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Abstract: An alternative, unified, semi-analytical approach for
the evaluation of the cumulative distribution function (cdf) of the
weighted sum of L independent Rician (or Rayleigh as a special
case) and m-Nakagami envelopes with or without the presence of
Additive White Gaussian Noise (AWGN) is presented. The cdf is
evaluated directly in a nested mode via the Hermite numerical in-
tegration technique. The proposed formulation avoids the calcula-
tion of complex functions and can be efficiently applied to practi-
cal wireless applications when L � 3, using arbitrary statistical
characteristics for the modeling parameters. Moreover, it can be
also used to control the accuracy of other techniques when L > 3.
Comments, comparison with other existing techniques and useful
curves for several practical wireless applications such as the cal-
culation of the error bounds for coding on fading channels in mo-
bile satellite applications and the Equal Gain Combining (EGC),
are also presented. Finally, the relation between the distribution
of the sum of m-Nakagami and Rice envelopes is investigated and
discussed.

Index Terms: Rician fading, Nakagami fading, diversity, equal gain
combining, mobile satellite communications.

I. INTRODUCTION

In several practical wireless applications which involve Ri-
cian (or Rayleigh as a special case) and Nakagami fading, there
is a need for the calculation of the cdf or the complementary cdf
(ccdf) of the sum (or generally the weighted sum) of L statis-
tically independent random variables (RVs) with or without the
presence of AWGN. Such weighted sums occur in the calcula-
tion of the error bounds for coding on Rician fading channels
in mobile satellite applications in which the cdf of the weighted
sum of L statistically independent Rician RVs needs to be cal-
culated [1]. Other important applications involve the evaluation
of the error performance in equal gain and maximal ratio com-
bining systems, signal detection, linear equalizers, outage prob-
ability, intersymbol interference, and phase jitter.

One solution to this problem is related to the extraction of a
simple expression for the characteristic function (chf) of the sum
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(or the weighted sum) of L independent Rician or m-Nakagami
fading amplitudes, which has not been solved adequately yet. It
must be noted here that the derivation of the chf in Rician fading
channels is more complicated compared to the Nakagami fading
case, because the Rician probability density function (pdf) con-
tains an explicit term of the modified Bessel function of the first
kind [2].

In the previous years, many researchers tried to meet this need
using several techniques. Scanning the literature we can find
several attempts for the extraction of the cdf or the pdf of the
sum of RVs (related to wireless applications), but they are lim-
ited to sine waves and Rayleigh RVs [3]–[6] and they do not
investigate the case of the weighted sum.

The most well known approach for the Nakagami fading was
made by Beaulieu and Abu-Dayya [7], who used the infinite
series representation presented in [8] to obtain the ccdf. This
is an important result since the proposed series approximation is
general and simpler compared to previous published techniques.
Other authors as Alouini and Simon [9] proposed another ap-
proximate approach for Nakagami fading channels using Her-
mite numerical integration. Recently, the same authors obtained
closed-form expressions for the average signal-to-noise ratio
(SNR) over diversity paths with exponentially decaying power
delay profile [10]. The authors of the present paper proposed
[11] an alternative approach for the evaluation of the error prob-
ability (ERRP) in Nakagami fading EGC systems, which is ef-
ficient for low order diversity. Other researchers who tried to
cope with the problems arising in wireless applications in which
the sum of L m-Nakagami RVs is involved are listed in [12],
[13]. A comprehensive summary for the performance analysis
of digital communications techniques over generalized fading
channels can be found in [14].

