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The Infinite-Order Conditional Random Field
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Abstract —Sequential data labeling is a fundamental task in machine
learning applications, with speech and natural language processing,
activity recognition in video sequences, and biomedical data analysis
being characteristic such examples, to name just a few. The conditional
random field (CRF), a log-linear model representing the conditional
distribution of the observation labels, is one of the most successful
approaches for sequential data labeling and classification, and has lately
received significant attention in machine learning, as it achieves superb
prediction performance in a variety of scenarios. Nevertheless, existing
CRF formulations can capture only one- or few-timestep interactions,
and neglect higher-order dependencies, which are potentially useful in
many real-life sequential data modeling applications. To resolve these
issues, in this paper we introduce a novel CRF formulation, based
on the postulation of an energy function which entails infinitely-long
time-dependencies between the modeled data. Building blocks of our
novel approach are: (i) the sequence memoizer, a recently proposed
nonparametric Bayesian approach for modeling label sequences with
infinitely-long time dependencies; and (b) a mean-field-like approxima-
tion of the model marginal likelihood, which allows for the derivation of
computationally efficient inference algorithms for our model. The efficacy
of the so-obtained infinite-order CRF (CRF∞) model is experimentally
demonstrated.

Index Terms —Conditional random field, sequential data, sequence
memoizer, mean-field principle.

1 INTRODUCTION

The problem of predicting from a set of observations
a set of corresponding labels that are statistically corre-
lated within some combinatorial structures like chains or
lattices is of great importance, as it appears in a broad
spectrum of application domains including annotat-
ing natural language sentences (e.g., parsing, chunking,
named entity recognition), labeling biological sequences
(e.g., protein secondary structure prediction), and classi-
fying regions of images (e.g., image segmentation with
object recognition), to name just a few.

Graphical models are a natural formalism for exploit-
ing the dependence structure among entities. Tradition-
ally, graphical models have been used to represent the
joint probability distribution p(y,x), where the variables
y represent the attributes of the entities that we wish
to predict, and the variables x represent our observed
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knowledge about the entities. But modeling the joint
distribution can lead to difficulties, because it requires
modeling the distribution p(x), which can include com-
plex dependencies. Modeling these dependencies among
inputs can lead to intractable models, but ignoring them
can lead to reduced performance. A solution to this
problem is to directly model the conditional distribution
p(y|x), which is sufficient for classification. Indeed, this
is the approach taken by conditional random fields
(CRFs) [21].

A conditional random field is simply a log-linear
model representing the conditional distribution p(y|x)
with an associated graphical structure. Because the
model is conditional, dependencies among the observed
variables x do not need to be explicitly represented,
affording the use of rich, global features of the input.
For example, in natural language tasks, useful features
include neighboring words and word bigrams, prefixes
and suffixes, capitalization, membership in domain-
specific lexicons, and semantic information from sources
such as WordNet [36]. During the last years, we have
witnessed an explosion of interest in CRFs, as it has
managed to achieve superb prediction performance in
a variety of scenarios, thus being one of the most suc-
cessful approaches to the structured output prediction
problem, with successful applications including text pro-
cessing, bioinformatics, natural language processing, and
computer vision [21], [13], [20], [27], [35], [45], [26], [29].

Despite their success, a significant issue that plagues
current CRF formulations concerns their limited capabil-
ity of capturing longer-term dynamics in the modeled
datasets. Specifically, in order for CRFs to be compu-
tationally tractable, usual CRF formulations are limited
to incorporate only pairwise potentials, giving rise to
a first-order Markovianity assumption for the modeled
data. Additionally, attempts to allow for higher-order
potentials have been met with only limited success,
due to the entailed computational burden incurred by
their inference algorithms. Indeed, there are two main
lines of research pertaining to making efficient inference
possible in higher-order CRFs. The first involves de-
veloping new optimization algorithms through propos-
ing new approximation techniques, such as the master-
slave based decomposition process [19] and the compact

             Preprint of paper to appear in: 
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2012 



2

transformation method [33], or generalizing widely used
inference methods, such as belief propagation (BP) [22],
[31], [9], and graph-cuts [3], [18]. The second line of
research involves defining higher-order energies with
some special restricted forms, which can be solved effi-
ciently by application of popular optimization methods
[16], [17].

In this paper, we focus on linear-chain CRFs; linear-
chain CRFs, the basic probabilistic principle of which is
illustrated in Fig. 1, are conditional probability distri-
butions over label sequences which are conditioned on
the observed sequences [21], [36]. Hence, in conventional
linear-chain CRF formulations, an one-dimensional first-
order Markov chain is assumed to represent the depen-
dencies between the modeled data. In our work, we seek
to provide a novel formulation of linear-chain CRF mod-
els that allows to capture dependencies in the modeled
data over a theoretically infinitely-long time-window,
that is essentially a non-Markovian CRF model. To achieve
this goal, we introduce a novel form of energy functions
for the linear-chain CRF model, based on the sequence
memoizer (SM) [40], a nonparametric Bayesian method
recently proposed for modeling sequential data with
discrete values and dependencies over infinitely-long
time-windows. As we show, inference for our model
can be efficiently reduced to the forward-backward and
Viterbi algorithms used in the case of simple first-order
linear-chain CRF models, by utilizing an intricate ap-
proximation technique, based on the mean-field princi-
ple from statistical mechanics [4], [44]. We evaluate our
novel approach in a number of sequential data modeling
applications from diverse domains; as we show, our pro-
posed approach offers considerable improvement over
conventional first-order linear-chain CRFs, without any
compromises in the entailed computational costs of the
model inference algorithms.

The remainder of this paper is organized as follows: In
Section 2, we provide the theoretical background of our
method. Specifically, in Section 2.1, a brief introduction
to CRFs is provided. In Section 2.2, we concisely present
the sequence memoizer, a nonparametric Bayesian ap-
proach for modeling long-term dynamics in sequential
data with discrete values. In Section 2.3, we present the
mean-field principle from statistical mechanics, which
comprises a key methodology we employ to derive
our model. In Section 3, the proposed infinite-order
conditional random field (CRF∞) model is introduced,
and its inference algorithms are derived. In Section 4,
we consider a number of applications of the CRF∞

model, with the aim to investigate whether coming up
with a computationally tractable way of relaxing the
Markovian assumption of linear-chain CRF models is
of any significance for the sequential data classification
algorithm when considering real-life datasets. Finally, in
the concluding section of this paper, we summarize our
work and discuss future possible directives in our line
of research.

