimation of the inverse covariance
matrix to a sequence of regressions by using the Cholesky decom-
position. We observe that discriminant analysis can be performed
without inverting the covariance matrix. We propose defining a
sparsity pattern on the lower triangular matrix resulting from the
Cholesky decomposition, and develop a simple search algorithm
for choosing this sparsity. The resulting classifier is used on four
different hyperspectral images, and compared with conventional
approaches such as support vector machines, with encouraging
results.

Index Terms—Cholesky decomposition, covariance parame-
trization, hyperspectral image classification, inverse covariance
matrix, sparse regression.

I. INTRODUCTION

LASSIFICATION of pixels in hyperspectral images is a

complex problem. We usually have few samples available
for training the classifiers, and the input data are of high
dimensionality. Further compounding the problem, features
usually exhibit high correlation, adding a redundancy to the
data that in some cases may obscure the information important
for classification.

When using parametric methods, such as the Gaussian
maximum-likelihood (GML) classifier, the parameter esti-
mates, most importantly the covariance matrix estimate, will
become increasingly unstable when the number of labeled
samples is low compared to the dimensionality of the feature
space. A wealth of approaches for dealing with the curse of
dimensionality have been proposed in the literature, ranging
from dimensionality reduction of the feature space to regular-
ization of parameter estimates by biasing them toward simpler
and more stable estimates.

Direct estimation of the inverse covariance matrix was sug-
gested mainly for computational convenience in [1]. In that
paper, it was furthermore noted that for many statistical prob-
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lems the inverse covariance matrix has many zero or near-zero
values, and a direct feature selection approach was applied to
choose which elements could be set to zero. Obviously, this ap-
proach is computationally infeasible for high-dimensional data
with covariance matrices having thousands or tens of thousands
of elements. We propose an approach that relies on the fact that
a modified Cholesky decomposition of an inverse covariance
matrix defines coefficients in a regression [2]. By choosing
targets in this regression to be zero, we can find simpler models
for the covariance matrix with fewer parameters to estimate. A
heuristic is suggested for searching for these parameters, guided
by measuring classification performance on a ten-fold cross-
validation (10-CV), with the goal of finding sparse inverse
covariance matrices where only the elements useful for clas-
sification are estimated. By reducing the number of parameters
to estimate, variability in these covariance estimates is reduced.
Our results suggest that classifiers based on these sparse covari-
ance matrices have improved generalization performance.

The main contribution of this paper is a novel approach for
expressing and estimating sparse covariance approximations
for high-dimensional classification problems. Our proposed
method is an extension of well-known time series theory tradi-
tionally used in regression analysis of longitudinal time series.
By applying these results in a classification context combined
with a few weak assumptions regarding the behavior of hyper-
spectral data, we can define a novel approach for estimating
very simple models for full-dimensional class-conditional
covariances. The proposed method is by design intended to be
used in full-dimensional space—we seek to avoid the curse of
dimensionality by directly reducing the number of parameters
to estimate. Traditional dimension reduction approaches seek
to indirectly reduce the number of parameters to estimate by a
potentially cumbersome feature extraction or selection strategy.

In Section II, we will first present the related work that this
paper is based upon. Section III will introduce our model and
assumptions. Parameter estimates are discussed in Section IV.
In Section V, we study the performance of our method by
comparing it with conventional classifiers on four different hy-
perspectral image classification problems. Section VI discusses
our results and proposes extensions.

II. RELATED WORK

In the time series literature, several works focus on using
the modified Cholesky decomposition of the inverse covariance
matrix X! = LDLT to facilitate modeling of the covariance
structures of time series. All these papers are based on a
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well-known result from graphical models for multivariate sta-
tistics, see for example [2]. The result states that, by using
the Cholesky decomposition, the inverse covariance matrix can
be estimated by conditional regressions. These methods are
in most cases designed for regression analysis of longitudinal
data. Longitudinal data are ordered, a property shared with
the spectra measured for each pixel in our images. In all
approaches explored in the literature, the focus is on expressing
the conditional regressions with penalties on the coefficients, to
accentuate some attribute of the covariance matrices, such as
the occurrence of zeros. Penalized regressions shrinking para-
meter estimates toward zero, have been proposed for covariance
estimation in regression analysis of time series in [3]-[5].
The resulting covariance estimates from these regressions are
results from iterative processes, since penalties are dependent
on parameter estimates. Furthermore, in [3]-[5], all parameters
in the covariance matrices are estimated, even if many of them
are forced to zero. Our proposed approach transfers ideas de-
rived from these papers to the domain of classification, as well
as choosing the computationally simpler approach of sparse
regressions instead of penalization, thus only estimating the
necessary parameters for classification. A similar approach can
be found in [6], where a thresholding of the conditional mutual
information between all possible elements in the feature vector
is used to choose which elements to set to zero. A Bayesian
approach is explored in [7], where the covariance is modeled by
assuming a prior distribution on each individual element of Ly,
modeling the probability of the discrete states nonzero/zero.

