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Abstract—Iris recognition typically involves three steps, namely, iris image preprocessing, feature extraction, and feature matching.

The first two steps of iris recognition have been well studied, but the last step is less addressed. Each human iris has its unique visual

pattern and local image features also vary from region to region, which leads to significant differences in robustness and

distinctiveness among the feature codes derived from different iris regions. However, most state-of-the-art iris recognition methods use

a uniform matching strategy, where features extracted from different regions of the same person or the same region for different

individuals are considered to be equally important. This paper proposes a personalized iris matching strategy using a class-specific

weight map learned from the training images of the same iris class. The weight map can be updated online during the iris recognition

procedure when the successfully recognized iris images are regarded as the new training data. The weight map reflects the robustness

of an encoding algorithm on different iris regions by assigning an appropriate weight to each feature code for iris matching. Such a

weight map trained by sufficient iris templates is convergent and robust against various noise. Extensive and comprehensive

experiments demonstrate that the proposed personalized iris matching strategy achieves much better iris recognition performance

than uniform strategies, especially for poor quality iris images.

Index Terms—Iris recognition, Hamming distance, personalized matching strategy, weight map, ordinal features, binominal mixture

model.
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1 INTRODUCTION

IRIS recognition as a reliable personal identification method
has more and more important applications in our society,

such as border control, banking, law enforcement, welfare
distribution, and so on. There are mainly two kinds of
performance metrics for a practical iris recognition system.
One is accuracy and the other is usability. Currently, state-
of-the-art iris recognition algorithms can achieve nearly
perfect accuracy in controlled scenarios [1], [2], [3], [4], [5],
[6]. However, usability is still the largest bottleneck of iris
recognition toward wide deployment. It is remarkable that
some new-concept iris recognition systems such as iris at a
distance [8], [9], [11], [10] and iris on the move [12] have
been developed in recent years. But, the limited depth of
field (DOF) of iris acquisition devices [7] determines that it
is inevitable to capture many poor quality iris images for
recognition. Therefore, improvement of the capability of iris
recognition algorithms on poor quality iris images becomes
the most realistic approach to increase the throughput of
long-range iris recognition systems.

An iris recognition algorithm mainly includes three
steps: preprocessing, feature extraction, and feature match-
ing. The first two steps have been extensively investigated
in the literature, but iris matching is comparatively less

addressed. Because iris feature code is usually represented
using binary strings, simple iris matching methods such as
Hamming Distance [3] are commonly adopted. And, most
iris matching methods treat iris feature codes derived from
different image regions of various subjects as equally
important and assign the same weight value to them. Such
a uniform matching strategy definitely is not optimal in
terms of iris recognition accuracy because it ignores
significant differences of iris texture patterns among
individuals and variations of image structures among iris
regions of the same subject. For example, Fig. 1 shows some
example iris images of different eyes, along with their
normalized versions. The iris image of Fig. 1a has rich
textures in the inner band but fewer stripes in the middle
band; the iris image of Fig. 1b has more stripes in the lower
part than the upper part; the iris image of Fig. 1c has more
occlusions of eyelids and eyelashes than Figs. 1a and 1b.
Since all of iris image regions are encoded with the same
algorithm, differences of texture patterns between these
regions determine that each image region has its unique
distinctiveness and robustness for iris recognition. There-
fore, an adaptive iris matching strategy will hopefully
achieve better recognition performance.

In this paper, we propose a class-specific iris matching

strategy. The fundamental method for iris matching is still

based on Hamming distance, but now it is a distance

weighted by a personalized weight map. For example,

codeA is a registered iris code in the database and codeB is

a query iris code. Traditionally, the dissimilarity D

between codeA and codeB is illustrated in (1) based on

Hamming distance.

D ¼ codeA� codeBk k: ð1Þ
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If D is less than a threshold, the two iris images are
considered to be from the same eye. Our improvement to
the traditional Hamming distance is that a “weight map”
WA of the registered iris class A, which is denoted by an
n-dimensional vector fw1; w2 . . .wngT , is introduced to the
matching function as follows:

DA ¼
ðcodeA� codeBÞ �WAk k

WAk k : ð2Þ

Since each registered iris class has its unique “weight
map,” the matching strategy based on (2) is named the
“personalized matching strategy.”

How to generate and represent the “weight map” is the
key issue of this paper. Generally, a weight map is learned
from a number of registered iris templates of the same class.
Our experiments prove that such a weight map is robust
and convergent as long as there are sufficient training data.
Even if there are not enough registered iris images for
training initially, the weight map can be updated online
using recently recognized iris images as the new training
data during system implementation.

Weight maps for adaptive iris matching may be
represented using various forms and they all reflect the
difference of stability between iris feature codes derived
from different regions. But, different forms of weight maps
lead to significantly different recognition performance.
Another contribution of this paper is that a novel
“binominal mixture model” is proposed to find the optimal
weigh map based on the criteria of Discriminating Index
(DI). Experiments prove the validity of our method.

The proposed personalized matching strategy is tested
on some well-known iris image databases such as CASIA-
IrisV3-LAMP, UBATH, and ICE2005. Experimental results
show that our method has many desirable properties and
clearly outperforms current iris matching strategies.

The paper is organized as follows: Section 2 presents
related works on adaptive iris matching. Section 3 intro-
duces how to generate and update the weight map. Section 4
investigates the approach to find the optimal weight map
for iris matching. Section 5 discusses whether the weight
map is stable and convergent. Section 6 presents extensive
experiments and discusses how our method improves iris

matching performance. Section 6 concludes this paper with
some discussions.

2 RELATED WORKS

In this section, related works on iris matching are reviewed
in order to put our proposed iris matching strategy in
context.

2.1 Adaptive Region-Based Iris Matching Strategy

There are already some research works in the literature to
adaptively incorporate weight maps into iris matching.
However, various strategies are used to set the weight map
of iris features.