As far as the Rician fading is concerned, Abu-Dayya and
Beaulieu [15] have proposed a method similar to [7] for the eval-
uation of the ERRP for EGC diversity in Rician slow fading en-
vironment for coherent BPSK and non-coherent BFSK. Later,
the same authors examined the performance of MPSK in the
presence of co-channel interference for EGC in Nakagami and
Rician fading environments [16]. Recently, Annamalai et al. in
[2] presented a direct technique—expressed in terms of single
or double finite integrals—for the evaluation of the ERRP of
EGC systems in Rayleigh, Rician, and Nakagami fading chan-
nels. Other researchers such as Zhang in [5], [6], presented a
simpler approach for the evaluation of the ERRP for coherent
and non-coherent modulation schemes in slow Rayleigh fading



channels using the Gil-Palaez lemma. Finally, recently the au-
thors of this paper presented a method for the calculation of the
ERRP in Rayleigh fading EGC wireless applications, which is
very efficient compared to other techniques, especially when the
number of diversity branches is lower than four [17]. It must be
noted here that to our knowledge the solution to the problem
of extracting the cdf of a weighted sum of fading amplitudes is
limited only to the Rayleigh case in [8].

In this paper, we attempt to extract the cdf of the weighted
sum of L m-Nakagami and Rician RVs in the presence or not
of additive uncorrelated white noise avoiding the calculation of
complex functions and using arbitrary values for the modeling
parameter. The proposed semi-analytical approach assumes in-
dependent fading envelopes, which are not necessarily identi-
cally distributed. The cdf of the weighted sum of two RVs is
evaluated directly using the definition and the properties of the
chf of a RV and a formula which can be evaluated via the Her-
mite numerical integration method is derived. Then, this for-
mula is used in a nested mode for the derivation of the cdf of the
sum of L RVs. Although the proposed approach needs the eval-
uation of well known tabulated functions, its nested form makes
it computationally cumbersome for. In such cases, it is useful
to be used as a reference point in order to control the accuracy
of other techniques. On the other hand, for the proposed in this
paper method is very efficient and simpler compared to other
techniques. Hence, it can be easily used for applications involv-
ing a low number of fading RVs. But, in any case, to our knowl-
edge, results for the distribution of the weighted sum of Rice and
m-Nakagami fading RVs, which are not identically distributed
(different powers), have not been published previously.

In Section II, the problem of the Rician fading case is for-
mulated with the necessary mathematical analysis and the final
expressions for the cdf with or without the presence of AWGN
are presented. In Section III, the problem for the m-Nakagami
fading case is solved. In Section IV, comments are made and
computer results for practical wireless applications illustrate the
proposed formulation. In the same section, the relation between
the distribution of the sum of m-Nakagami and Rice envelopes
is investigated and discussed. Finally, Section V presents the
paper’s concluding remarks.

II. THE DISTRIBUTION OF THE WEIGHTED
SUM OF L RICIAN RVs

Let x1; x2; � � � ; xL be the amplitudes ofL statistical indepen-
dent envelopes, which follow the well-known Rice distribution

fRICE (xk) =
xk

�2k
exp

�
�x2k + u2k

2�2k

�
I0

�
xkuk

�2k

�
; xk � 0;

(1)

where xk is the signal amplitude, I0 is the zero-order modi-
fied Bessel function of the first kind, 2�2

k is the average fading-
‘scatter’ component and u2k the line-of-sight (LOS) power com-
ponent. The Local Mean Power (LMP) 
k is defined as 
k =

2�2k + u2k and the Rice factor Kk of the k-th envelope is defined
as the ratio of the signal power in dominant component over the

scattered power, i.e., Kk =
u2
k

2�2
k

. When Kk goes to zero, the

channel statistic becomes Rayleigh, whereas, if Kk goes to in-
finity, the channel becomes a nonfading channel. Values of Rice
factor in outdoor and indoor systems usually range from 0 to 25
[18], [19].

Let X1L = c1x1 + c2x2 + � � � + cLxL be the variable
which represents the weighted sum of the L Rician RVs with
c1; c2; � � � ; cL being constants. First, the cdf of the sum of the
variables c1x1 and c2x2—denoted as X12—will be formulated
and then, this sum will be used in a nested mode for the deriva-
tion of the cdf of X1L.