For data that has some specific order, for example discretized
curves, it is known that strong correlations between neighboring
features can be detrimental to classifier generalization. One
approach for penalization in parameter estimates is proposed
in [8], focusing directly on dampening the effect of strong
correlations between neighboring features. Our heuristic for
searching for a sparse representation is based on the same intu-
ition; assuming that some of the correlations between features
do not give information that helps separating the classes, and
thus can be dropped.

Inspired by the observation that neighboring features are usu-
ally strongly correlated [9] proposed to ignore the long range
correlations in spectra. Assuming that the covariance matrix is
block diagonal, they obtain a sparsity in the class-conditional
covariance parameter estimates. The choice of blocks is based
on a heuristic thresholding of the full-dimensional correlation
matrix. Since the inverse of a block diagonal matrix is itself
a block diagonal matrix, we can view the model of [9] as a
simple approximation to a the proposed model assuming that
we only allow banded inverse covariance matrices. However, it
is not a full-banded model, because correlations between fea-
tures in neighboring blocks is ignored. Previous to defining the
heuristics for sparsity discussed below, we explored a similar
pattern—with less than encouraging results.

Sharing some underlying structure of the inverse covariance
matrix, as is proposed in this paper, is similar to applying a
regularization to the covariance matrix estimate. Several papers
have explored different approaches for stabilizing the estimated
class covariance matrices in hyperspectral image classification,
based on extension of the well-known regularized discriminant
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analysis [10]. Examples are leave-one-out covariance (LOOC)
estimation, using a mixture of four simplifications of the co-
variance estimates [11] with extensions [12]. In general, the
motivating factor for these methods is that the simpler estimates
are less variable, since the ratio of the number of parameters
to estimate compared to the number of samples available is
significantly lower.

In a previous study [13], we considered the idea of reg-
ularization by sharing covariance structure, as an extension
of model-based clustering [14]. The structure sharing was
obtained by sharing characteristics of the covariance eigende-
composition among all clusters in the data, allowing clusters to
share orientation, shape, and volume.

Recently, several papers [15]-[19] have focused on using
support vector machine (SVM) classifiers for classification of
hyperspectral data. The common claim is that these methods
are insensitive to dimensionality issues and overtraining. Other
authors argue that in general this is not the case [20], but it
is clear that SVM classifiers can be used to design arbitrarily
complex decision boundaries. SVM classifiers are related to
this paper as both approaches strive to use sparse models to
describe the decision boundaries between classes. The SVM
classifier uses a tuning parameter acting as a regularizer onto
the decision boundary, which needs to be carefully adjusted to
ensure good generalization performance. This regularization is
measured as a cost of misclassifying a training sample. This
parameter is denoted Cl,, in this paper. The SVM is a so-called
kernel method, meaning that it measures sample distance in
some space implicitly defined by a weighting function. A very
common choice for SVM kernel is the Gaussian radial basis
function (RBF), where one applies a Gaussian kernel to each
sample, and the “kernel trick” to evaluate the distance measure.
Thus, there is also another free parameter, the width of the
Gaussian kernel .

III. SPARSE CHOLESKY TRIANGLES FOR
CLASS-CONDITIONAL COVARIANCE MATRICES

Consider a classification problem with £ classes, assuming
Gaussian class-conditional distributions with mean p; and
classwise covariance matrices Y. It is well known that this
reduces to comparing the & quadratic discriminant functions

1 1
k(@) = =5 log [T] — 5 (& — k) S (@ = ) + log e

where 7 is the a priori probability for class k. Noting that
—log|Zy| =log [T, 1|, it is clear that there is no need for
matrix inversion when classifying data if we have a method
for estimating the inverse covariance matrices directly. As we
shall see in the following sections, a well-known result in the
literature on graphical models [2] can be applied to this end.

A. Parametrization of the Inverse Covariance by the
Modified Cholesky Decomposition

Define a parametrization of the inverse covariance matrix by
the modified Cholesky decomposition [21]

Y 1=LDLT
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where L is a lower triangular matrix with ones on the diagonal

1
—021 1
L= | —a31 —aspe 1
—Qp,1 —Qp2 —Qpp-1 1

and D a diagonal matrix. If we were to consider the features
of each sample as a time-series, the elements in L can be
seen rowwise as parameters in autoregressive processes of the
same order as the row number. Several authors in the time
series literature have noted this [3], [6], [7]. We will use
this fact to transform the task of approximating covariance
matrices into a sequence of regressions. For each row r, one
could then “predict” the next feature x, based on the r — 1
preceding features {x1,...,2,_1}. In keeping with the earlier
notation, and assuming zero mean for readability, this can be
expressed as

r—1

Ty = Za,«,jl‘j + Er (1)

j=1

where the rth diagonal entry D,., = 1/var(e,). As long as the
diagonal elements of D are positive, any choice of o will still
produce a positive definite covariance matrix. Sparsity in the
representation of the inverse covariance can thus be obtained
by fixing some « to be zero.