Figure 1. Linear-chain conditional random fields: An open
node denotes a random variable, and a shaded node has
been set to its observed value.

2 THEORETICAL BACKGROUND

2.1 Conditional Random Fields

In the following, we provide a brief introduction to
linear-chain CRF models, which constitute the main
research theme of this paper. For a more detailed account
of CRF models, the interested reader may refer to [36].

Linear-chain CRFs typically assume dependencies en-
coded in a left-to-right chain structure. Formally, linear-
chain CRFs are defined in the following fashion: Let
{xt}

TX

t=1 be a sequence of observable random vectors,
and {yt}

TY

t=1 be a sequence of random vectors that we
wish to predict. Typically, the model is simplified by
assuming that the lengths of the two sequences are equal,
i.e. TX = TY = T , and that the predictable variables are
scalars defined on a vocabulary comprising K words,
i.e. yt ∈ Y , with Y = {1, . . . , K}, whereas the observable
variables are usually defined on a high-dimensional real
space, xt ∈ X , with X ⊆ R

ζ . Then, introducing the
notation x =

(

[x′
t]
T
t=1)

′, and y = [yt]
T
t=1, a first-order

linear-chain CRF defines the conditional probability for
a label sequence y to be given by

p(y|x) =
1

Z(x)
exp

[

T
∑

t=2

φt(yt, yt−1,xt) + φ1(y1,x1)

]

(1)

where φt(·) is the local potential (or score) function of
the model at time t, and Z(x) is a partition function
that ensures the conditional probability p(y|x) of a state
sequence y will always sum to one

Z(x) =
∑

y

exp

[

T
∑

t=2

φt(yt, yt−1,xt) + φ1(y1,x1)

]

(2)

In this work, we will be assuming that the potential
functions of the postulated linear-chain CRFs can be
written in the form

φt(yt, yt−1,xt) = φ1
t (yt,xt) + φ2

t (yt, yt−1,xt) (3)

φ1(y1,x1) = φ1
1(y1,x1) + φ2

1(y1,x1) (4)

where the φ1
t (yt,xt) and the φ2

t (yt, yt−1,xt) are the unary
and transition potentials of the model, respectively, cen-
tered at the current time point.

Regarding the form of the unary and transition poten-
tials usually selected in the literature, the most typical
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selection consists in setting

φ1
t (yt,xt) =

K
∑

i=1

δ(yt − i)ω1
i · xt (5)

and

φ2
t (yt, yt−1,xt) =

K
∑

i=1

K
∑

j=1

δ(yt − j)δ(yt−1 − i)ω2
ij · xt (6)

with

φ2
1(y1) =

K
∑

i=1

δ(yt − i)ω2
i · xt (7)

where δ(σ) is the Dirac delta function, the parameters
ω

1
i are the prior weights of an observation emitted

from state i, the parameters ω
2
ij are related to the prior

probabilities of the transition from state i to state j, and
the parameters ω2

i are related to the prior probabilities of
being at state i at the initial time point t = 1. Estimates
of these parameters are obtained by means of model
training, which consists in maximization of the log of
the model likelihood, given by (1). For this purpose,
usually quasi-Newton optimization methodologies are
employed, such as the BFGS algorithm [2], or its limited
memory variant (L-BFGS) [24]. Indeed, the likelihood
function of this model is known to be of a convex form,
which guarantees convergence to the global optimum
[21], [36].

Note that computation of the model likelihood p(y|x)
entails calculation of the sum Z(x) defined in (2). This
can be effected in a computationally efficient manner
using the familiar forward-backward algorithm [32], [7],
widely known from the HMM literature. Indeed, as
discussed, e.g., in [36], it is easy to show that

Z(x) =

K
∑

j=1

αT (j) (8)

where the αT (j) is the forward probability of state j at
the final time T . In the case of linear-chain CRF models,
the forward probabilities αt(j) are given by [36]

αt(j) =

K
∑

i=1

αt−1(i)exp

{

φt(yt = j, yt−1 = i,xt)

}

, t ≥ 2

(9)
with initialization

α1(j) = exp

{

φ1(y1 = j,x1)

}

(10)

Finally, inference under a linear-chain CRF model
consists in determining the optimal sequence of labels
ŷ given a sequence of observations x, i.e.,

ŷ = argmax
y

logp(y|x) (11)

Solution of this problem can be again obtained in a
computationally efficient fashion by employing a variant
of the algorithms used to solve the familiar problem of
sequence segmentation in the HMM literature, namely

the Viterbi algorithm [32]. In the case of linear-chain
CRFs, it can be shown that the Viterbi algorithm yields
the following recursion [36]

ξt(j) , max
1≤i≤K

exp

{

φt(yt = j, yt−1 = i,xt)

}

ξt−1(i) (12)

with initialization

ξ1(j) , exp

{

φ1(y1 = j,x1)

}

(13)

based on which, output sequence optimization reads

ŷt = argmax
1≤i≤K

ξt(i) (14)

2.2 The Sequence Memoizer

The sequence memoizer (SM) is a non-Markovian model
for stationary discrete sequential data [40]. The model
is non-Markovian in the sense that the next value in a
sequence is modeled as being conditionally dependent
on all the previous values in the same sequence. Formu-
lation of the SM model is based on the provision of a
specific parameterization of an unbounded-depth hier-
archical Pitman-Yor process (HPYP) [38], [30]. In the fol-
lowing, we begin by briefly introducing the hierarchical
Pitman-Yor process model. Further, we explain how the
SM generalizes the HPYP model to allow for infinitely-
long (or, better, infinitely-deep) model structures, and we
provide a concise description of the inference algorithms
of the sequence memoizer.