Let �12(s);�c1x1(s), and �c2x2(s) be the chfs of the vari-
able X12; c1x1, and c2x2 respectively. Then, due to the inde-
pendence between x1 and x2;�12(s) can be written as [20]

�12 (s) = �C1X1
(s) �C2X2

(s) = �X1
(c1s) �X2

(c2s) (2)

or from the definition of the chf

�12 (s) = �X1
(c1s)

Z
1

0

exp (jc2st2) f2 (t2) dt2; (3)

with f2(t2) being the Rician pdf of the RV x2. Using (1) and
(3) and after the transformation t2 = �2

p
2r2;�12(s) can be

written as
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(4)

The cdf of x12 is defined as

F12 (v) = Prob [X12 � v] (5)

or

F12 (v) =

Z v

0

fX12
(�) d�

=
1

2�

Z v

0

Z
1

0

�12 (s) exp (�js� ) dsd�;
(6)

where � is another auxiliary variable. Now, using (4) and (6)
and taking into account the fact that by definition

Z
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(7)

the cdf of X12 can be written following a straightforward proce-
dure as

F12 (v) = 2e�K2

Z
1

0

"
F1

 
v � r2

p
2c2�2

c1

!#
r2

� I0
�
2r2
p
K2

�
exp

�
�r22

�
dr2;

(8)

with F1(v) being the cdf of the c1x1. A formulation for the cdf
of the cx, when x follows Rician pdf and c is constant, is easily



found to be related to the Marcum Q1-function (or simply Q-
function) as

F1 (v) = 1�Q

�p
2K1;

v

c1�1

�
: (9)

An efficient formulation for the Marcum Q-function has been
given in [14]. This formulation is used in this paper for the
evaluation of F1(v) in (9).

The second part of (8) can be calculated numerically with de-
sired accuracy using the Hermite numerical integration method
[21, p. 875]. Hence, the final semi analytical closed form for
the calculation of F12 can be written as

F12 (v) = 2e�K2

nX
i=1

ai

"
F1

�
v � zi

p
2�2

c2

c1

�
zi

� I0
�
2zi
p
K2

�#
;

(10)

where ai; zi, and 2n are the weighting factors, the abscissas and
the order of the Hermite numerical integration method, respec-
tively [21]. It is mentioned here that only the positive values
of abscissas are used, because the integrals are defined over the
positive half axe. Moreover, only the values which satisfy the
condition, v� zi

p
2�2

c2
c1
> 0 are taken into account in the sum-

mation of (10).
Following the same mathematical analysis in a nested mode,

the formulae for the cdf of the weighted sum of L independent
Rician RVs are shown below

F12 (v) = 2e�K2

nX
i=1

aiziI0

�
2zi
p
K2

�

�
�
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�
v � zi

p
2�2
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��
;

F13 (v) = 2e�K3
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aiziI0

�
2zi
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�
�
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p
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��
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...

F1L (v) = 2e�KL

nX
i=1

aiziI0

�
2zi
p
KL

�

�
�
F1L�1

�
v � zi

p
2�L

cL

c1

��
:

(11)

The approach proposed in (11) can be used for Rician en-
velopes with arbitrary values for K and �.

A. The Weighted Sum ofL Rician Envelopes in the Presence of
AWGN

If the L independent Rician envelopes are transmitted over
an AWGN channel, the total sum of the desired signals plus the
noise can be written as

XPN1L =

LX
i=1

cixi +

LX
i=1

wi; (12)

where xk is the output signal amplitude and wk represents the
complex Gaussian noise, which affects at the k-th envelope with
zero mean and variance Nk=2. The chf of the Gaussian variate
wk is well known and can be expressed as

�wk (s) = exp

�
�Nk

4
s2
�
; (13)

which is the chf of a Gaussian pdf with zero mean and variance
Nk=2.