B. Search for Sparse Cholesky Triangles for the
Classwise Covariance Matrices

As pointed out earlier, [1] proposed to choose the sparsity
of the inverse covariance matrices using a sequential forward
feature selection. Clearly this is infeasible for high-dimensional
data where the number of unique elements in the covariance
matrix is in the thousands or tens of thousands; thus we have
to resort to a heuristic. The general idea of the proposed
method is to find a sufficiently complex covariance matrix to
solve our classification problem, by evaluating a search space
that is small enough to handle. Several different structures for
choosing patterns of zeros were considered when defining this
heuristic, among these were block patterns. Most of these gave
poor results, and there is no clear intuition describing them.
The diagonal pattern described below was found to give a
good tradeoff between expected training time and classification
performance. Furthermore, there is also a clear intuition behind
the diagonal pattern.

Search Algorithm: From the regression formulation in (1)
we can argue that cv,. ; = 0 indicates that when predicting z,., z;
does not carry much interesting information. For all rows, if we
were to set the coefficient of a specific preceding feature to zero,
we could, using time-series terminology, argue that we ignore
a specific lag when predicting the next feature. As an example,
if we modeled the covariance matrix according to a first-order
autoregressive process, the L would be all zero except the
for the elements directly below the diagonal. If we ignore a
specific lag for all rows in our sequence of regressions, all
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Bk,r,1:(r—1)
B
“Off-diagonal” vectors
Fig. 1. Illustration of a matrix of correlations L for the inverse covariance

matrix. The matrix is lower triangular, with 1 on the diagonal, the elements
to estimate is below-diagonal and is represented with B in the text. The
sparsity in the covariance estimate is obtained by only estimating the matrix
elements in some off-diagonal vectors. The matrix is estimated by a sequence
of regressions, one for each row in the matrix B. Thus, for row r, we estimate
the elements By ;. 1.(»—1). These regressions can be simplified if we define
that all elements not in the chosen off-diagonal vectors are zero.

elements in an off-diagonal vector in L can be set to zero. The
term off-diagonal vector, see Fig. 1, denotes a vector parallel
to the diagonal, and corresponds to a specific lag. In Fig. 1,
L is sparse, and has only two off-diagonal vectors where we
estimate parameters.

The general idea is to start by approximating the covariance
matrices with the simplest possible model, i.e., diagonal ma-
trices, and add parameters to the approximation until the clas-
sification performance of the model no longer improves. With
regard to our proposed heuristic, we search for the off-diagonal
vectors in the classwise covariance matrices that need to be
estimated in order to improve classification performance on the
training data. The search, guided by 10-CV as a performance
measure, can be described by the following steps.

1) Initialization—Approximate classwise covariance matri-
ces by diagonal matrices, and find 10-CV performance.

2) Search—Select off-diagonal vectors in Lj to be nonzero
in a sequential forward manner.

a) For all zero off diagonal vectors in Ly, evaluate the
10-CV performance gain when allowing each to have
nonzero elements.

b) Add the one off-diagonal vector that gives the largest
improvement in 10-CV to the set of off-diagonal vec-
tors to be nonzero in L.

¢) Loop from a) until 10-CV performance does not im-
prove further.

This strategy can be viewed as a sequential forward search
(SFS) on the off-diagonal vectors. When the optimal number
of features in a feature selection is believed to be low, SFS is
commonly viewed as a suitable approach. We expect that this
applies here as well. Adaptation of more complex strategies for
selection of off-diagonal vectors is a subject for future research.
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IV. MAXIMUM-LIKELIHOOD INVERSE
COVARIANCE ESTIMATES

As seen in previous sections, the parameters we need to
estimate to evaluate the discriminant function is the lower
triangular matrix L and the diagonal matrix D. Assuming
that classes are Gaussian distributed, closed expressions for
these parameters can be found by maximizing the classwise
likelihood. By the modified Cholesky decomposition E,;l =
LDy, Lg, the log-likelihood function for the classwise inverse
covariance matrix for class k can be expressed

Ny,

1()=> [—;108‘ (1Zk]) — %(xl — pur) T L Dy L, (w1 — ,uk):l
=1

where Ny is the number of samples in class k. Express Ly =
I — By, where By, is a lower triangular matrix with zeros on the
diagonal. It is clear that the parameters we need to estimate are
the diagonal elements of Dj, and the lower triangular elements
of Bj.. We adopt the following notation: Let z; ,- be the rth fea-
ture of the [th sample, which gives a vector ; = 2y 1., where p
is the dimensionality of the feature space. Let By, ;. 1.(,—1) be the
nonzero elements of row r of By, i.e., lower triangular elements
of the matrix in the given row. See Fig. 1 for an illustration
of which matrix elements in B, that are estimated for row 7.
Likewise, w7 1.(r—1) is the 7 — 1 first features of sample / in the
dataset. To simplify the expression, we write v ; = x; — U,
and vy, and vy 1.(r—1) using the same notation as before.
We can rewrite the likelihood using these definitions, letting r
index the diagonal element dy, , in each row r of Dj. Observe
that the log-determinant of >, can be written as the sum of the
log of diagonal elements of Dy. (|Lx| = 1 by definition.) The
log-likelihood, I( By, Dy), becomes proportional to

N

Z |:10g (|Dk|) — ((I — Bk)T’UkJ)TDk ((I — Bk)Tvk,l)}
=1

Ny p
-y [z gt

=1 Lr=1

P 2
S (S ON

r=1

P 2
- Z ('Uk,l,r - Bl;r,r,l:(r—l)Uk«,lxli(rfl)> dkﬂ" .