2.1.1 Weight Map Based on Occlusion Mask

Daugman [3] proposed a “mask” to ignore bits occluded by
eyelids and eyelashes, where occluded bits are masked by
“0” and the visible bits are reserved by “1.” If the masks of
two iris feature templates are denoted as maskA and
maskB, then the weight map W in (2) can be represented as

W ¼ maskA \maskB: ð3Þ

The weight map based on occlusions of eyelids and
eyelashes is intuitive and straightforward. However, image
segmentation is still an unsolved problem in computer
vision and it is also a grand challenge to precisely segment
the areas of eyelids and eyelashes from the original iris
images. Although most state-of-the-art iris recognition
algorithms have a module to remove the occlusions of
eyelids and eyelashes [2], [13], [14], it does not always
perform well for all iris images. The iris matching method
based on occlusion mask has to face the risk of misleading
segmentation results. In addition, complex algorithms for
segmentation of eyelids and eyelashes need much addi-
tional computational cost.

2.1.2 Weight Map Based on Local Image Quality

Chen et al. [15] proposed that local iris image regions with
better quality have better classification capability and vice
versa. They incorporated the local quality measures (or
local energy) as weights to compute the matching score. If
the energy maps of the iris images A and B are denoted as
EA ¼ feA1 ; eA2 ; . . . ; eAn g and EB ¼ feB1 ; eB2 ; . . . ; eBn g, respec-
tively, then the weight map W in (2) can be described as

wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eAi � eBi

q
; i ¼ 1; 2; . . .n: ð4Þ

The basic idea of this quality-based mask representation
method is good. However, the effectiveness of this method
heavily depends on its defined quality measure. Much
work has been reported on quantitative measurement of iris
image quality [3], [5], [15], [16], [17]. However, the exact
relationship between iris image quality and iris recognition
performance still has not been strictly established. Further-
more, whether the region with higher local quality certainly
has better classification performance is still a problem.

2.1.3 Weight Map Learned from All Iris Classes

Subjective estimation of the importance of various iris
feature codes is not very accurate, so He et al. [18] proposed
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Fig. 1. Some example iris images and their normalized versions.

They have different texture structures and different degrees of

occlusion. (a) From CASIA3-Lamp 009-R-1. (b) From CASIA3-Lamp

005-L-4. (c) From CASIA3-Lamp 013-L-10.



a machine learning-based method to statistically select the
most effective ordinal features of iris images and their
weights to iris recognition performance. Such a study can
explore which parts of iris regions and what kinds of
ordinal filters commonly have better recognition perfor-
mance for most iris image samples. It is demonstrated that
such a learning-based weight map strategy can definitely
improve the overall iris recognition accuracy. However, it
should be noted that the feature selection method may
generate a globally optimal result for training iris data set.
So, the general weight map W0 based on the machine
learning approach does not fit a large number of indivi-
duals and cannot guarantee the optimal matching of two
specific iris images:

W ¼W0: ð5Þ

2.1.4 Weight Map Based on the “Best Bits”

Recent work by Hollingsworth et al. [19] demonstrated that
there are some best bits in the iris code that are not easy to
corrupt and are always consistent. They set consistent bits
as 1 and inconsistent (fragile) bits as 0, and finally establish
a mask-like template for every iris class.

Suppose there are n iris codes in the same class and the
value of a certain bit i is 1 for m1 times and 0 for m0 times
(m1 þm0 ¼ n), so the stability of the bit is measured as

si ¼
m1 �m0j j
m1 þm0

: ð6Þ

The larger value of si denotes a higher stability in bit iand vice
versa. If si is larger than a threshold (for example 0.3), they
consider bit i a “consistent bit”; otherwise, they consider it a
“fragile bit.” So, their weight map W is actually described as

wi ¼
1; si � 0:3;
0; si < 0:3:

�
ð7Þ

The concept of consistent bits and fragile bits is a good
reference for us, but how to choose the threshold is a
problem. There does not exist a transient transition between
good and bad bits, so it is not the best solution to binarize si
into 1 and 0.

2.1.5 Weight Map Based on Information Fusion

Proenca and Alexandre [20] divided normalized iris images
into six regions and combined the matching scores of all iris
regions together to generate an overall matching score. Du
et al. [21] studied the accuracy of iris recognition on
different image regions and concluded that inner rings of
irises are more distinguishable. These methods [20], [21] use
information fusion strategy to coarsely set the weight map
during iris matching.

In summary, there are already some works on adaptive
region-based iris matching, but current models have draw-
backs in generality of weight map or imprecise estimation
of the weight map. It is the objective of this paper to find a
class-specific weight map model.

2.2 Iris Image Preprocessing and Feature
Representation Methods in Our Study

Many good works have been done on each module of an iris
recognition algorithm and some of them are summarized in

a recent survey on iris recognition [2]. Here, it is necessary
for us to briefly introduce the iris recognition algorithm
used in our study.

Iris image preprocessing includes iris localization, iris
segmentation, and normalization. We use the Adaboost-
cascade iris detector to determine the rough position of iris
center, and then apply an elastic model named “pulling and
pushing” to refine the edge of iris and pupil, and finally
remove the eyelashes and shadows via a prediction model.
Details of iris image preprocessing can be found in [18].

Sun and Tan [22] proposed a general framework of iris
feature representation based on ordinal measures. They
have demonstrated that ordinal measures are intrinsic
features of iris pattern and robust against various noise.
So, this paper studies the weight map of ordinal iris
features, but the results are also applicable to other kinds of
iris features. In our study, two types of well-proven ordinal
features [22], i.e., 17-pixel length trilobe ordinal features and
8-pixel length bilobe ordinal features, are used as the iris
feature representation and the length of each iris template is
512 bytes (256� 16 bits).

3 PERSONALIZED WEIGHT MAP FOR IRIS MATCHING

In this section, we introduce how to generate the persona-
lized weight map. It is the first step of our personalized
matching strategy.

3.1 Generating the Weight Map

Suppose there are k training iris images in an iris class, and
their iris codes are denoted by code1; . . . ; codek. We make
k� k times of intraclass matching using these k codes and
obtain the average matching result by (8)1:

P ¼ 1

k� k
Xk
a¼1

Xk
b¼1

codea � codeb; P ¼ fp1; . . . ; png; ð8Þ

where P is a vector with the same length as the iris codes.
For the ith bit, pi represents the probability of the matching
result being 1. Every pi is of different value and bigger pi
indicates that bit i is more stable.