2.2.1 The hierarchical Pitman-Yor process

Let us consider a vocabulary Y comprising K words.
For each word y ∈ Y , let G(y) be the (to be estimated)
probability of y; let also G = [G(y)]y∈Y be the vector
of word probabilities. The Pitman-Yor process [30] is an
appropriate prior that can be imposed over the vector of
word probabilities G. We can write

G|d, θ,G0 ∼ PY(d, θ,G0) (15)

where d ∈ [0, 1) is the discount parameter of the process,
θ > −d is its strength parameter, and G0 = [G0(y)]y∈Y is
its base distribution, expressing the a priori probability
of a word y before any observation, usually set to
G0(y) =

1
K

∀y ∈ Y .
Now, let us consider a sequence of words {yt}Tt=1

drawn independently and identically (i.i.d.) from G

yt|G ∼ G, t = 1, . . . T (16)

Integrating out G, the joint distribution of the variables
{yt}Tt=1 can be shown to exhibit a clustering effect.
Specifically, given the first T − 1 samples drawn i.i.d.
from G, {yt}

T−1
t=1 , it can be shown that the new sample

yT is either (a) drawn from the base distribution G0

with probability θ+dK
θ+T−1 , or (b) is selected from the exist-

ing draws, according to a multinomial allocation, with
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probabilities proportional to the number of the previous
draws with the same allocation. In other words

p(yT |{yt}
T−1
t=1 , d, θ, G0) =

θ + dK

θ + T − 1
G0

+

K
∑

c=1

fT−1
c − d

θ + T − 1
δc

(17)

where δc denotes the distribution concentrated at a single
point (label) c, and fT−1

c is the number of draws in the
previous T − 1 timesteps that turned out to be equal to
c, that is

fT−1
c = {#yt, t = 1, . . . , T − 1 : yt = c} (18)

The above generative procedure produces a sequence
of words drawn i.i.d. from G, with G marginalized
out. Notice the rich-gets-richer clustering property of
the process: the more words have been assigned to a
draw from G0, the more likely subsequent words will be
assigned to the draw. Further, the more we draw from
G0, the more likely a new word will again be assigned to
a new draw from G0. These two effects together produce
a power-law distribution where many unique words are
observed, most of them rarely [30]. In particular, for a
vocabulary of unbounded size and for d > 0, the number
of unique words scales as O(θT d), where T is the total
number of drawn words. Note also that, for d = 0, the
Pitman-Yor process reduces to another famous method
in the field of Bayesian nonparametrics, the Dirichlet
process [10], in which case the number of unique words
grows more slowly at O(θlogT ) [38].

Despite the merits of the Pitman-Yor process, under
the construction (17) the drawn words are always con-
sidered to be independent of each other. However, in
practical applications, it is usually the case that a set of
sequential observations are always closely interdepen-
dent, thus the i.i.d. assumption is clearly invalid. An nth
order hierarchical Pitman-Yor process [38] resolves these
issues by postulating a hierarchical model of the form

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (19)

where u is the context variable, denoting the set of
the previously drawn (up to) n words, Gu(y) is the
probability of the current word taking on the value y

given that its context is u, Gu = [Gu(y)]y∈Y is the vector
of probabilities of all the possible words y ∈ Y when the
context is u, and π(u) is the prefix of u consisting of
all but the latest word in u. Note that the discount and
strength parameters of the HPYP model are functions
of the length |u| of the context (up to n), and not of the
context u itself. Note also that the base distribution Gπ(u)

in (19) is also unknown; for this reason, we recursively
place a prior Gπ(u) over it using again the general
expression (19), but now with parameters θπ(u), dπ(u),
and Gπ(π(u)) instead. This recursion is repeated until we
get to G∅, that is we reach an empty context, on which
we place a simple Pitman-Yor process prior of the form

G∅ ∼ PY(d0, θ0, G0) (20)

where G0 is a simple base distribution with G0(y) =
1
K

∀y ∈ Y .
Based on this construction, the probability of drawing

a word y ∈ Y when the (up to) nth order context is u

yields [38]

Gu(y) =
cu(y)− d|u|tu(y)

θ|u| + cu

+
θ|u| + d|u|tu

θ|u| + cu
Gπ(u)(y)

(21)

where M is the postulated HPYP model, cu(y) is the
frequency of draws with the context being u that the drawn
word was equal to y, tu(y) is the frequency of draws with the
context being u that the drawn word was equal to y and was
drawn by recursion to the base distribution Gπ(u), cu is the
number of times the current context was u

cu =
∑

y∈Y

cu(y) (22)

and, similar tu is the number of times the current context was
u and recursion to the base distribution Gπ(u) was conducted

tu =
∑

y∈Y

tu(y) (23)

Inference for the HPYP model is conducted efficiently
using a simple Gibbs sampling scheme, described, e.g.,
in [38]. The Gibbs sampling scheme for the HPYP model
aims at obtaining the posterior distributions over the word
arrangement variables cu(y), tu(y), cu, and tu, as well as
the model discount and strength parameters, dl and θl. Given
a sample from the posterior of the arrangement variables
and model parameters, the predictive distribution of the
next symbol y given its context u is defined as the
next draw from the distribution Gu(y), and is given by
recursively applying (21).

2.2.2 The sequence memoizer as an unbounded-depth
HPYP model

The sequence memoizer is basically an unbounded-
depth HPYP model. Specifically, the sequence memoizer
is based on the postulation of a HPYP model of the
form (19), with the maximum length n of its context
variables u taken as tending to infinity, i.e., n → ∞.
That is, we consider that the distribution of a word is
dependent on all the previously drawn words, thus a
non-Markovian model is obtained. The sequence memo-
izer is not Markovian in the sense that the next value in
a sequence is modeled as being conditionally dependent
on all previous values in the sequence.

As is obvious, inference in such an unbounded-depth
HPYP model might entail a large number of recursions
of the form (21), a fact that could possibly give rise to
prohibitive computational costs for the model inference
algorithms when the length of the drawn sequences
increases considerably. To constrain the learning of these
latent variables, a special hierarchical Bayesian prior
based on Pitman-Yor processes can be employed, which
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promotes sharing of statistical strength between sub-
sequent symbol predictive distributions for equivalent
contexts of different lengths [38]. Specifically, in this
work, as a way of mitigating these issues, we exploit
the following result [39]:

Theorem 1. Let us consider a single path in a graphical
model G1 → G2 → G3 with G2 having no children other
than G3. Then, if G2|G1 ∼ PY(d1, 0, G1) and G3|G2 ∼
PY(d2, 0, G2), it holds G3|G1 ∼ PY(d1d2, 0, G1) with G2

marginalized out.

Thus, the sequence memoizers employed in this work
comprise a HPYP model with its strength parameters θn
set equal to zero, θn = 0, ∀n (note though that a wider
family of distributions can be also considered for similar
computational efficiency purposes [11]). Then, given a
context u, the sequence memoizer determines which of
its prefixes i.e., π(u), π(π(u)), and so on, has no other
children than the one appearing within u, and removes
them from the recursions in (19), based on Theorem 1.
This way, the computational complexity of the SM model
inference algorithms, which are otherwise identical to those
of the HPYP model, can be considerably reduced in cases
of long drawn sequences, without compromises in the
model’s efficacy.