The maximum-likelihood estimate for the diagonal elements
of Dy, can be found by differentiating the log-likelihood with
reference to each diagonal element dy, ,.. This gives the follow-
ing estimates for r = {1,...,p}:

Ny,

dp.r = . 5-
k T
12 [Uk,lw - Bk,r,1:(T71)Uk71711(7“*1):|

)
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Furthermore, we find the estimate of By rowwise by differen-
tiating the log-likelihood by By ;. 1.(-—1) and set to zero. This
gives

Ny,

Z |:dk’a7" (kaﬂ" - B/?,'r,l:(7‘—1)’Ul€,l«,1¢(T*1)> ’Ul?,l,l:('r—l):| =0

=1
which after some rearranging leads to

Ny, T
pIe Uk, Lr Uk 1,1:(r—1)

N T
22 Ukl 1:(r=1) Vg 1. 1:(r—1)

By r1:(r-1) =

which is the result of a regression of vy ;, onto all previous
elements in vy, , i.€., V1, 1:(r—1)-

Sparse Regressions of By, . 1.(-—1): The sequence of regres-
sions can be simplified if we assume that some elements of
B r,1:(r—1) are always zero. This way we can simply remove
the corresponding predictors from vy ;1.(r—1), and thus only
estimate the nonzero parameters. Consider Fig. 1 where it can
be seen that for row r of By, has only one target in the regression
defined to be nonzero. The implicit sparsity in the represen-
tation of the inverse covariance matrix might give a classifier
that is more resilient to low sample counts. The number of
samples needed to avoid ill-conditioned matrix inversions in
the regressions is likely to be lower than the number of samples
needed to make sure the full covariance matrix is nonsingular.

V. EXPERIMENTS

To give a thorough analysis of the performance of our
method, we apply the method on four different hyperspectral
datasets with dimension ranging from 71 to 176 bands. Our
method, sparse Cholesky triangles for inverse covariance es-
timates (STIC), is compared with a conventional GML clas-
sifier, i.e., quadratic discriminant analysis (QDA) and a SVM
classifier using radial basis kernels (SVM-RBF). The motiva-
tion for comparing the performance of our suggested method
with SVM is mainly since it is a method that is supposedly
robust to dimensionality and therefore usually applied to data
without previous feature extraction—which is by design the
intended use of the proposed method. Furthermore, the apparent
popularity of SVM in the literature makes it an important and
necessary benchmark classifier for any new method to compete
with. As noted in related work, regularization by mixing sim-
pler covariance estimates is a popular approach for attacking
the instability in parameter estimates due to dimensionality.
These regularization methods can be applied in full dimension,
which allows direct comparison with the proposed method. To
provide a reference for the performance of STIC compared
to such approaches, we report experiments using a covariance
approximation called LOOC, [11]. It is argued in [12] that
LOOC outperforms the well-known regularized discriminant
analysis [10] in most cases.

All datasets were normalized by subtracting the total mean,
and rescaling total variances for all features to one. This trans-
formation has no effect on the ML classifiers, since it is just a
translation and rescaling of the axes. In the case of the SVM-
RBF, the data were, as per standard operating procedures [22],
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normalized to a domain of {0, 1} to avoid numerical problems
when evaluating the inner products.

To evaluate the performance of different methods, a standard
approach is to separate the available ground-truthed data into
roughly equally sized regions for training and testing, and
report performance on the test data. As far as possible, we have
made sure that all regions for training are spatially disjoint from
the regions for testing, to avoid training on neighboring pixels
that are correlated with test data. We believe this approach gives
a more fair indication of classifier performance, although it
does in fact make the results difficult to compare with previous
publications on these datasets.

From the regions of the dataset available for training, we
designed five repeated experiments by sampling equally sized
sets for each class for training in the two cases where there
was sufficient ground truth to do this. For each of these five
experiments, we tune parameters and choose structure using
standard 10-CV on each of the sampled training sets. The
average performance and stability reported is based on the test
data in these five experiments. For the SVM-RBF classifier, two
parameters had to be tuned by grid search, the misclassification
cost Cer, indicating to the cost function the expense of errors
during training, and the width of the Gaussian kernel v, which
attenuates the distance measured between samples. To ensure
fair treatment of the SVM-RBF, parameters were chosen by a
coarse and then progressively finer grid search using the same
cross-validation.

For STIC, the implementation used in the reported experi-
ments uses the same map of which off-diagonal vectors that
should be nonzero for all classes (i.e., for all L;). Thus, even
though it may be possible to separate some pairs of classes
using less parameters, the end result reported is a compromise,
where the number of diagonals chosen is the amount deemed
sufficient to solve the more complex classification subproblems.

Due to lack of knowledge about true priors of the ground
truth classes in any of the datasets, individual performance on
each class and average performance over all classes is reported
in the experiments.

In the end of this section, overall similarities of the ex-
periments and algorithm training times are presented and
discussed.