Due to the independence between desired signals and noise,
the chf �XPN1L

(S) of the envelope XPN1L can be written as

�XPN1L
(s) =

LY
k=1

�wk (s)

LY
k=1

�xk (s) (14)

or from (13)

�XPN1L
(s) = �NORM(0;�L=2) (s)

LY
k=1

�Xk (s); (15)

with �L being the total power of the Gaussian noise.
Following the same mathematical analysis as in the case with-

out noise, the cdfs of the weighted sum of L independent Rician
envelopes in the presence of AWGN are shown below
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FN1L (v) = 2e�KL
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h
F1L�1

�
v � zi

p
2�LcL

�i
;

(16)

with FNORM(0;�L=2) (x) being the well known standard normal
cdf with zero mean and variance �L=2.

III. THE DISTRIBUTION OF THE WEIGHTED SUM
OF L m-NAKAGAMI RVs

Nakagami fading (m-distribution [22]) describes multipath
scattering with relatively large delay-time spreads with different
clusters of reflected waves. Within any one cluster the phases
of individual reflected waves are random, but the delay times
are approximately equal for all waves. As a result, the en-
velope of each cumulated cluster is Rayleigh distributed. The
m-Nakagami model is also often used to describe the interfer-
ence cumulated from the multiple independent Rayleigh fading
sources, particularly if these are identically distributed (same
LMPs) [22].



Let x1; x2; � � � ; xL be L statistical independent RVs, which
follow the well-known Nakagami m-distribution with pdf given
by [22]

f (xk) = 2(
mk


k
)mk

x2mk�1
k

�(mk)
exp(� mk


k
x2k); xk � 0;

k = 1; 2; � � � ; L;
(17)

where �(x) is the Gamma function, 
k controls the spread of
the distribution (for signal applications represents the LMP) and
m represents the inverse normalized variance.

Following the same mathematical analysis as in the Rice case
described above in Section II, the formulae for the cdf of the
weighted sum of L independent m-Nakagami RVs are shown
below
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with F1(v) being the cdf of the cx, easily found to be

F1 (v) = P

�
m1;

m1


1c
2
1

v2
�
; (19)

and P being the incomplete Gamma function. This function can
be evaluated using a routine from a mathematical software pack-
age (e.g., MATHEMATICA). The approach proposed in (18)
can be used for randomm-Nakagami variates with arbitrary val-
ues for 
 and m parameters.

A. The Weighted Sum ofL m-Nakagami Envelopes in the Pres-
ence of AWGN

In the presence of AWGN, following similar mathematical
analysis as in Section II-A, the formulae for the cdf of the
weighted sum of L independent m-Nakagami RVs are shown

below
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IV. PRACTICAL APPLICATIONS, COMMENTS,
AND NUMERICAL RESULTS

Some comments on the Beaulieu and Abu-Dayya’s technique
presented in [7], [8], and [15] are as follows: a) The need for the
evaluation of special complex functions as the confluent hyper-
geometric presents serious time overflow problems under some
circumstances [23, Appendix B]. Moreover, using this series ap-
proximation two errors occur [24]. The first arises due to the
assumption of bounded random variables and the second due
to termination of the infinite series. These errors are also dis-
cussed in [24]. b) The Nakagami m-parameter is constrained to
take integer values. This is not true for real mobile radio envi-
ronments. c) The accuracy of computation for a specific value
depends strongly on the appropriate selection of the parameterT
and the number of non-zero terms in infinite series in [7], which
are different for different values of L and m.

In order to show the general applicability of the proposed
technique, we assume that the envelopes have arbitrary values
for the statistical parameters m and K. We also assume that
the LMPs 
k follow uniform (
1 = 
2 = � � � = 
L) or ex-
ponential power decay profile, given by 
k = 
1e

d(k�1); k =

1; 2; � � � ; L with d being the power decay factor [14].