Once the collapsed graphical model representation
for the sequence memoizer has been built, inference
proceeds as it would for any conventional hierarchical
Pitman-Yor process model, and consists in determining
the posterior distributions over the model discount parameters
dl, and word arrangement variables. For this purpose, in
this paper we use the Gibbs sampler proposed in [38],
as described in the previous section.

At test time t, inference consists in using the sequence
memoizer to compute the probability q(yt|{yτ )

t−1
τ=1) of the

modeled variable being equal to the symbol yt, given
a context u = {yτ}

t−1
τ=1. Similar to the discussions of

the previous section, the predictive probability of the
sequence memoizer is taken as the posterior expectation
of the distribution Gu(yt) of the current word taking on
the value yt, given that its context is u, i.e.

q(yt|{yτ )
t−1
τ=1) , E [Gu(yt)] (24)

where the distribution of Gu(yt) is given by (21), and
u , {yτ}

t−1
τ=1.

2.3 The mean-field principle

The mean-field principle is originally a method of ap-
proximation for the computation of the mean of a
Markov random field. It comes from statistical mechan-
ics (e.g. [5]) where it has been used as an analysis tool
to study phase transition phenomena. More recently, it
has been used in computer vision applications (e.g. [12],
[43], [42]), graphical models (e.g. [15], and references
therein) and other areas (e.g. [14]). It can also be used
to provide an approximation of the distribution of a

Markov random field [6], [8]. The basic idea of the mean-
field principle consists in neglecting the fluctuations of
the variables interacting with a considered variable. As
a result of this assumption, the resulting system behaves
as one composed of independent variables for which
computation gets tractable.

More specifically, let us consider a set of interdepen-
dent variables {yt}Tt=1 that define a Markov random
field with a specified neighborhood system. For example,
a neighborhood system of first-order sequential nature
may be considered, in which case the postulated Markov
random field reduces to a first-order Markov chain.
Under the mean-field principle, the joint distribution
p({yt}Tt=1) is approximated by the product

p({yt}
T
t=1) ≈

T
∏

t=1

p̂t(yt) (25)

Here, the p̂t(yt) is an approximation of the marginal
distribution p(yt) of the field at the site (e.g., time point)
t. This latter quantity is expressed under the mean-field
principle in the following conditional form

p̂t(yt) ≈ p(yt|{ŷτ}τ∈N (t)) (26)

where ŷτ is the expected value of yτ , i.e.,

ŷτ = E[yτ ] (27)

and N (t) is the set of neighbors of site t. For example, in
the case of a first-order sequential nature neighborhood
system, (26) yields

p̂t(yt) ≈ p(yt|{ŷτ}
t−1
τ=1) (28)

In other words, under the mean-field principle, the
marginal distribution of a Markov random field at a
given site (e.g., time point) is expressed as the distri-
bution of the observed variable at the considered site
conditional on the expected values of the variables at all
the sites interacting with the considered site. As such,
we effectively neglect fluctuations from the mean in the
neighborhood system of each site (e.g., time point).

More generally, we talk about mean field-like approxima-
tions when the value of a variable observed at a site t is
considered independent of the fluctuations of the values
at other sites in its neighborhood, which are all set to
constants (not necessarily their means), independently
of the value at site t. This idea is applied to alleviate the
computational burden when dealing with complex joint
distributions in a multitude of applications in computer
science (e.g., [6], [8], [15]).

3 PROPOSED APPROACH

As already discussed, in this paper we aim to introduce
an infinite-order (non-Markovian) linear-chain condi-
tional random field model for sequential data modeling.
That is, we seek to derive a discriminative model, asso-
ciating a sequence of multivariate observations x with
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a sequence of corresponding labels y by means of the
distribution

p(y|x) =
1

Z(x)
exp

[

T
∑

t=2

φt(yt, {yτ}
t−1
τ=1,xt) + φ1(y1,x1)

]

(29)
where the partition function is given by

Z(x) =
∑

y

exp

[

T
∑

t=2

φt(yt, {yτ}
t−1
τ=1,xt) + φ1(y1,x1)

]

(30)
and the potential functions of the postulated linear-chain
CRFs are of the form

φt(yt, {yτ}
t−1
τ=1,xt) = φ1

t (yt,xt)+φ2
t (yt, {yτ}

t−1
τ=1,xt) (31)

φ1(y1,x1) = φ1
1(y1,x1) + φ2

1(y1,x1) (32)

To obtain such a model, we need to determine a
suitable functional form for the transition potentials
φ2
t (yt, {yτ}

t−1
τ=1,xt).

Let us consider that the label variables y take values on
a finite set Y = {1, . . . , K}. Based on the discussions of
Section 2.2, the desired form of the transition potentials
of our model can be obtained by “training” (obtain-
ing the posterior distributions of) a sequence memoizer
model. For this purpose, we use the Gibbs sampler of
[38], and a dataset of observed training label sequences.

Subsequently, we let the transition potentials of the
sought CRF model be given by the log predictive proba-
bility q(yt|{yτ )

t−1
τ=1), obtained by the sequence memoizer

as described in Section 2.2, multiplied by a term account-
ing for the value of the observed variable xt, i.e.

φ2
t (yt, {yτ}

t−1
τ=1,xt) ,

[

γyt
· xt

]

logq(yt|{yτ}
t−1
τ=1) (33)

where q(yt|{yτ}
t−1
τ=1) is given by (24), and the {γi}

K
i=1 are

model parameters estimated through model training.
This selection allows for computationally efficient

modeling of the dependencies between sequentially ap-
pearing label data over infinitely-long time-windows.
Indeed, having used a sequence memoizer to learn the
dependencies between successive observed labels y, we
obtain a CRF model which takes into account the whole
history of label (y ∈ Y) observations in making predic-
tions, thus of infinite-order nature.

Definition 2. A linear-chain CRF with conditional probabil-
ity p(y|x) given by (29), and associated transition potentials
defined over infinite-length time-windows, expressed as the
scaled log-predictive probabilities of a sequence memoizer, as
in (33), shall be denoted as the infinite-order CRF (CRF∞)
model for sequential data modeling.

The CRF∞ model entails transition potential functions
which take into account the whole history of past ob-
served labels, thus giving rise to a linear-chain CRF
model that postulates infinite-order time-dependencies.
Note also that the unary potentials of our model are
defined similar to the case of a first-order linear-chain
CRF model, reading

φ1
t (yt,xt) = ωyt

· xt (34)

where the {ωi}Ki=1 are model parameters estimated
through model training.

Having defined the proposed CRF∞ model, we can
now proceed to the derivation of its training and se-
quence decoding (inference) algorithms.