A. Forest Type Classification

The first dataset we study was captured by an airborne sensor
ROSIS during the European Multisensors Airborne Campaign
(EMAC-94) in May 10, 1994. The location is a forest south of
Paris, Fontainebleau, containing ground-truthed areas of oak,
beech, and pine trees. The dataset has 81 spectral bands with
sampling bandwidth from 12 nm in the lower part of the spec-
trum (430-550 nm) to 4 nm in the upper part (554-830 nm),
and a pixel size of 5.6 m. The ground truth is divided into three
classes, corresponding to tree type, C7 oak, Cy beech, and Cs
pine. The dataset is summarized in Table I. The total available
number of ground-truthed samples in the dataset was 16 862.
Five experiments were performed where 700 samples for each
class was used from the training data. On these 700 samples
10-CV was performed to tune parameters.

1403

TABLE 1
GROUND TRUTH DATA FOR THE FONTAINEBLEAU IMAGE (IN NUMBER OF
PIXELS). SEVEN HUNDRED SAMPLES PER CLASS WERE USED FOR
TRAINING FOR EACH EXPERIMENT

Class Training | Test

C1 oak 5195 5518

Co beech 2083 2309

C’3 pine 807 950
TABLE II

TEST RESULTS FOR FONTAINEBLEAU IMAGE ON FIVE REPEATED
EXPERIMENTS. AVERAGE CORRECT CLASSIFICATION AND ONE
STANDARD DEVIATION OF THE EXPERIMENTS IN PERCENT

Method QDA STIC SVM-RBF LOOC

C1 76310 | 77014 | 81.2£0.5 | 80.1+0.5
Co 75.0+03 | 828+0.8 | 81.9£0.8 | 77.0+0.3
Cs 92.34+0.7 | 97.24+04 | 980+0.4 | 96.8+0.6
Average | 81.2+0.7 | 85.7£0.9 | 87.14+0.6 | 84.94+0.5

The separation of the forest classes is clearly a complex
classification problem, especially between classes C; and Cs.
For this image around 13 off-diagonal vectors were chosen by
cross-validation in each of the five repeated experiments. The
number of parameters used in the five models was 2348 on
average, which is around 23% of the 10 206 parameters of the
QDA model for this dataset. The SVM-RBF parameters were
tuned using 10-CV. Averaged over the five experiments the
misclassification penalty was found to be C,,, = 27-%, and the
width of the Gaussians, v = 0.72. For all classes, the LOOC
covariance estimate was chosen to be a mixture of common
covariance and classwise covariance. On average for all exper-
iments with LOOC, C; and Cy used roughly 75% and 60%
of the common covariance estimate in the mixture, whereas
C3 used only 25%. As shown in Table II, there is much to be
gained by using STIC to build a classifier compared with a QDA
classification rule or the LOOC regularization. Still, however,
the SVM-RBF classifier is slightly better. C; and C5 exhibits
mutual confusion in the confusion matrix. This is most likely
due to heavy overlap between the classes, but another factor
may be slight non-Gaussianity of these classes.

B. Urban Land Cover Classification

We compare the results from the first dataset with data from
an urban scene over Pavia, Italy [23], captured by an airborne
sensor DAIS under the HySens project in June 8, 2002. This
dataset consists of 80 bands, however the last eight bands are
thermal infrared bands, and were excluded from this paper.
Furthermore, one band at 1.9580 nm was extremely noisy. The
number of bands used is 71.

The ground truth consisted of a total of 14585 samples
describing common urban land cover classes chosen by an
analyst. The classes were C; water, C5 trees, C3 asphalt, Cy
parking lot, C5 bitumen, Cg roofs, C7 meadow, Cy soil, and
Cy shadow. This dataset is summarized in Table III. Again, to
avoid testing on direct neighbors of training data, the ground
truth sets were split in spatially separate subregions. For each
of the five repeated experiments, a set of 100 samples for each
class was chosen from the training set.

Table IV summarizes the results for the Pavia image. The
STIC result seems to be more stable and slightly better than
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TABLE III
GROUND TRUTH FOR THE PAVIA IMAGE (IN NUMBER OF PIXELS).
ONE HUNDRED SAMPLES PER CLASS WERE USED FOR
TRAINING FOR EACH EXPERIMENT

Class Training Test
C'1 water 202 4083
Co trees 205 2302
C's asphalt 206 1136
C4 parking lot 205 1301
C's bitumen 204 1630
Cg roofs 201 132
C7 meadow 315 2041
Cg soil 202 491
Cy shadow 119 159
TABLE 1V

TEST RESULTS FOR PAVIA IMAGE ON FIVE REPEATED EXPERIMENTS.
AVERAGE CORRECT CLASSIFICATION AND ONE STANDARD
DEVIATION OF THE EXPERIMENTS IN PERCENT