Suppose there are k iris codes in the same class, and the

value of a certain bit i is 1 for m1 times and 0 for m0 times

(m1 þm0 ¼ k), so the average result of bit i is pi ¼ m2
1þm2

0

ðm1þm0Þ2

by (8). It is obvious that pi is always between 0.5 and 1. For

convenience, we normalize it to ½0; 1� by

W ¼ 2P � 1; ð9Þ

where W (W ¼ fw1; . . . ; wng) is called the “weight map.”

This weight map W is related to the map S ðS ¼
fs1; . . . ; sngÞ described in (6). The stability of the bit i is

si ¼ jm1�m0j
m1þm0

as in (6), while in our method, the weight map is

wi ¼ 2
m2

1 þm2
0

ðm1 þm0Þ2
� 1:
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1. a� b means logical NOT of a� b in Boolean operations. For
convenience, we use this expression so that the typical matching score D 2
½0; 0:5� is reversed to 1�D, which is consistent with the probability of being
the same iris.



It can be derived that wi ¼ s2
i . It explains that wi, pi, and si

are actually from the same source but with different forms.
However, which is the best weight map among so many
different forms and how to use the weight map is still a
problem. We will discuss this issue in Section 4.

3.2 Properties of the Weight Map

Fig. 2 shows how to generate personalized weight maps.
Three example weight maps are, respectively, generated
from irises in Figs. 1a, 1b, and 1c. We can find some
desirable properties of the weight map as follows:

. The bright area in the weight map indicates that the
iris matching result is more stable in this region
while the matching result in the dark area is less
stable. The bright and dark areas are distributed
unevenly, which explains that “fragile” bits indeed
exist as described in [19].

. Areas likely to be occluded by eyelids or eyelashes are
much darker than others, so they are less stable. This
conclusion is consistent with our intuition. It also
explains that the training of weight map may have
deterministic function of removing occlusions of
eyelids and eyelashes. Certainly, the weight map
cannot replace the “eyelid mask,” but it is still a choice
to simplify the process of occlusion segmentation.

. It should be noticed that even in occluded areas, the
value of weight map is not zero. It explains that
some occluded regions also have recognition cap-
ability to some extent and they should not be
completely neglected in iris matching.

. Although inner bands of iris images seem to have
more complex textures than outer bands, there are
no obvious difference between them in the weight

map. If there is some difference, it may be caused by
inaccurate iris edge detection.

. By averaging all “personalized weight maps,” we
can get a “general weight map,” as shown in Fig. 2d.
This weight map also shows the different classifica-
tion capability of different regions, but it is statisti-
cally learned by all iris classes. The weight map
mentioned in [18] could be regarded as one example
of such general weight maps.

3.3 Updating the Weight Map

The generation of the weight map depends on a large
number of registered images, which may not always be
available. Fortunately, even if there are not enough regis-
tered images temporarily, users will leave many “success-
fully recognized” iris images in real applications, which can
be used as training samples to update the weight map.

Since iris images in real-world applications are usually
captured under various conditions, the updated weight
maps are actually more representative. More training
images result in more stable weight maps, and therefore
frequent users of one iris recognition system will have
much stable weight maps. In Section 4, we will discuss how
many images are necessary for training the weight map.

Let Wn denote the weight map trained by n registered
iris images, and Codenþ1 denote the new-coming iris code,
so the new weight map Wnþ1 can be updated by

Wnþ1 ¼
n2 �Wn þ 2

Pn
m¼1 codenþ1 � codem � 1ð Þ
nþ 1ð Þ2

: ð10Þ

Several important points should be noted here.

1. Iris codes may be of different rotation angles, and
therefore they must be rotated to the same angle
before further computation. We set one of the iris
codes as the benchmark, and then match it with
another iris code in several different angles using the
common Hamming Distance. The angle with the
max matching score is taken as the angle between
the two iris codes. Finally, all iris codes are rotated to
the same angle as the benchmark iris code. This
work must be done in advance; otherwise, the
weight map is not stable.

2. When the online learning procedure starts, there
must exist a stop condition for weight map updat-
ing. For example, we can set n ¼ 20 and only reserve
the latest 20 templates and delete the older ones.
There are also other methods which we do not
enumerate here.

3. Although the process of updating weight map seems
complex, it is only implemented offline after a
successful recognition is performed and a new
template is acquired. Therefore, the time of this
process can be neglected in the practical systems.

3.4 Analysis of Computational Cost

Compared with the general Hamming distance, the
weighted Hamming distance inevitably increases computa-
tional complexity of iris matching. Here, a detailed analysis
is provided to demonstrate that the increase of computa-
tional cost is limited.
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Fig. 2. Generate the personalized weight map. The weight maps (a), (b),

and (c) are, respectively, learned from registered iris templates of their

own classes. The general weight map (d) is calculated by averaging

personalized weight maps of all iris classes.



The first issue is on memory storage. For general
Hamming distance, one feature template is 64 bytes
(512 bits) and its occlusion mask is the same 64 bytes.
Suppose that there are n templates per user; one user
occupies the memory of 128� n bytes. For weighted
Hamming distance, one feature template is still 64 bytes,
but the weight map is a vector of 512 fraction values which
are quantified to integers of 0 to 255 (1 byte). So, the
memory increases to 64� nþ 512 bytes. For a system with
1G RAM, it can load about 260,000 users (three templates
for each user) with general Hamming distance, or 112,000
users with weighted Hamming distance. With fast devel-
opment of computer technology, it is not a problem to
provide enough memory for exhaustive searching.