3.1 Model Training

Training the CRF∞ model comprises two separate pro-
cedures:

1) “Training” of the sequence memoizer used to obtain
the state transition potentials of our model. This
procedure essentially consists in using the Gibbs
sampler of [38], and a set of observed sequences of
labels y ∈ Y , to obtain the posterior distributions
of the sequence memoizer used in the expression
(33) of our model.

2) Estimation of the log-linear parameters ωi (from the
unary potentials), and γi (from the transition poten-
tials) of our model. This is performed by consider-
ing the sequence memoizer in (33) as a fixed distri-
bution, and using a separate training set (sequences
of pairs of observed inputs x ∈ X and their corre-
sponding labels y ∈ Y) to estimate the log-linear
parameters of the model. In the remainder of this
section, we concentrate on this latter procedure.

Let us consider a training set D = {(xn,yn)}Nn=1, where
x
n = {xn

t }
T
t=1, x

n
t ∈ X , and y

n = {yn
t }

T
t=1, y

n
t ∈ Y .

To obtain point-estimates of the parameters ωi and γi,
i ∈ {1, . . . , K}, given the dataset D, we need to optimize
the log-likelihood function of the CRF∞ model, reading

logp(y|x) =
N
∑

n=1

{ T
∑

t=2

φt(y
n
t , {y

n
τ }

t−1
τ=1,x

n
t ) + φ1(y

n
1 ,x

n
1 )

−logZ(xn)

}

(35)
As we observe, estimation of the model log-likelihood
(35) requires calculation of the quantities Z(xn), reading

Z(xn) =
∑

y

exp

[

T
∑

t=2

φt(yt, {yτ}
t−1
τ=1,x

n
t ) + φ1(y1,x

n
1 )

]

(36)
It is clear that this quantity is not computationally
tractable in most real-world scenarios. Therefore, an
approximation to the expression of the partition function
Z(xn) is needed. For this purpose, we employ a mean-
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field-like approximation: From (36), we have

Z(xn) =
∑

y

exp [φ1(y1,x
n
1 )]

T
∏

t=2

exp
[

φt(yt, {yτ}
t−1
τ=1,x

n
t )
]

≈
∑

y

exp [φ1(y1,x
n
1 )]

T
∏

t=2

exp
[

φt(yt, yt−1, {y
n
τ }

t−2
τ=1,x

n
t )
]

=
K
∑

i=1

K
∑

j=1

exp

[ T
∑

t=2

φt(yt = i, yt−1 = j, {ynτ }
t−2
τ=1,x

n
t )

+ φ1(y1 = i,xn
1 )

]

(37)
In other words, in calculating Z(xn), we assume that

in each term φt(yt, {yτ}
t−1
τ=1,x

n
t ), ∀t ≥ 2, the variables

{yτ}
t−2
τ=1 do not fluctuate with yt and yt−1, but, rather,

they are constants equal to some known (here, their
observed) value {ynτ }

t−2
τ=1. This is in essence a mean-

field-like approximation of Z(xn), which allows for com-
puting the partition function of the infinite-order CRF∞

model using a computationally efficient algorithm, very
similar to the method used in the case of first-order
CRFs, that is the forward recursions algorithm.

The forward probabilities in the case of the CRF∞

model, with partition function approximate in the form
(37), read

αn
t (j) =

K
∑

i=1

αn
t−1(i)exp

{

φt(yt = j, yt−1 = i, {ynτ }
t−2
τ=1,x

n
t )

}

t ≥ 2
(38)

with initialization

αn
1 (j) = exp

{

φ1(y1 = j,xn
1 )

}

(39)

yielding

Z(xn) =

K
∑

j=1

αn
T (j) (40)

Note that the employed mean-field-like approximation
does not constitute an assumption of the CRF∞ model
itself, but is only applied to obtain a computation-
ally tractable expression for the normalization constant
Z(xn) of the model, which is necessary in order to
estimate the parameters ωi and γi. In other words, the
transition potentials of the CRF∞ model are still com-
puted using the whole history of observed labels {yτ}

t−1
τ=1, a

computation made possible by exploiting the sequence
memoizer. Hence, the proposed approximation definitely
affects the eventual quality of the obtained estimates
of ωi and γi, but it does not by any means alter the
assumptions of the model itself, which continues to
postulate infinite-order transition potentials, taking into
account the whole history of observed labels {yτ}

t−1
τ=1, with

no truncations imposed in that respect. The truncation
only occurs in computing the terms φt(yt, {yτ}

t−1
τ=1,x

n
t ),

and it consists in only truncating the fluctuation of the
values {yτ}

t−2
τ=1, by setting them to a constant.

Having obtained a computationally tractable expres-
sion for the partition functions Z(x), we can now pro-
ceed to estimation of the parameters ωi and γi, i ∈
{1, . . . , K}, of the model. To effect this procedure, we
resort to maximization of the log-likelihood logp(y|x)
of the model over each one of them, by means of an
iterative maximization algorithm; the L-BFGS algorithm
[24], and the scaled conjugate gradient (SCG) descent
algorithm are two approaches suitable for this purpose.
We shall evaluate both of them in the experimental
section of this paper.

3.2 Sequence Decoding

Inference in linear-chain CRF models, also referred to as
sequence decoding, consists in the optimization problem

ŷ = argmax
y

logp(y|x) (41)

That is, we want to obtain a labeling y of the sequence
of observed data x that maximizes model likelihood. In
the case of the CRF∞ model, the log-likelihood of the
model reads

logp(y|x) ∝
T
∑

t=1

{

φ1
t (yt,xt)

+
[

γyt
· xt

]

logq(yt|{yτ}
t−1
τ=1)

}

(42)

Therefore, in a fashion similar to first-order linear-chain
CRF models, (41) turns out to be a dynamic program-
ming problem, with backwards recursion

ŷt = argmax
1≤i≤K

{

ξt(i)
}

(43)

where the cost function ξt(i) is defined as

ξt(i) , max
{yτ}

t−1

τ=1

{

ξt−1(yt−1)

+ [γi · xt] logq(yt = i|{yτ}
t−1
τ=1)

}

+ φ1
t (yt = i,xt)

(44)

with initialization

ξ1(i) , φ1(y1 = i,x1) (45)

As we observe from the definition of the cost func-
tion (44), the obtained dynamic programming problem
entails a large (theoretically infinite) number of variables
over which ξt(i) gets optimized. As such, the incurred
computational costs might become prohibitive in most
real-world scenarios. For this reason, we need to come
up with an approximate solution with bounded (worst-
case) computational costs. We resort to a mean-field-like
approximation.