Method QDA STIC SVM-RBF LOOC

C1 99.7+0.5 | 99.3£0.5 100+0 96.8 1.5
Ca 945£1.7 | 979+£04 | 93.3£1.3 | 954+£0.8
Cs 854+£6.0 | 93.4+£1.8 [ 97.2£2.0 | 97.0£0.7
Cy 91.9+1.7 | 95.7£25 | 75.2+£28 | 943+1.7
Cs 85.8£73 | 93.0£23 [ 97.1£1.0 | 98.1+£0.5
Cs 64.9+11.8 | 90.6 5.2 | 85.2+£84 [ 71.2+5.0
Cr 99.7+0.2 | 99.7£0.2 | 97.6 £0.7 | 994+04
Cg 86.3£39 | 959+£10 [ 940£1.0 | 97.6£0.7
Cy 50.3 £2.1 79.0£28 | 93.1£5.9 | 67.4+£35.0
Average | 84.3x39 | 93.8+19 | 925+£25 | 90.8+5.1

the SVM-RBF result, and clearly better than QDA and LOOC.
STIC consistently performs well on all classes except Cg
shadow. This class is arguably a collection of several different
land cover types and thus the class distribution might be de-
viating some from the Gaussian shape assumed in STIC. For
the SVM-RBF classifier, parameters were found using cross-
validation to be C,,, = 2!2-3 for the misclassification cost and
~v = 1.57 for the width of the Gaussian kernels. For this dataset,
all classes except C7 and Cy were chosen to be an equal mixture
of common covariance and classwise covariance in the LOOC
approximations. Cy used only 30% of the common covariance
matrix in the mixtures. C; was modeled as 60% classwise
covariance mixed with 40% of the diagonal of the classwise
covariance. The number of parameters chosen by STIC is on
average 4025 over the five experiments. This amounts to 17%
of the 23 651 parameters used in a QDA model. This sparsity
is also reflected in the number of off-diagonal vectors chosen
which is on average 4.8 over the five experiments.

C. Vegetation Land Cover Classification

1) Satellite Imagery: A third experiment was performed
on a scene acquired by the Hyperion sensor aboard the
Earth Observing 1 satellite, of the Okavango Delta, Botswana,
in May 31, 2001. The dataset originally consisted of 242
overlapping 10-nm bands covering the visible-near infrared
(VNIR) and short-wavelength infrared (SWIR), with 30-m
pixels. This dataset was preprocessed by the University of
Texas Center for Space Research where uncalibrated and
noisy bands that covered water absorption features were re-
moved. The total band count of the dataset is 145. Prior
publications on this dataset include [24], following which
this dataset was made publicly available. The ground truth
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TABLE V
GROUND TRUTH FOR THE BOTSWANA
IMAGE (IN NUMBER OF PIXELS)

Class Training | Test
C1 water 138 132
Cy hippo grass 51 50
C'3 floodplain grasses 1 119 132
C'y floodplain grasses 2 106 109
C's reeds 130 139
Clg riparian 133 136
C'7 firescar 135 124
Cyg island interior 87 116
Cy acacia woodlands 162 152
C'19 acacia shrublands 129 119
C'11 acacia grasslands 141 164
C12 short mopane 92 89
C'13 mixed mopane 139 129
C'14 exposed soils 45 50
TABLE VI

TEST RESULTS FOR BOTSWANA IMAGE. CORRECT
CLASSIFICATION RATES IN PERCENT

Method QDA | STIC | SVM-RBF | LOOC
o 0 100 100 100
Ca 100 100 100 100
Cs 0 100 100 100
Cy 0 97.3 99.1 98.2
Cs 0 95.7 87.8 92.8
Cs 0 96.3 90.4 95.6
Cy 0 99.2 98.4 99.2
Cy 0 100 100 92.2
Cy 0 88.8 91.4 88.2
Cho 0 98.3 98.3 98.3
Ci1 0 93.3 87.2 96.3
Ci2 0 93.3 94.4 92.1
Ci3 0 97.7 98.5 94.6
Cia 100 100 98.0 96
Average | 14.3 | 97.1 96.0 96.0

consists of a total of 3248 samples describing 14 land
cover classes chosen to reflect the impact of flooding on
the vegetation in the area [24]. The classes are () water,
C> hippo grass, C3 floodplain grasses 1, C; floodplain
grasses 2, C5 reeds, C riparian, C7 firescar, Cg island interior,
Cy acacia woodlands, C'¢ acacia shrublands, C'1; acacia grass-
lands, C2 short mopane, C'3 mixed mopane, and C14 exposed
soil. This dataset is summarized in Table V. To avoid testing
on data with high spatial correlation to the training data, the
ground truth set was split into spatially separate subregions. The
available training data in some of the classes were extremely
low, so there was barely enough data for one experiment.
Consequently, Table VI does not include estimates of stability.