The second issue is on matching speed. As we know,
traditional iris matching is very fast for it only needs 512 XOR
operations and 512 addition operations (ADD). Moreover,
the 512 XOR operations can be processed in parallel by 32 bits
once, and 512 ADD can be replaced by 512 incremental
operations (INC) which are then carried out using the 16-bit
lookup tables, so it only costs 16 XOR and 16 INC. It is
undeniable that the classical iris matching is perfect for
computation. As for weighted Hamming distance, it seems to
require multiplication operations (MUL), but the MUL can be
implemented by ADD, for the multiplicators are always 1 or
0. Here, we need 512 AND operations to determine whether it
is 1 or 0 and need less than 512 (average 256) ADD operations
to accumulate the weights with multiplicators being 1. At
last, the result requires a division operation (DIV) ( Wk k can
be calculated when weight maps are loaded to the RAM), so
the total computation is average 16XORþ 256ADD þ
512ANDþ 1DIV. Our new method is indeed slower than
the traditional one, but it only costs less than 800 cycles once,
which is still fast enough for practical use.

As a summary, the comparison of computational cost
between general Hamming distance and weighted Hamming
distance is listed in Table 1. From the table, we can see that the
increase of computational cost is limited, which is worthy for
improving system performance. The personalized iris match-
ing strategy is clearly affordable in real applications.

4 OPTIMIZING THE WEIGHT MAP

4.1 The Optimization Problem among Various
Forms of Weight Maps

The weight map reflects the stability of encoding algorithms
on different regions of different iris classes. However, there
are various forms of weight maps. For example, we can use

the method in [19] to binarize the weight map: The bit larger
than a threshold is set 1; otherwise, it is set 0, so the
modified weight map will be w0i ¼ sgnðwi � tÞ; t 2 ð0; 1Þ.
Another example is to use the power function of each bit as
w0i ¼ w

q
i ; q 2 constant, which sets larger weights on more

robust bits. Moreover, there are also other forms which we
do not enumerate here.

Fig. 3 shows several different forms of weight maps.
They are all specific cases of the original weight map. They
all reflect the robustness of encoding algorithms on iris
regions, but may yield different performance when they are
used for iris matching.

How to choose the best form is an optimization problem,
which can be defined as follows: Given the original weight
mapW ¼ fw1; w2 . . .wng, find the optimal weight mapW 0 ¼
fw01; w02 . . .w0ng generated by W so that F ðÞ indicating the
performance of iris recognition achieves the maximum value:

max
w01;...;w

0
n

: F ðw01; . . . ; w0nÞ;

Gðw01; . . . ; w0nÞ ¼
Xn
i¼1

w0i � 1 ¼ 0;

wi > 0; i ¼ 1; . . . ; n;

8>>><
>>>:

ð11Þ

where F ðÞ is the objective function and GðÞ is the condition
function. Here, the key problem is how to choose the F ðÞ
and how to make use of the known condition.

There are many criteria for evaluating the performance
of a biometrics system. A common criteria is the Discrimi-
nating Index d, which is defined as follows:

d ¼ �inter � �intraj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�2
inter þ �2

intra

�
=2

q ; ð12Þ

where �intra and �2
intra denote the mean and variance of

intraclass Hamming distance, and �inter and �2
inter denote

the mean and variance of interclass Hamming distance.
Larger d indicates better discriminability. For convenience,
we just use F ðÞ ¼ d2 as the objective function.

4.2 Solving the Optimal Weight Map Based on
“Binominal Mixture Model”

To resolve the above optimization problem, we introduce
the “binominal mixture model” here. This model can also
be found in the open literature, such as [23], [24], but it was
first used in biometrics to the best of our knowledge. The
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TABLE 1
Comparison of Computational Cost

between the Traditional and Weighted Hamming Distance (HD)

Fig. 3. Different forms of weight maps generated from the same original
weight map.



definition of this model and its statistical properties are
given in Appendix A.

We assume that the distributions of interclass and
intraclass matching results follow the binominal mixture
distribution. Based on this model, the parameters � and �2

of the interclass and intraclass distributions can be explicitly
expressed by wi and w0i, which will facilitate the mathema-
tical deduction.

If we use the Discriminating Index d as the criterion, then
the objective function F ðÞ ¼ d2 can be rewritten as the
expression of wi and w0i (see Appendix A):

F ðW 0Þ ¼
2
Pn

i¼1 w
0
iwi

� �2Pn
i¼1 w

02
i 2� w2

i

� � ; ð13Þ

where wi is the known prior probability of each bit and w0i is
the weighted term what we seek.

This optimization problem can be resolved by the
Lagrange Multiplier method (see Appendix B for details).
The final result is that when

w01 : w02 : � � � : w0n ¼
w1

2� w2
1

:
w2

2� w2
2

: � � � : wn
2� w2

n

; ð14Þ

F ðÞ achieves the maximum value.
Besides, there are other criteria to evaluate the perfor-

mance of a biometrics system. For example, another
discriminative index (we name it DI2) is

d0 ¼ �inter � �intraj jffiffiffiffiffiffiffiffiffiffiffi
�2
inter

p : ð15Þ

If we use DI2 as the criterion, then the objective function
F ðÞ ¼ d02 can be redefined as

F ðW 0Þ ¼
Pn

i¼1 w
0
iwi

� �2Pn
i¼1 w

02
i

: ð16Þ

This optimization problem can be resolved with a similar
method and the final result is that when

w01 : w02 : � � � : w0n ¼ w1 : w2 : � � � : wn; i ¼ 1; . . . ; n; ð17Þ

F ðÞ achieves the maximum value.
As a conclusion, different criteria lead to different

results. Based on DI or DI2, the optimal form of weight
map W 0 should be obtained by w0i ¼ wi

2�w2
i

or directly by
w0i ¼ wi. Further experimental results will demonstrate that
they both achieve better recognition performance than other
forms of weight map and DI2 may be much better.

5 ROBUSTNESS OF THE WEIGHT MAP

The basis supporting our study is that the personalized
weight map must be robust and stable. In this section, we
will discuss the robustness of the weight map, including
1) whether and how the weight map is convergent when the
number of training images increases and 2) whether the
weight map is robust in cross-camera iris image databases.