Specifically, we propose the following approximation:
Let us begin with the second time step, t = 2. The cost
function ξt(i) reads

ξ2(i) = max
y1

{

ξ1(y1) + [γi · x2] logq(y2 = i|y1)

}

+ φ1
2(y2 = i,x2)

(46)
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Let us now continue to the next time-step, t = 3. The
cost function ξt(i) now reads

ξ3(i) = max
{yτ}2

τ=1

{

ξ2(y2) + [γi · x3] logq(y3 = i|{yτ}
2
τ=1)

}

+ φ1
3(y3 = i,x3)

(47)
At this point, we make the following key-hypothesis: We
assume that, in ξ3(i), the variable y1 does not fluctuate
with y2 and y3, but, instead, it takes on a constant
(“optimal”) value ŷ1. This way, the expression of ξ3(i)
reduces to

ξ3(i) ≈ max
y2

{

ξ2(y2) + [γi · x3] logq(y3 = i|y2, ŷ1)

}

+ φ1
3(y3 = i,x3)

(48)

This assumption is in essence a mean-field-like approx-
imation of ξ3(i). Similar, for t = 4 we have

ξ4(i) = max
{yτ}3

τ=1

{

ξ3(y3) + [γi · x4] logq(y4 = i|{yτ}
3
τ=1)

}

+ φ1
4(y4 = i,x4)

(49)
which, under a mean-field-like approximation, neglect-
ing the fluctuations of y1 and y2, yields

ξ4(i) ≈ max
y3

{

ξ3(y3) + [γi · x4] logq(y4 = i|y3, ŷ2, ŷ1)

}

+ φ1
4(y4 = i,x4)

(50)
This way, we eventually reduce the dynamic program-

ming problem with cost function given by (44), to a sim-
pler problem with bounded worst-case computational
costs, where the cost function is defined as

ξt(i) ≈

max
1≤j≤K

{

ξt−1(j) + logq(yt = i|yt−1 = j, {ŷτ}
t−2
τ=1)

}

+ φ1
t (yt = i,xt)

(51)
with the same initialization (45), and backwards recur-
sion (43). This construction gives, in turn, rise to another
issue: what is the appropriate selection of the values
{ŷτ}

t−2
τ=1? Following the relevant literature (e.g., [6], [8],

[15], [43]), the values {ŷτ}
t−2
τ=1 may be selected as the

values of {yτ}
t−2
τ=1 that optimize some criterion.

In this work, the values of {ŷτ}
t−2
τ=1 are obtained in the

following manner:

1) First, we postulate a simple first-order linear-chain
CRF for the same problem, trained on the same
data as the CRF∞ model. We use this model to
obtain an initial optimal value ŷ by means of the
Viterbi algorithm.

2) Using this initial optimizer ŷ, we run the dynamic
programing recursions (51) of the CRF∞ inference
(Viterbi-like) algorithm. This way, a new sequence
segmentation estimate ŷ is derived.

3) Further, we repeat the CRF∞ inference algorithm
as many times as needed for the estimate of y

Algorithm 1 Sequence Decoding Algorithm for the
CRF∞ model.
Let us consider an observed sequence x. We want to
obtain the corresponding optimal state sequence ŷ with
respect to a trained CRF∞ model. The proposed algo-
rithm comprises the following steps:

1) Obtain an initial estimate of ŷ by means of a simple
linear-chain CRF model.

2) Run the dynamic programming algorithm with
backward recursion (43), and cost function (51)
with initialization (45).

3) If the estimate of ŷ converges, or a maximum num-
ber of iterations has been reached, exit; otherwise,
return to step 2.

to converge, each time using the latest obtained
estimate ŷ for the purposes of the mean-field-like
approximation.

At this point, we would like to emphasize that, again,
the mean-field-like approximation is not applied to the
core assumptions of the CRF∞ itself. As we observe in
Eqs. (46)-(51), the proposed dynamic programming algo-
rithm for CRF∞ model inference entails “full” transition
potentials, that is potentials taking into account the whole
history of observed labels {yτ}

t−1
τ=1, with no truncations

imposed in that respect. Therefore, the application of
the mean-field-like approximation does not affect the
infinite-order nature of its transition potentials; it only
consists in considering in each term ξt(i) that the vari-
ables {yτ}

t−2
τ=1 do not fluctuate with the yt and yt−1, but,

instead, they take on some constant values.
Note also that, additionally, and in an attempt to coun-

terbalance the effect of this approximation, we repeat
the CRF∞ model inference algorithm multiple times,
with the estimates ŷ of y set equal to the outcome of
the CRF∞ model inference algorithm on the previous
execution, until y convergence. Apparently, we do not
expect the segmentation y eventually obtained by this
approximate procedure to be identical to the result of the
original dynamic programming problem with iteration
(44); we do expect though that a good trade-off between
computational complexity and segmentation quality is
indeed obtained, for a model which still retains its
infinite-order nature (in the sense of how its transition
potentials are computed).

An outline of the proposed sequence decoding algo-
rithm for the CRF∞ model is provided in Alg. 1.

4 EXPERIMENTS

In the following, we experimentally evaluate the per-
formance of the CRF∞ model, considering a number
of applications from diverse domains, with the aim to
investigate the practical significance of coming up with a
computationally tractable way of relaxing the Markovian
assumptions of existing linear-chain CRF models.
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To ensure the objectivity of our findings, we consider
obtaining the estimates of the γi and ωi parameters
of the CRF∞ model using a number of alternative
approaches to optimize the model likelihood, namely
SCG algorithm, L-BFGS algorithm, and entropy max-
imization (EnM), as suggested in [34]. The sequence
memoizers used to obtain the transition potentials of
the model are “trained” by means of Gibbs sampling, as
suggested in [40]. The implementation of this Gibbs sam-
pler was taken from the sequence memoizer software
available at: http://www.sequencememoizer.com/. Our
source codes were developed in MATLAB, and made
partial use of software provided by Neil Lawrence [23].

We compare our model’s performance to standard
first-order linear-chain CRF models, and the moderate
order CRFs of [41]. As a baseline for comparisons in
our experiments, we consider hidden Markov models
(HMMs) with diagonal covariance Gaussian mixture
observation densities, trained using the expectation-
maximization (EM) algorithm [28]. To ensure the trans-
parency of our results, in all our experiments we use
publicly available benchmark datasets.