The results for the Botswana image are given in Table VL.
The classification based on QDA breaks down, since many
classes have too few ground truth samples to evaluate the full
covariance matrices. As shown in Fig. 2, the breakdown due to
sample sparsity can be clearly seen, as the error rate increases
when the number of parameters approaches a full QDA model.
Considering the curves in Fig. 2, the cross-validation perfor-
mance seems to be a reasonable estimate of generalization
performance. A fairly wide region of the performance curve for
the cross-validation indicates good model choices. The simple
search algorithm in STIC stops quite early in this region and
suggests a very sparse model for the covariance matrix. For this
image, eight off-diagonal vectors were chosen by the search,



BERGE et al.: SPARSE INVERSE COVARIANCE ESTIMATES FOR HYPERSPECTRAL IMAGE CLASSIFICATION

0.8
s
© 0.6}
c
o
w®
Kel
% 04r
[2]
S
(6]

0.2 \'

0 22 L L 1 I
0 0.2 0.4 0.6 0.8 1
Fraction of parameters compared to a full model
Fig. 2. Average error rates for the proposed method by cross-validation

and on test data related to the fraction of parameters of a full model for
the Botswana image. The vertical line indicates the point where the search
algorithm terminates. Note that the increase in classification error is clearly
dependent on the number of parameters estimated.

giving a total of 14 434 parameters to estimate, which is 9.6%
of the 150220 parameters in a QDA model. Parameters for
SVM-RBF were found by cross-validation to be Cepp = 2112
and v = 1.68. Note that these parameters are quite similar to the
ones used on the Pavia image, but that the width of the Gaussian
kernel used is roughly doubled compared to the Fontainebleau
image. STIC outperforms the SVM-RBF classifier on average,
and performs very well in most classes. The poorest performing
class, Cy acacia woodlands is only confused with the class
Cg riparian zone, which might well include pixels covering
trees. The LOOC covariance estimate is for all classes based
on a mixture of classwise covariance and common covariance
estimates, with mixing proportions ranging from 40%—-90% of
the common covariance, with C; water using less (40%) of the
common covariance.

2) Airborne Image: Another vegetation land cover clas-
sification task is based on a vegetation scene captured by
an airborne sensor AVIRIS over Kennedy Space center,
Florida, in March 23, 1996. The dataset originally consisted
of 224 10-nm bands covering the VNIR and SWIR, with 18-m
pixels. Preprocessing and removal of uncalibrated and noisy
bands that covered water absorption features was performed
by the University of Texas Center for Space Research. The
total band-count of the dataset used is 176. The ground truth
used consists of a total of 5121 samples describing 13 land
cover classes. Prior publications on this dataset include [24],
following which this dataset was made publicly available. The
classes are Cy scrub, Cy willow swamp, C3 cabbage palm
hammock, C, cabbage palm/oak hammock, C'5 slash pine, Cg
oak/broadleaf hammock, C7 hardwood swamp, Cg graminoid
marsh, Cy spartina marsh, Cyq cattail marsh, C7; salt marsh,
C12 mud flats, and C73 water. This dataset is summarized in
Table VII. To avoid testing on data with high spatial correlation
to the training data, the ground truth set was split into spatially
separate subregions. The available training data in some of the
classes were extremely low, so there was barely enough data
for one experiment, so Table VIII does not include estimates of
stability.
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TABLE VII
GROUND TRUTH FOR THE KENNEDY SPACE
CENTER IMAGE (IN NUMBER OF PIXELS)

Class Training | Test
C scrub 379 382
Cy willow swamp 119 122
C'3 cabbage palm hammock 126 130
C'y cabbage palm/oak hammock 124 127
C’5 slash pine 80 81

C¢ oak/broadleaf hammock 114 115
C'7 hardwood swamp 52 53

C'g graminoid marsh 214 217
C'g spartina marsh 259 261
C'1¢ cattail marsh 190 187
C'11 salt marsh 209 210
C'12 mud flats 226 236
C'13 water 456 452

TABLE VIII
TEST RESULTS FOR KENNEDY SPACE CENTER IMAGE.
CORRECT CLASSIFICATION RATES IN PERCENT

Method QDA | STIC | SVM-RBF | LOOC
C1 0 96.1 100 96.9
Ca 0 95.1 85.2 96.7
Cs 0 93.9 98.6 87.7
Cy 0 81.1 99.5 76.4
Cs 100 76.5 98.5 66.7
Ce 0 72.2 91.8 65.2
Cr 58.5 | 96.2 91.5 86.8
Cs 0 96.8 70.4 94.5
Co 0 99.2 78.8 93.5
C1o 0 100 94.9 99.5
C11 10.5 | 98.6 88.7 96.2
Ci2 0 78.4 75.7 90.3
C13 0 100 94.5 100
Average 13 91.1 89.8 88.5

The classification performance is reported in Table VIII. The
high dimensionality of this dataset renders the QDA classi-
fier (using conventional covariance estimates) unusable, since
several of the covariance matrix estimates are near singular,
resulting in gross overfitting of the training data and conse-
quently poor performance on the test data. However, the STIC
approximation finds a useful classifier where we approximate
covariance matrices with eight off-diagonal vectors chosen,
using in total 8.5% of the parameters of a full QDA model. The
number of parameters estimated in STIC is 17433 compared
to 204 776 for QDA. For this dataset parameters for SVM-RBF
were found to be Cy,, = 2'° and v = 11.31. Note that for this
experiment, the width of the Gaussian kernel chosen is quite
large compared with the other images, arguably suggesting
more linear decision boundaries relative to the other images.
The LOOC covariance estimates are on this image a mixture
of common covariance and classwise covariance estimates,
using 71%-99% common covariance for all classes except C'y3
water. Water C13 uses only 40% common covariance. STIC
outperforms SVM-RBF and LOOC for this image.