A. The Rician Fading Case

In Fig. 1, the cdf of the weighted sum of L Rician envelopes
is plotted versus x=L0:5 (for normalization purposes as in [4])
for several numbers of L (2, 3, and 4) and arbitrary values of
Rice factor K (including the Rayleigh case of K = 0) and for
the weighting coefficients. In the same figure, it is assumed that
� = 1 for all envelopes.

In Fig. 2, the cdf is plotted versus x=L0:5 for L = 2; 3; and 4

and arbitrary values for the weighting coefficients. In this figure,
it is assumed that a) the K factor is the same for all envelopes
and b) the LMP of each envelope follows uniform (d = 0) or



�����

����

���

�

� � � � � � � �

x/(L̂ 0.5)

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

(x
)

/ �

/ �

/ �

. �����������������

& ��� �� �� ��

. �����������������

& ��� ������������

. ���������

& ��� ������������

. ���������

& ���������
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exponential decay profile (d 6= 0). To the best of the authors’
knowledge, such results have not been previously presented.

The curves of Figs. 1 and 2 can be efficiently used for the cal-
culation of the error bounds for coding on Rician fading chan-
nels in mobile satellite applications [1].

As referred above, a practical application of (16) is in the er-
ror analysis of EGC systems. In an EGC system with coher-
ent detection, the signals received in each branch are co-phased,
summed and coherently demodulated. The decision variable 
(which is assumed to be constant within symbol duration) for a
coherent BPSK can be formulated as

 (L) = �
LX
k=1

xk +

LX
k=1

wk ; (21)

where xk is the output signal amplitude at the k-th branch and
wk represents the complex Gaussian noise at the k-th branch
with zero mean and variance Nk=2. The sign in (21) is positive
if the transmitted symbol equals one and is negative if zero. It is

assumed that xk remains constant within symbol duration, but
changes from symbol to symbol following the Rician pdf. The
average SNR at the k-th branch is defined as

�k =

k

�L=L
; (22)

with �L being the total (in all branches) power of the Gaussian
noise and 
k the total signal power-sum of the LOS and scat-
tered at the k-th branch. Hence, assuming for simplicity that the
Rice factor is the same for all branches (K1 = K2 = � � � =
KL = K); �k can be written as

�k =
2�2k (K + 1)

�L=L
: (23)

The Error Probability (ERRP) for coherent BPSK detection is
defined as

Pe (L) = Prob [ (L) < 0] ; (24)

which is equal to FN1L(0), with FN1L(v) defined in (16).
Hence

Pe (L) = 2Le�LK
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(25)

which is independent to �L and Q(x) is the well-known Gaus-
sian Q-function [14, p. 70]. At this point, it must be mentioned
here again that only the positive values of abscissas are used,
because the integrals are defined over the positive half axes.
Also, it must be noted that for the case of perfect coherent de-
tection and no co-channel interference, the ERRP performance
of BPSK is identical to that of QPSK. In the case of coherent
BFSK, the noise variance is doubled compared to the case of
coherent BPSK. Hence, the proposed formulation is also valid
with �k replaced by �k=2 in (25).

In Fig. 3, the ERRP for coherent BPSK is depicted as a func-
tion of the SNR at the first branch �1 = � for several orders of
diversity (L = 2; 3), assuming that the signals arriving at each
branch have the same Rice factor K = 0; 5; 10 dB. We also as-
sume that the LMPs 
k and consequently the SNRs �k at each
branch follow exponentially power decay profile. In this case
�k = �e�d(k�1); k = 2; � � � ; L; with d being the power decay
factor.

Some comments and comparison between the method pro-
posed in [15] and the technique proposed in this paper are as fol-
lows: a) Eqs. (11) and (16) are in a nested form with L�1 sum-
mation loops for L envelopes (without the presence of AWGN)
or L loops for L envelopes (in the presence of AWGN). In this
case, which is comparable to [15], each summation loop con-
sists of � non-zero terms. Hence, the non-zero terms that need
to be summed here are M1 = �L. The infinite series in [15,
Eq. (23a)] is also in a nested form [15, Eqs. (23a), (23b), (23c),
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Fig. 3. ERRP for coherent BPSK, versus SNR in one branch � for several
diversity orders L, decay factor d and Rice factor K.