4.1 Video sequences segmentation

Here, we consider application of the CRF∞ model to
segment video sequences from the CMU motion cap-
ture dataset [1]. As input variables to the evaluated
algorithms we use the whole available set of joint an-
gle values, while the output variables are the activity
(class) labels assigned to each video frame. We con-
sider three different experimental cases, namely 3-step
climbing, skateboard: stop and go, and skateboard: push
and turn. In each one of these cases, multiple different
videos of each movement are used in order to perform
leave-one-out cross validation. We also provide the p-
metric value of the Student’s-t test run on the pairs
of performances of the models (CRF, CRF∞), (moderate
order CRF, CRF∞), and (HMM, CRF∞). For simplicity,
to make these computations of the p-metric, we use the
results obtained by the CRF and CRF∞ models trained
by means of the L-BFGS algorithm. The Student’s-t
test allows to assess the statistical significance of the
performance difference between two evaluated methods,
given a set of performance measurements. Generated p-
values of the Student’s-t test below 0.05 strongly indicate
that the means of the obtained performance statistics of
the two methods provide a very good assessment of their
actual performance difference.

4.1.1 3-step climbing

In this experimental case, we deal with videos depicting
a human subject ascending a short ladder, stepping on
a table, making a U-turn on the table, and descending
the ladder. In Fig. 2, we provide few characteristic frames
from one of the videos used in our experiments. The aim
is to train the evaluated models so as to be capable of

Table 1
Activity-based segmentation of 3-step climbing videos:

Error rates obtained by the evaluated methods.

Method Error Rate (%) p-value

CRF (SCG) 29.18 ± 1.91 10
−9

CRF (L-BFGS) 29.12 ± 1.28 10
−9

CRF (EnM) 29.27 ± 1.22 10
−9

CRF∞ (SCG) 26.41 ± 1.82
CRF∞ (L-BFGS) 26.38 ± 1.79

CRF∞ (EnM) 25.93 ± 1.73

Moderate Order CRF (3rd Order) 27.67 ± 2.08 10
−9

Moderate Order CRF (5th Order) 27.03 ± 2.15 10
−9

HMM (M=8) 30.49 ± 6.67 10
−12

Table 2
Activity-based segmentation of skateboard: stop and go
videos: Error rates obtained by the evaluated methods.

Method Error Rate (%) p-value

CRF (SCG) 12.03 ± 0.27 10
−6

CRF (L-BFGS) 12.61 ± 0.29 10
−6

CRF (EnM) 11.97 ± 0.30 10
−6

CRF∞ (SCG) 8.70 ± 0.18
CRF∞ (L-BFGS) 9.12 ± 0.16

CRF∞ (EnM) 8.65 ± 0.20

Moderate Order CRF (3rd Order) 11.51 ± 0.22 10
−6

Moderate Order CRF (5th Order) 11.48 ± 0.21 10
−6

HMM (M=8) 47.26 ± 2.43 10
−9

segmenting the videos into three subsequences: (i) lad-
der ascending; (ii) making U-turn; (iii) ladder descend-
ing. Four different videos, comprising 200-276 frames,
from the same subject are used in our experiments to
perform (4-fold) leave-one-out cross validation. The ob-
tained performance statistics of the evaluated algorithms
are provided in Table 1 (means and standard deviations
over the conducted folds).

As we notice, the CRF∞ model improves considerably
the obtained error rate over its first-order Markovian
counterpart. Further, we also observe that the moderate
order CRF models of [41] fail to offer a substantial
improvement over first-order linear-chain CRFs. This is a
rather expectable result, since the used training and test
sequences are always at least 200 time points long, thus
requiring much longer time dependencies to be modeled
so as to obtain a clear improvement over first-order
linear-chain CRFs. Finally, we also evaluated HMMs
with the number of mixture components M selected
so as to optimize model performance. We observe that
HMMs yielded a significantly inferior result compared
to CRF∞.

4.1.2 Skateboard: Stop and Go

Here, we consider videos depicting a human subject
sliding on a skateboard, then stopping, and subsequently
pushing the skateboard back to start sliding again. In
Fig. 3, we provide few characteristic frames from one
of the videos used in our experiments. The aim in this
experiment is to train the evaluated models so as to
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Figure 2. 3-step climbing: Few example frames from a sequence considered in our experiments.

Figure 3. Skateboard: Stop and Go: Few example frames from a sequence considered in our experiments.

Figure 4. Skateboard: Push and Turn: Few example frames from a sequence considered in our experiments.

be capable of segmenting the videos into 3 parts: (i)
sliding on the skateboard; (ii) stopping; (iii) pushing back
to resume. Three different videos, comprising 368-474
frames, from the same subject are used in our experi-
ments to perform (3-fold) leave-one-out cross validation.
The obtained performance statistics of the evaluated
algorithms are provided in Table 2 (means and standard
deviations over the conducted 3 folds).

As we notice, the CRF∞ model improves considerably
the obtained error rate over its first-order Markovian
counterpart. Further, we again observe that the moderate
order CRF models of [41] fail to offer a substantial

improvement over first-order linear-chain CRFs. This is
a rather expectable result, since the used training and
test sequences are more than 368 time points long, thus
requiring much longer time dependencies to be modeled
so as to obtain a clear improvement over first-order
linear-chain CRFs. Finally, we also evaluated HMMs
with the number of mixture components M selected
so as to optimize model performance. We observe that
HMMs yielded a significantly inferior result compared
to CRF-based approaches.
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Table 3
Activity-based segmentation of skateboard: push and

turn videos: Error rates obtained by the evaluated
methods.

Method Error Rate (%) p-value

CRF (SCG) 33.29 ± 0.27 10
−9

CRF (L-BFGS) 33.08 ± 0.28 10
−9

CRF (EnM) 33.09 ± 0.27 10
−9

CRF∞ (SCG) 28.81 ± 0.23
CRF∞ (L-BFGS) 28.63 ± 0.23

CRF∞ (EnM) 28.65 ± 0.23

Moderate Order CRF (3rd Order) 32.71 ± 0.24 10
−9

Moderate Order CRF (5th Order) 32.22 ± 0.22 10
−9

HMM (M=8) 37.42 ± 1.36 10
−12

4.1.3 Skateboard: Push and Turn

Finally, here we consider videos depicting a human
subject sliding on a skateboard, subsequently pushing
the skateboard back to increase speed, and then turning.
In Fig. 4, we provide few characteristic frames from one
of the videos used in our experiments. The aim in this
experiment is to train the evaluated models so as to be
capable of segmenting the videos into 3 parts: (i) sliding
on the skateboard; (ii) pushing back to gain speed;
(iii) turning. Four different videos, comprising 202-302
frames, from the same subject are used in our experi-
ments to perform (4-fold) leave-one-out cross validation.
The obtained performance statistics of the evaluated
algorithms are provided in Table 3 (means and standard
deviations over the conducted 4 folds).