D. Overall Results of the Experiments

Overall, the four experiments indicate that STIC pro-
duces strongly performing classifiers while using fairly few
parameters. The fraction of parameters chosen for estimation by
the search algorithm is, as expected, dependent on the overall
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TABLE IX
AVERAGE TIME USED FOR MODEL SEARCH IN THE EXPERIMENTS
PERFORMED (IN REAL TIME MINUTES)

Model STIC SVM-RBF
Fontainebleau 11.0 276.67
Pavia 44 149.02
Botswana 93.9 273.34
KSC 123.7 218.13

complexity of the classification problem. As pointed out earlier,
the choice of nonzero off-diagonal vectors is a compromise
over all subproblems in the classification task. This seems to
be quite clear in the Fontainebleau image, where 23% of the
parameters of a QDA model are chosen, in an effort to separate
two very similar woodland classes. Another point is that relative
to dimensionality, much more data are available for training in
the Fontainebleu image.

We note that in most cases, the LOOC regularized covariance
estimation tries to stabilize the parameter estimates by using the
common covariance estimate. This should not be unexpected,
since many classes are very similar, especially in the vegetation
classification tasks. The fact that water is a dissimilar class
in the two vegetation classification datasets and uses less of
the common covariance backs up this assumption. The use
of common covariance as a way to stabilize the covariance
estimates hints that classification boundaries might be relatively
simple for most images.

It is of secondary interest for our experiments, but the SVM-
RBF parameters chosen in the four experiments warrant a short
comment. In the literature on SVM-RBEF, several authors have
noted that both the cost of misclassification when training Ce,,
and the width of the Gaussian kernel v influence the complexity
of the resulting decision boundary. If we compare the parame-
ters, we observe that very similar parameters are found for the
Botswana and Pavia images, whereas the Fontainebleau image
suggests a kernel width of roughly half compared to the former
images, while the cost of misclassification on the training set
is lower. The Kennedy Space Center (KSC) image suggests
both high cost of misclassification on the training set and
extremely wide Gaussian kernels. Relative to the other images,
the Fontainebleau image probably deviates from the normal by
needing more complex decision boundaries, however, it is at
the same time more regularized than the other images. The
parameters of the KSC image, on the other hand, probably
reflects fairly linear decision boundaries.

For STIC, the algorithm training time is dependent on input
dimensionality. The amount of time needed to estimate classi-
fier parameters when a sparsity pattern is chosen, is negligible.
The computational cost comes from the large amount of re-
peated evaluations in the search algorithm. In Table IX, training
time in (real time) minutes is shown, comparing our nonop-
timized Matlab implementation of STIC compared with grid
searching for SVM-RBF parameters using a Matlab interface to
libSVM. Note that training time for STIC increases much faster
than the corresponding increase in dimensionality between the
images. However, even for the KSC image computation time
is still manageable. Training times for SVM are fairly stable,
since we evaluate the same grid of parameters for all images.
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VI. DISCUSSION

We have proposed a simple algorithm for reducing the com-
plexity of Gaussian ML-based classifiers for hyperspectral data.
The main idea is to find a sparse approximation to the inverse
covariances of the component distributions used in our classi-
fication model. One motivation for developing this approach
was to combat the problems with conventional classifiers due
to sample sparsity. Our approach is to reduce the number
of parameters when the number of available ground truthed
samples is low, while sacrificing as little accuracy in modeling
the density as possible. The reported experiments show that
our method can be expected to perform comparably or better
than state of the art conventional classifiers such as SVM, using
only a fraction of the full covariance matrices. The performance
compared to covariance regularization strategies, in this paper
represented by LOOC, seems more than adequate. Our method
also performs well in cases where QDA collapses due to
sample sparsity. Our method for modeling sparse covariances
is also directly applicable to covariance estimates of component
distributions in mixture models.

From the search for nonzero diagonals in the Cholesky
decomposition, one goal for further research is to develop visu-
alization and exploratory approaches that utilize these choices
to give a human analyst hints of the structure of the data and
the classification problem, possibly identifying which features
or combinations of features, i.e., bands or band-interrelations,
that are useful for classification.

Another effect of the proposed method is that it produces
probability estimates for each pixel instead of only a decision
boundary. After training the classifier, we have approximations
of the classwise densities. These probabilities can be used
as a pixelwise measure of confidence for class assignment,
allowing for evaluation of outliers and doubt cases. Further-
more, the probabilities can be used directly in contextual
classifiers.

Ideally, the choice of which correlations that can be ignored
should be guided by prior knowledge about the classification
problem. One example could be vegetation classes, which
probably share the same broad physical characteristics. In
this case, it might not be unreasonable to expect that this is
reflected in the choice of parameters to estimate. This is a topic
for further research. As it is presented, the search algorithm
becomes computationally expensive when dimension increases,
and the entire space of model choices cannot be searched. A
topic for further research is the application of problem specific
knowledge to reduce the search space for models.
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