(14), (15)] with three summation loops for everyL, two of them
being infinite series and the third consists of L non-zero terms.
If n1 is the selected number of the non-zero terms that needs to
be summed in infinite series [15, Eq. (23a)] (for a specific accu-
racy) and n2 is the corresponding number for the infinite series
of [15, Eqs. (14), (15)], the total number of the terms needs to
be summed is M2 = n1Ln2. The number n1 decreases as the
L increases as referred in [8]. For L = 2 the values for M1 and
M2 are 256 and 6720 and for L = 3 the corresponding values
are 2197 and 8400. For L = 4 these values are 50625 and 7800,
respectively. The desired accuracy is chosen to be up to sixth
digit for both methods. It is obvious that the technique proposed
in this paper is an efficient alternative to the infinite series con-
cept of [15] and [8] forL � 3, as far as the speed of computation
is concerned. On the other hand, for L > 3 and for higher val-
ues of L it becomes computationally cumbersome and Dayya
and Beaulieu’s technique seems to be a more attractive tool for
the calculation of the ERRP with accuracy and speed, which in-
creases as the L increases. In this case (L > 3) and due to its
non-complicated form, the proposed in this paper technique can
be used for accuracy comparing purposes with other methods.
b) As far as the complexity of the calculations is concerned, the
functions that needed to be evaluated in every non-zero term us-
ing Eqs. (12) and (16) are the well-known Gaussian Q-function
(in the presence of AWGN), the Marcum Q-function (without
AWGN) and the zero-order modified Bessel of the first kind.

However, the term
Q

k=i;j;��� ;n

tkI0

�
2tk
p
K
�

seems error prone,

since I0(x) gets large quickly with the increase of its argument,
and the multiplication of several large numbers could lead to in-
accurate results. In order to solve this problem, the authors pro-
pose the calculation of e�xI0(x) using an expansion in series
of Chebyshev polynomials [21, 9.37] instead of the direct cal-
culation of I0(x). In this case, the term e�LK must be included
in the summations. On the other hand, the technique presented
in [15] needs the evaluation of two kinds of the confluent hy-
pergeometric function in every non-zero term [15, Eqs. (14),
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Fig. 4. The cdf of the weighted sum of L Nakagami envelopes for arbi-
trary values for the weighting coefficients and the power decay factor
(m = (2:5; 3; 3:2);
1 = 4).

(15)]. The calculation of such functions—as it is also referred
in [23, Appendix B]—presents serious time overflow problems
under some circumstances and the development of appropriate
methods is necessary in order to avoid them. c) The error that is
introduced using Eqs. (11) and (16) can be calculated using the
formula for the remainder quantity of the Hermite numerical in-
tegration method [21, 25.4.46]. The total remainder forL = 2 is
the �-order summation of the partial remainders and for L = 3

is the �2-order corresponding summation. The error that occurs
due to the termination of the infinite series of [15, p. 2261] is
discussed in [24].

B. Them-Nakagami Fading Case

Eqs. (18) and (20) are used for the evaluation of the distribu-
tion of the weighted sum ofLm-Nakagami RVs with or without
the presence of AWGN. The accuracy of computations is under
control (n = 20 is needed for an accuracy of six digits) and
the disadvantage of lengthy computation time arises when the
number of RVs is greater than three.