5.1 The Robustness of the Weight Map and Its
Requirement of the Number of Training Images

To study the robustness of weight map, a new iris image
database named CASIA-Iris-MultiReg is constructed. In this

database, there are more than 30 iris classes and every class
has hundreds of iris images. Moreover, all images in this
database were acquired during developing and testing an
iris recognition system at a distance [11]. These iris images
were continuously captured in a two-year term. Various
intraclass variations were introduced to the CASIA-Iris-
MultiReg in uncontrolled iris acquisition scenario, such as
with eye glasses or contact lens, defocusing, motion-blur,
overexposure, and heavy occlusions of eyelids and eye-
lashes. The iris images in CASIA-Iris-MultiReg are repre-
sentative in practical iris recognition applications. In
conclusion, CASIA-Iris-MultiReg is well-suited for the
study of iris matching problem.

A simple experiment is first implemented based on
subjective observation. For a certain iris class in CASIA-Iris-
MultiReg, we trained three weight maps, respectively, by
the images of 1-100, 101-200, and 201-300 (there are, in total,
366 training images in this iris class). The three weight maps
are shown in Fig. 4a. We can see that these three weight
maps are very similar. In contrast, Figs. 4b and 4c show
weight maps of another two iris classes trained using 30
and 10 images, respectively. We can see that although the
weight map in (c) are not as stable as (a) and (b) due to the
small number of training images, they still appear similar. It
indicates that the weight map is indeed stable from visual
observations.

So the above experiment raises an important question of
how many training images are required to train a stable
weight map. To rigorously investigate the answer to this
question, some objective experiments are implemented here
in addition to the subjective visual observation.

For each iris class, we train its weight maps, respectively,
by 5; 10; 15; . . . ; 80 images and these weight maps are denoted
as w5;w10;w15; . . . ;w80, respectively. Then, the intraclass
comparisons are performed in all iris images of this database
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Fig. 4. Robustness of weight maps trained by different numbers of
training images with specific encoding algorithm. (a) Three weight maps
of iris class 1, respectively, trained by images 1-100, 101-200, and 201-
300. (b) Three weight maps of iris class 2, respectively, trained by
images 1-30, 31-60, and 61-90. (c) Three weight maps of iris class 3,
respectively, trained by images 1-10, 11-20, and 21-30.



and the mean values of matching score are respectively
computed. Since there are many possible combinations of
training set, i.e., w5;w10;w15; . . . ;w80 are not unique, we
iterate the above experiments many times and get their
average values. Mean values of the intraclass matching scores
with the increasing number of training images are all plotted
in Fig. 5. Only the statistics of five iris classes are investigated
here for the convenience of illustration. In Fig. 5, we can see
that intraclass mean values increase with the number of
training images. It explains that a larger number of training
images makes the weight map more stable and correspond-
ingly achieves better iris recognition performance.

From the above discussions, we can conclude that the
weight map is stable and robust as long as there are
sufficient number of training images. As a rough estima-
tion, we consider that 10 to 15 training images are necessary
for generating a robust weight map.

5.2 The Robustness of the Weight Map
in Cross-Camera Iris Image Databases

The personalized weight map is an intrinsic attribute of
each iris class since the weight value is mainly determined
by the correlation between the encoding filter and the
structure of local image region. So, we assume that the
weight map is robust against outer environmental factors
such as the imaging sensor, etc. Here, an experiment is
implemented to investigate the robustness of personalized
weight map in cross-camera iris image databases, i.e., we
want to find whether the weight map trained in one
database captured by Sensor A can also be used in another
database captured by Sensor B.

A cross-camera iris image database containing iris images
of hundreds of persons is used for this experiment. The iris
images in this database are acquired by five different iris
cameras and each iris class has at least 10 images. Fig. 6
shows some example images acquired by two cameras
produced by IrisGuard and OKI. The original iris images and
its weight maps trained from 10 images are shown in this
figure. We can see that the iris images acquired by different
cameras have different quality of images, but their weight
maps are very similar. It indicates that the personalized

weight map for each iris class are robust, though their
training images are acquired by different sensors.

Some objective validation experiments are implemented
to investigate the interoperability of personalized weight
map. First, iris matching is performed in the IrisGuard
database without and with weight maps, respectively,
which are trained in IrisGuard database. Then, we iterate
the experiment in IrisGuard database, but now the weight
maps are trained in OKI database. The experiment results
show that the two weight maps can both significantly
improve iris matching performance, though the former may
achieve better results. It indicates that the personalized
weight map trained in one iris camera is also applicable to
the applications based on another camera.

From a point of view, the personalized weight map is
also one kind of iris feature representations. So, it does not
change significantly according to the iris cameras if both the
iris encoding method and local texture pattern are fixed.

However, we should notice that there are many kinds of
iris feature codes generated by various types of filters (e.g.,
even symmetric or odd symmetric, dipole or tripole, and
different wavelengths of the filter). It does not work if we
use one filter for iris enrollment and another for iris
recognition. In the same way, the iris weight map will also
change if the types of filters are changed. When some bits of
iris code are deemed “robust” for a dipole filter, they may
not be “robust” for a tripole filter and vice versa. In a word,
the personalized weight map depends on the iris feature
and is “algorithm-specific.”

As a conclusion, as long as the weight maps are
generated by the same encoding filter, they are robust
against environmental changes. That is to say that the
personalized weight maps are interoperable in different
imaging conditions. This result is encouraging for the study
of cross-camera iris recognition.

6 EXPERIMENTAL RESULTS

In this section, extensive experiments are conducted on a
number of iris image databases to prove the validity of
personalized weight map including:

1. how the personalized matching strategy can im-
prove the matching performance;

2. whether the proposed method is the optimal weight
map;
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Fig. 5. Mean values of intraclass distribution become convergent with

the increase of training images, which indicates that the weight map

becomes stable as well.

Fig. 6. The weight maps of the same iris are robust against different

sensors.



3. whether our method is more effective for low-
quality images; and

4. whether our method is compatible with the method
using multiple registered images.

6.1 The Validity of Personalized Matching Strategy

In this section, extensive experiments on large-scale iris
image databases such as CASIA-IrisV3-Lamp [25], UBath
[26], and ICE2005 [27] are performed to evaluate the
validity of our method.