As we notice, the CRF∞ model improves considerably
the obtained error rate over its first-order Markovian
counterpart. Further, we again observe that the moderate
order CRF models of [41] fail to offer a substantial
improvement over first-order linear-chain CRFs. This is
a rather expectable result, since the used training and
test sequences are more than 200 time points long, thus
requiring much longer time dependencies to be modeled
so as to obtain a clear improvement over first-order
linear-chain CRFs. Finally, we also evaluated HMMs
with the number of mixture components M selected
so as to optimize model performance. We observe that
HMMs yielded a significantly inferior result compared
to CRF-based approaches.

4.2 Handwriting Recognition

In this experiment we use the handwriting recognition
dataset from [37], which comprises 6877 handwritten
words (i.e., time series), in which each word is repre-
sented as a series of handwritten characters (see, e.g., Fig.
5). The data comprises 55 unique words, and it consists
of a total of 52152 characters (i.e., frames). Each character
is a binary image of size 16 × 8 pixels, leading to a 128-
dimensional binary feature vector. The dataset comprises
a total of 26 unique characters (i.e., classes).

Our experimental setup is the following: the dataset
is divided into 10 folds with each fold having approx-

Figure 5. Handwriting recognition: Example words from
the used dataset.

Table 4
Handwriting recognition: Error rates obtained by the

evaluated methods.

Method Error Rate (%) p-value

CRF (SCG) 16.55 ± 0.74 10
−6

CRF (L-BFGS) 16.39 ± 0.70 10
−6

CRF (EnM) 16.38 ± 0.71 10
−6

CRF∞ (SCG) 13.15 ± 0.49
CRF∞ (L-BFGS) 12.99 ± 0.44

CRF∞ (EnM) 12.93 ± 0.50

Moderate Order CRF (3rd Order) 14.03 ± 0.57 10
−4

Moderate Order CRF (5th Order) 13.38 ± 0.49 10
−4

HMM (M=6) 17.12 ± 0.89 10
−6

imately 6,000 training and 900 test examples, with the
input variables x for a character being the corresponding
pixel values. The obtained results are depicted in Table
4; we provide means, standard deviations, and the p-
metric value of the Student’s-t test run on the pairs
of performances of the models (CRF, CRF∞), (moderate
order CRF, CRF∞), and (HMM, CRF∞).

As we observe, the proposed approach offers a signif-
icant improvement over first-order linear-chain CRFs, as
well as the rest of the considered alternatives. Therefore,
we once again notice the practical significance of coming
up with computationally efficient ways of relaxing the
Markovian assumption in linear-chain CRF models ap-
plied to sequential data modeling. Note also that, in this
experiment, the moderate order CRF models of [41] seem
to yield a rather competitive result. This was expectable,
since the average modeled sequence in this experiment
is less than 10 time points long. Finally, regarding the
HMM method, with the number of mixture components
M selected so as to optimize model performance, we ob-
serve that the CRF∞ model yields a clear improvement,
irrespectively of the employed likelihood optimization
approach.

4.3 Part-of-speech tagging

Finally, here we consider an experiment with the Penn
Treebank corpus [25], containing 74029 sentences with a
total of 1637267 words. It comprises 49115 unique words,
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Table 5
Part-of-speech tagging: Error rates obtained by the

evaluated methods.

Method Error Rate (%)

CRF (SCG) 4.45
CRF (EnM) 4.12

CRF∞ (SCG) 2.94
CRF∞ (EnM) 2.94

Moderate Order CRF (3rd Order) 3.43
Moderate Order CRF (5th Order) 3.35

HMM (M=10) 4.71

and each word in the corpus is labeled according to its
part of speech; there are a total of 43 different part-of-
speech labels. We use four types of features: (1) first-
order word-presence features, (2) four-character prefix
presence features, (3) four-character suffix presence fea-
tures, and (4) four binary lexical features that indicate
the presence of, respectively, a hyphen, a capital letter,
a number, and an ‘-ing’ suffix in a word. All features
are measured in a window with width 3 around the
current word, which leads to a total of 212610 features.
We use a random 90% training / 10% test division for
our experiments on the Penn Treebank corpus. No cross-
validation was conducted in the case of these experi-
ments, as the large size of the dataset rendered it rather
prohibitive. Additionally, optimization by means of the
L-BFGS algorithm wasn’t feasible in this experiment, due
to the incurred overwhelming memory requirements.

The obtained results are depicted in Table 5 for models
estimated by means of likelihood optimization using the
SCG method, as well as for models estimated using the
maximum entropy approach. As we observe, relaxing
the Markovian assumption of the CRF model yields a
clear improvement over all the considered alternatives.
Finally, we also evaluated diagonal covariance HMMs
with the number of mixture components M selected
so as to optimize model performance. We observe that
HMMs yielded a rather competitive result in this exper-
iment, clearly inferior though to the CRF∞ model.

5 CONCLUSIONS

In this paper, we presented a novel formulation of linear-
chain CRF models, based on the postulation of an energy
function which entails infinitely-long time-dependencies
between the modeled data. This way, we circumvent
the Markovian model assumption, thus allowing for
better capturing the temporal dynamics in the modeled
datasets, hence offering increased recognition perfor-
mance compared to existing CRF-based approaches.

Building blocks of our novel approach are: (i) the
sequence memoizer, a recently proposed nonparametric
Bayesian approach for modeling label sequences with
infinitely-long time dependencies; and (b) a mean-field-
like approximation of the model marginal likelihood,
which allows for the derivation of computationally ef-
ficient inference algorithms for our model. The efficacy

of the so-obtained infinite-order CRF (CRF∞) model was
demonstrated in several applications using benchmark
datasets.

As we have shown, coming up with an efficient way
of relaxing the Markovian assumption of conventional
linear-chain CRF formulations allows one to obtain sig-
nificantly increased discriminatory performance for the
CRF model in sequential data modeling applications
from diverse domains. Additionally, as our experimental
results have illustrated, the benefits from relaxing the
Markovian assumption of linear-chain CRF models re-
main significant irrespectively of the employed model
training algorithm, thus vouching for the generality and
the objectivity of our findings regarding the superiority
of the CRF∞ model.
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