In Fig. 4, the cdf is plotted versus x=L0:5 for L = 2 and
3, arbitrary values for the Nakagami m parameter, several val-
ues for the weighted coefficients and for the power decay factor
d. To the best of the authors’ knowledge, such results have not
been previously presented. The technique proposed in this pa-
per is very efficient for small values of v since, for example, the
calculation of F12(2) needs the summation of 9 non-zero terms
and the corresponding value for F12(7) is 20. The number of
non-zero terms that need to be summed for the evaluation of the
infinite series of [7] (under the same accuracy demands) is about
450, without taking into account the calculation of the involved
two types of confluent hypergeometrics function. The number of
non-zero terms that need to be summed for F13(2) are 81, and
400 for F13(7). The corresponding number of non-zero terms
for the method presented in [7] is about 420.

Following the same analysis as in Section II-A for the Rician
case, the ERRP for BPSK EGC systems in Nakagami fading
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Fig. 5. ERRP for coherent BPSK versus SNR at a reference branch for
several diversity orders L, decay factors and Nakagamim parameter.

channels is given by
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(26)

where Q(x) is the Gaussian Q-function. In (26), for simplicity
purposes, it is assumed that all of the envelopes have the same
value for the Nakagami m parameter. In Fig. 5, the ERRP for
coherent BPSK is depicted as a function of the SNR at the first
branch �1 = � for several orders of diversity (L = 2; 3), as-
suming that the signals arriving at each branch have the same m
parameter (m = 1; 3:5). We also assume that the LMPs 
k and
consequently the SNRs �k at each branch follow exponential
power decay profile with d = 0; 0:5, and 1.

C. Approximation of the Rician cdf by them-Nakagami cdf

Sometimes the m-Nakagami model is used to approximate
a Rician distribution [25] because of its form simplicity com-
pared to the Rician case. Nakagami in [22, pp. 17–18] has
given some formulae for the relation between m-distribution
and n-distribution (Rice). In Fig. 6, the Rice pdf and cdf with
K = 4:45 and 
 = 3 are depicted together with an approxima-
tion of this distribution by a m-Nakagami pdf [22, pp. 17–18].

Although, this approximation seems to be accurate for the
main body of the pdf (and cdf), it becomes highly inaccurate
for the tails. As BER mainly occurs during deep fades, the tail
of the pdf mainly determines these performance measures the
corresponding cdf.

In Fig. 7, the cdf of the weighted sum of L = 2 and 3 Rician
RVs with arbitrary values for the K factor is approximated by
the corresponding m-Nakagami one, using the formulae of [22,
pp. 17–18].
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Fig. 6. Rice pdf and cdf for K = 4:45;
 = 3 and the corresponding
Nakagami approximation using the formulae presented in [22].
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Fig. 7. Rice cdfs of the weighted sum of L RVs and the cor-
responding Nakagami approximated cdfs for arbitrary values of
K: C(1; 0:8; 0:4);
1 = 3; d = 0:8.

As it is apparent here, the Nakagami approximation overesti-
mates the performance of the “equivalent” Rician model. These
results are in accordance to the comments, which are included
in [7, pp. 2265–2266]. Moreover, in [7] this approximation is
discussed in depth for EGC systems. But, it has to be men-
tioned that this overestimation is greater for weighted sums and
not uniform distributed envelopes. Therefore, in our opinion it
is not correct to approximate the cdf of the sum of L Rician
envelopes signal by the corresponding m-Nakagami one if the
application is a BER analysis.

V. CONCLUSIONS

A novel, simple and flexible approach for the evaluation of the
cdf of the weighted sum of L Rician and m-Nakagami statisti-
cally independent envelopes in the presence (or not) of AWGN
has been analyzed and presented. The obtained formulation pro-
vides accuracy and speed for L � 3 and can be easily used in
a wide range of wireless applications, which involve Nakagami
and Rice fading channels (Equal Gain Combining and calcula-



tion of the error bounds for coding on fading channels in mobile
satellite applications). Moreover, when L > 3 it can also be
used to control the accuracy of other techniques. Following the
same analysis, the proposed method can be adapted to extract
the cdf of the sum of the powers of L m-Nakagami or Rice dis-
tributed RVs. Such a result can be used in outage probability
analysis in cellular networks.
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