CASIA-IrisV3-Lamp [25] is released by the Institute of
Automation, Chinese Academy of Sciences. It contains
16,213 iris images from 822 subjects and all subjects are
Chinese people. In contrast to CASIA-IrisV1.0, it was
collected in an indoor environment with illumination
change, and contains many poor images with heavy
occlusion, poor contrast, pupil deformation, and so on. It
is a very challenging database, and there is no algorithm
reported to yield very good performance on it, so it is very
suitable for our experiment.

The UBath Database [26] is an iris database with good
quality images. It includes about 32,000 iris images of
800 people, acquired with a machine vision camera under
NIR illumination. The original image resolution is
1;280� 960, so all images in this database are of very good
quality. For reducing the computational cost, we only use
downsampled images with resolution 640� 480.

ICE 2005 Database [27] is also a challenging iris database
like CASIA-V3.0-Lamp. It was used in the Iris Challenge
Evaluation organized by NIST in 2005. The iris images of
ICE2005 database were collected using a LG2200 sensor,
including 1,528 images of 120 left eyes and 1,425 images of
124 right eyes. The data set was collected in weekly
acquisition sessions and contains iris images of different

quality. To be compliant with the ICE2005 protocol, the iris
recognition algorithms are separately evaluated on the left
and right eye subsets, respectively.

Experiments on various types of iris image databases
ensure generality of the derived conclusions on a persona-
lized weight map.

6.1.1 Experiments on the CASIA-IrisV3-Lamp

For every iris class, there are 19 or 20 images, from which
we select 10 images as the training set to compute the
weight map and the others as the testing set. Then, we make
all possible interclass and intraclass comparisons. The
distribution of intraclass and interclass matching scores in
the testing data set is shown in Fig. 7.

For comparison, we also make iris matching experiments
based on other methods. The first is the common strategy by
Hamming distance without any weights (NW), the second is
by Hamming distance based on the general weight (GW)
map as described in Fig. 2d and the third is on the
personalized weight (PW) map. Distributions of interclass
and intraclass matching scores are plotted in Fig. 7. We can
see that the proposed PW method can discriminate the
intraclass and interclass comparisons more significantly than
GW and NW.

Moreover, the recognition performance can be measured
by the following two common indicators: 1) equal error rate
(EER), that is, the crossover error rate when false accept rate
is equal to the false reject rate; lower EER means higher
accuracy; 2) discriminating index DI, defined in (12). Higher
DI denotes higher discriminability of a biometric system. As
a result, the EER of NW, GW, and PW is, respectively, 0.016,
0.014, 0.008, and the DI is, respectively, 4.16, 4.49, and 5.48.
Obviously, PW is much better than GW and NW.

ROC curves of iris matching are shown in Fig. 8. The
performance metric of horizontal coordinate is false accept
rate (FAR) and the performance metric of vertical coordi-
nate is false reject rate (FRR). ROC curves are commonly
used for comparing different pattern recognition algorithms
and lower curve indicates better performance. Both of the
ROC curves in the testing set and the training set are drawn
in Fig. 8. We can see that PW is much better than GW and
NW, and moreover, there is no large difference between the
training set and the testing set, which explains that
personalized weight maps trained by a different data set
are also applicable to other testing data set.

6.1.2 Results on UBath Database

In this database, every iris class has 20 images, from which
we select 10 images as training set to compute the weight
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Fig. 7. The distribution of intraclass and interclass matching results on

CASIA-IrisV3-Lamp iris database. (a) Hamming distance with no

weights. (b) Hamming distance with general weights. (c) Hamming

distance with personalized weights.

Fig. 8. ROC curves of iris matching on CASIA-IrisV3-Lamp iris

database. (Left) In the trainng set. (Right) In the testing set.



map and the other 10 images as the testing set. Then, we
make all possible interclass and intraclass comparisons
based on trained weight maps. In both the training set and
the testing set, the number of intraclass comparisons is
about 18,000 and the number of interclass comparisons is
16,000,000. (We only use 400 classes.)

For comparison, we still use the matching strategy with
no weights, based on the general weight map and based on
personalized weight map. The distribution of interclass and
intraclass is drawn in Fig. 9. Moreover, ROC curves in both
the training set and the testing set are plotted in Fig. 10.
Since the image quality in UBATH is very good, all
matching strategy can make quite good performance on
this database, while our PW can even achieve 100 percent
recognition rate in the training set.

The latest NIST report [30] also gives some experiment
results on UBATH database, and the best one achieves
FRR 	 0:002 when FAR ¼ 10�4. Our algorithm can also
achieve FRR 	 0:003 when FAR ¼ 10�4. But, if it is
cooperated with personalized weight map, then FRR will
decrease to 0.001, which is better than the results in IREX
report. It is a convincing evidence of superiority of the
personalized matching strategy.

6.1.3 Results on ICE2005 Database

Similarly, we select 10 images from every iris class as the
training set and train the weight map. Since many iris classes
have less than 10 images, we only use personalized
matching strategy on iris classes with more than 10 images.

Then, we make interclass and intraclass comparisons,
respectively, in the training set and the remaining testing set.

The final results in ICE2005-Left are shown in Figs. 11a
and 11b, and results in ICE2005-Right are shown in Figs. 12a
and 12b. From the experiments, we can see that our
algorithm achieves FRR 	 0:03 when FAR ¼ 10�4, and if
it is coordinated with the personalized weight map, then FRR
will decrease to 0.01. It indicates that the proposed PW
method also performs very well in the ICE database.

6.2 The Optimization of Personalized Weight Map

As mentioned in Section 4, the personalized weight map has
many possible forms. We can directly use method (A),
w0i ¼ wi, or use the optimal method (B), w0i ¼ wi

2�w2
i

, according
to Section 4. And for comparison, we also use other forms of
weight map, for example, (C) w0i ¼ wni ; n 2 constant, and (D)
w0i ¼ sgnðwi � sÞ; s 2 ð0; 1Þ. Method (D) is just the “best bits”
method used in [19]. We implement experiments, respec-
tively, by (A), (B), (C), and (D) with different parameters. The
ROC curves on CASIA-IrisV3-Lamp are plotted in Fig. 13
and EER and DI (together with DI2) are presented in Table 2.

From Fig. 13 and Table 2, we can see that:

. Methods (A) and (B) have the best performance of
ROC curves and make the lowest EER. It indicates
that they may be the best forms of weight map,
which is consistent with our mathematical analysis.
It also indicates that our analysis based on the
binominal mixture model and the optimal solution
are valid and effective to deal with such problems.

. Methods (A) and (B) are, respectively, obtained
based on the criteria of DI2

d ¼ �1 � �2j jffiffiffiffiffi
�2

1

p
 !

and DI

d ¼ �1 � �2j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�2

1 þ �2
2Þ=2

p
 !

:
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Fig. 9. The distribution of intraclass and interclass matching results on

the UBATH database.

Fig. 10. ROC curves of iris matching on UBath database. (Left) In the
training set. (Right) In the testing set.

Fig. 11. ROC curves of iris matching on ICE2005-LEFT database. (Left)
In the training set. (Right) In the testing set.

Fig. 12. ROC curves of iris matching on ICE2005-RIGHT database.

(Left) in the training set. (Right) in the testing set.



From Table 2, we can see that the former achieves
better performance in terms of ERR and ROC curve.
The reason is that the interclass distribution may be
more important than intraclass distribution for iris
matching. So, DI2 may be a better criteria and
method (A) is the best solution.

. Method (C) uses the square or cubed value of the
weight map. It emphasizes the bits with larger value
and sets larger weights on them, so it greatly
increases the matching score of intraclass compar-
isons. But at the same time, it also overneglects the
bits with less value and therefore sacrifices most
randomness of interclass distribution. So although
the discriminative index DI is large, the EER and
ROC performance metrics are still worse than
methods (A) and (B).

. Method (D), used in [19], does not achieve better
performance than (A) and (B), no matter how we
adjust the threshold, (for example, 0.2, 0.3, or other
values). The reason is that there is no transient jump
from “consistent bits 1” to “fragile bits 0.” The “best
bits” is just one specific example of weight map.

. Although the above weight maps are different, they
are all personalized matching strategies which
achieve much better performance than the method
with no weight map or general weight map.

As a conclusion, the best method is method (A) (w0i ¼ wi),
which is the simplest expression, but achieves the best

results. If not specifically mentioned, the PW in the
following discussions indicates the weight map of form (A).

6.3 Performance on Low-Quality Databases

CASIA-Iris-MultiReg is a special database, which was
introduced in Section 5. In this database, every iris class
has hundreds of registered images and these images are of
different quality. It is very suitable for the study of
intraclass iris matching.

For every iris class, we select 20 images as training set
and others as testing set. With training sets, we compute
weight maps for each iris class. Then, all possible intraclass
and interclass comparisons in the testing set are made to
estimate the performance.

The distribution of intraclass and interclass matching
scores is shown in Fig. 14 and the ROC curves are plotted in
Fig. 15. We can see that PW achieves much better
classification performance than GW and NW.

As an important observation, the performance im-
provement with PW is much more distinct in this
database than in ICE, BATH, or the CASIA-IrisV3-Lamp
database. The main reason is that there are more poor
quality images in this database for which personalized
matching strategy is advantageous over other methods.
And this database is captured under less constrained
conditions, so it represents iris image data in practical use.
It is concluded that our PW strategy is useful for practical
iris recognition systems, especially the iris recognition
system at a distance [11] and on the move [12].

6.4 Comparisons with the Multiple Templates
Matching and Fusion Method

Some researchers use multiple registered images for iris
matching [28], [29] and output the fusion result of
individual matching scores. For example, the final matching
result is based on Sum-rule or Max-rule. As long as the
query iris image is matched with one of the templates or the
combined matching score exceeds a threshold, it is accepted
as a genuine sample. Such a multiple templates matching
and fusion method (MTMF) has been used in some practical
systems and it really achieves much better performance
than the system using only one registered image. So, the
coming question is what is relationship between MTMF and
the proposed personalized weight map and can the PW
improve the performance of MTMF.

Although the proposed personalized weight map also
uses multiple registered images, it is fundamentally different
from MTMF. The multiple registered images are only used to
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Fig. 13. ROC curves of iris matching based on different forms of

personalized weight maps. Among them, Method (A) achieves the best

performance.

TABLE 2
Comparison of Recognition Performance Based on Different Forms of Weight Maps



generate weight map, not directly used in iris matching.

Actually, the weight map is also a kind of iris feature, which

reflects the feature stability of the whole iris class.
We conduct iris matching experiments on CASIA-V3.0-

Lamp, using one, three, and six registered images, respec-
tively. Max-rule is used in MTMF approach. Both the NW
and PW are applied to MTMF during iris matching and
results are shown in Fig. 16. We can see that no matter
whether there are one, three, or six templates, the system
performance with PW is always better than NW. It indicates
that the personalized weight map is complementary
information to the MTMF method and it can significantly
improve the performance of the MTMF approach.

6.5 Remarks

A number of informative conclusions can be drawn from

the extensive experimental results presented above:

. Iris matching strategy based on personalized weight
map greatly improves iris recognition performance.
The fundamental reason is that the weight map is
complementary feature information learned from
multiple iris templates for each class. So, it is strongly

recommended to incorporate the class-specific
weight map into iris matching module of practical
iris recognition systems.

. Personalized weight map becomes more and more
stable with the increased number of training images.
All available intraclass samples can be utilized to
learn a stable weight map. And practical iris
recognition systems can regard the newly recog-
nized iris images as training data.

. Personalized weight map is an intrinsic feature for
each iris class and robust against exterior factors. So
personalized weight maps learned by one data set
can also be used in an different data set, even if they
are in the cross-camera iris recognition systems.

. The optimal form of personalized weight map is
proven based on binominal mixture model and
discriminating index criteria. The representation
with the simplest expression achieves the best
performance. Our analysis based on the binominal
mixture model may also be helpful for the similar
investigation of other biometrics.

. The advantages of personalized iris matching strat-
egy are more significant for poor quality images. So
this strategy may be well-suited to next-generation
long-range iris recognition systems where most iris
images are captured under uncontrolled environ-
ments and poor in quality.

. Personalized weight map is different in concept from
the multiple templates matching and fusion methods.
The weight map is not a redundancy, but can further
improve the performance of MTMF approaches.

7 CONCLUSIONS

In this paper, a novel personalized iris matching strategy
based on weight map has been presented. The weight map
of each iris class is learned based on intraclass iris matches
among many registered templates. This weight map is
updated and stabilized with the increase of the number of
training images. Extensive and comprehensive experimen-
tal results have clearly demonstrated that our strategy is
effective for iris matching and greatly improves the
performance of iris recognition systems.
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Fig. 14. The distribution of matching score on the CASIA-MultiReg

database.

Fig. 15. ROC curves of iris matching performance on the CASIA-

MulitReg database. PW is very effective in low-quality databases.

Fig. 16. ROC curves of iris matching performance on the CASIA-V3.0-

Lamp database, respectively, using one, three, and six registered

images.



APPENDIX A

BINOMINAL MIXTURE MODEL

The Binominal mixture model is defined as

x ¼
Xn
i¼1

�ixi;
Xn
i¼1

�i ¼ 1; ð18Þ

where xi (i ¼ 1; . . . ; n) obeys the Binominal distribution and
�i is the weighted term. The prior probability of xi is pi:

pðxiÞ ¼
pi; xi ¼ 1;
1� pi; xi ¼ 0:

�
ð19Þ

Supposing all xi are independent,2 the mean value � and
variance �2 of x can be calculated as (20). (This is the basic
statistics principle.)

� ¼
Xn
i¼1

�ipi;

�2 ¼
Xn
i¼1

�2
i �

2
i ;

8>>><
>>>:

�2
i ¼ pi 1� pið Þ: ð20Þ

We assume that if the distribution of interclass and
intraclass iris matching scores obeys the binominal mixture
distribution, then the Hamming distance D is equivalent to
x, w0i is equivalent to the weighted term �i, and the prior
probability pi can be represented by the terms of original
weight map wi.

For the distribution of interclass comparisons, Daugman
has proven that its randomness is like a binominal
distribution with mean of approximately 1

2 [1]. We let
pi ¼ p0 ¼ 1

2 , and therefore the mean and variance of
interclass distribution are

�inter ¼
Xn
i¼1

w0ip0;

�2
inter ¼

Xn
i¼1

w0
2
i �

2
0;

8>>><
>>>:

�2
0 ¼ p0 1� p0ð Þ; p0 ¼

1

2
: ð21Þ

For intraclass comparisons, the prior probability pi of
each bit is different. So, its mean and variance are

�intra ¼
Xn
i¼1

w0ipi;

�2
intra ¼

Xn
i¼1

w0
2
i �

2
i ;

8>>><
>>>:

�2
i ¼ pi 1� pið Þ; ð22Þ

where pi can be represented as pi ¼ wiþ1
2 , just as the

definition in (9).
Substitute (21) and (22) to (12), the objective function

F ðÞ ¼ d2 can be explicitly expressed by wi and w0i.

F ðW 0Þ ¼
2
Pn

i¼1 w
0
iwi

� �2Pn
i¼1 w

02
i 2� w2

i

� � ; ð23Þ

where wi is the known prior probability of each bit and w0i is
the weighted variable what we seek.

APPENDIX B

SOLVE THE OPTIMIZATION PROBLEM

The optimization problem is defined as

max
�1;...;�n

: F ð�1; . . . ; �nÞ ¼ d2;

Gð�1; . . . ; �nÞ ¼
Xn
i¼1

�i � 1 ¼ 0;

�i > 0; i ¼ 1; . . . ; n;

8>>><
>>>:

ð24Þ

where

F ð�1; . . . ; �nÞ ¼ d2 ¼ 2ð
Pn

i¼1 �iwiÞ
2Pn

i¼1 �
2
i ð2� w2

i Þ

is the objective function and GðÞ is the constrain condition.3

With the Lagrange Multiplier Rule, the maximum should
be achieved when

@ f��gð Þ
@�i

¼ 0; i ¼ 1; . . . ; n;
@ f��gð Þ

@� ¼ 0:

(
ð25Þ

Letting A ¼
Pn

i¼1 �iwi and B ¼
Pn

i¼1 �
2
i ð2� w2

i Þ, the above
equation can be resolved as

@ f � �gð Þ
@�i

¼
2wiA � B�A2 � 2�i

�
2� w2

i

�
B2

� � ¼ 0: ð26Þ

Multiplying by �i in both sides of the ith equation and then
summing all n equations, we get

� ¼ 2A �A �B�A2 � 2B
B2

: ð27Þ

Substituting � to (26), we get

�i ¼
B

A

wi
2� w2

i

: ð28Þ

Therefore,

�1 : �2 : � � � : �n ¼
w1

2� w2
1

:
w2

2� w2
2

: � � � : wn
2� w2

n

: ð29Þ

In this time, fð�Þ obtains the maximal value

Fmaxð�Þ ¼
2
Pn

i¼1 �iwi
� �2Pn
i¼1 �

2
i

�
2� w2

i

� ¼ 2
Pn

i¼1
w2
i

2�w2
i

� �2

Pn
i¼1

w2
i

2�w2
i

¼ 2
Xn
i¼1

w2
i

2� w2
i

:

ð30Þ

If we define the discriminative index (DI2) as

d ¼ �1 � �2j jffiffiffiffiffi
�2

1

p ; ð31Þ

then the objective function will be

F ð�1; . . . ; �nÞ ¼ d2 ¼
Pn

i¼1 �iwiPn
i¼1 �

2
i

: ð32Þ

We also can resolve this optimization with a similar method
and the final result is that when
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2. Actually, it is not strictly true. For example, Daugman has proven that
the degree of freedom of interclass distribution is only approximately 249
[3]. Nevertheless, this model is still very effective in our study. In the future,
we will continue to study such models when their elements are not
independent. 3. Here, �i is equivalent to w0i, which is the variable to solve.



�1 : �2 : � � � : �n ¼ w1 : w2 : � � � : wn; ð33Þ

the maximum value is obtained as

Fmaxð�Þ ¼
Xn
i¼1

w2
i : ð34Þ
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