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ABSTRACT

The search for new biometrics is never ending. In this work,
we investigate the use of image based nasal features as a
biometric. In many real-world recognition scenarios, par-
tial occlusions on the face leave the nose region visible (e.g.
sunglasses). Face recognition systems often fail or perform
poorly in such settings. Furthermore, the nose region natu-
rally contain more invariance to expression than features ex-
tracted from other parts of the face. In this study, we extract
discriminative nasal features using Kernel Class-Dependence
Feature Analysis (KCFA) based on Optimal Trade-off Syn-
thetic Discriminant Function (OTSDF) filters. We evaluate
this technique on the FRGC ver2.0 database and the AR Face
database, training and testing exclusively on nasal features
and have compared the results to the full face recognition
using KCFA features. We find that the between-subject dis-
criminability in nasal features is comparable to that found in
facial features. This shows that nose biometrics have a po-
tential to support and boost biometric identification, that has
largely been under utilized. Moreover, our extracted KCFA
nose features have significantly outperformed the PittPatt
face matcher which works with the original JPEG images
on the AR facial occlusion database. This shows that nose
biometrics can be used as a stand-alone biometric trait when
the subjects are under occlusions.

Index Terms— Nose Biometrics

1. INTRODUCTION

Biometric studies over the years have explored many differ-
ent characteristics that help distinguish one person from an-
other. Some previously explored biometrics include finger-
prints, faces [1], iris, hand geometry, DNA, palm print, voice,
and gait [2]. However, out of these a few have emerged more
practically useful than others. A few characteristics that a
good biometric has is discriminability, robustness, and ease
of extraction. Although biometric systems based on iris and
fingerprint recognition have proved themselves to be very dis-
criminative and robust, special acquisition systems required
in both cases raise costs and reduces their implementation
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Fig. 1. Example images from the Internet and the AR Face
database showing individuals wearing sunglasses and with
non-neutral expressions. In such cases, nose biometric recog-
nition can be a good alternate for the full face. In addition, the
nose region is more stable under various facial expressions.

flexibility. Image based face recognition has proved to be a
cheaper and more flexible biometric to acquire. However, so-
phisticated algorithms are needed to deal with the large num-
ber of nuisance parameters that are introduced such as pose,
illumination, expressions, and age variations. Nonetheless,
a lot of effort has led to significant improvements in uncon-
strained face recognition capability [3, 4, 5, 6, 7, 8, 9, 10,
11, 12]. However, these algorithms typically assume access
to the entire face. This assumption is violated in many real-
world scenarios as illustrated in Figure 1. In such cases, tech-
niques which rely on component based recognition achieve
more success. Image based nose biometrics has not yet been
studied extensively in the biometrics community. Song et al.
[13] studied extracting the quantity and positions of the pores
on the nose skin as a biometric while they were able to achieve
good results. The effort needed to get images in which the
pores could be extracted made it somewhat infeasible. Im-
age based nose biometrics intrinsically have some advantages
over standard full face recognition such as expression invari-
ance and higher likelihood of availability.

In this work, we present a preliminary feasibility study
of image based nose biometrics. The nose is arguably the
part of the face which contains the most depth information.
However, in this study we refrain from using that depth infor-
mation and explore how much of the identity information is



Fig. 2. Mean faces from FRGC (left) and AR (right) database
with the orange box indicating the cropped nose region.

available to linear methods for exploitation. This is a harder
setting since depth information is also a biometric available
which we choose not to utilize. Thus, we work with frontal
images in this study. Nonetheless, we find in our experiments
that frontal images of noses does contain a lot of subject based
identity information. There are some other works that deal
with component-based face recognition [14, 15, 16, 17, 18].
Tome et al. [16] take one identification scheme and compare
different distances and regions. It answers the question ’For
this specific scheme which regions one should consider’. But
we dive into the specific examination of one region, and an-
swer the question ’How good is identification based only on
this region’, and ’how does it perform in different methods’.
Bonnen et al. [14] requires per-component alignment using
Procrustes analysis which minimizes the MSE between two
ordered sets of coordinates, after the landmarks are obtained
by ASM. Such a procedure is computationally expensive. In
that sense, our contribution is still very unique.

2. DATA AND PREPROCESSING

2.1. Large-scale Face Database

The NIST’s Face Recognition Grand Challenge (FRGC)
ver2.0 database [19] is the largest face database that is pub-
licly available. It has three components: the generic training,
the target, and the probe set. The training set contains
12,776 facial images from 222 subjects, with each subject
under both controlled and uncontrolled environment. The
target set contains 16,028 images from 466 subjects, under
controlled environment. The probe set contains 8,014 images
from the same 466 subjects as in the target set, but under un-
controlled environment. There are 153 overlapping subjects
in training set and target/probe set. We follow the FRGC
matching protocols.

2.2. Occluded Face Database

The AR Face database [20] is one of the most widely used
face databases with occlusions. It contains 3,288 color im-
ages from 135 subjects (76 male subjects + 59 female sub-
jects). Typical occlusions include scarves and sunglasses.
The database also captures expression variations and light-
ing changes. This database will be used for our Experiment I
where we deal with faces with occlusions and study whether

nose biometrics has an advantage over full face biometrics un-
der such scenarios. The bottom row in Figure 1 shows some
samples images with occlusions from the AR Face database.

2.3. Nose Region Extraction

For both the FRGC and AR database, we register the faces
based on the eye locations and crop out the square face im-
ages. Figure 2 shows the mean face images from the two
databases. We then determine the nose region which is shown
in the orange box in Figure 2 for cropping out nose images
for subsequent training/testing experiments. The nose region
is about 15% of the entire face region.

3. FEATURE EXTRACTION AND CLASSIFICATION

3.1. Correlation Filter Based Classification

Correlation filters have a successful history in biometric pat-
tern recognition [21]. One of the most successful correlation
filter based approaches is Kernel Class-Dependence Feature
Analysis (KCFA) [21]. The KCFA framework is built on Op-
timal Tradeoff Synthetic Discriminant Function (OTSDF) fil-
ters [22]. We use the same approach to show the feasibility of
recognition of the nose regions.

3.1.1. OTSDF Filters

Correlation filters are classifiers which simultaneously local-
izes and recognizes an object in an image. This is accom-
plished by correlating the filter with the image and inspect-
ing the resulting correlation surface for some desired pattern
or property. OTSDF filters are formulated as a tradeoff be-
tween Minimum Average Correlation Energy (MACE) filters
[23] and another type of filter, the Minimum Variance Syn-
thetic Discriminant Function (MVSDF) filter [24]. MVSDF
filters aim to create consistent output correlation surfaces in
the prescence of some known noise. By trading off between
the peak sharpness of MACE filters and the noise tolerance
of MVSDF filters, OTSDF filters tend to outperform both.
MACE filters try to achieve as sharp peaks as possible in order
to reduce the chances of error. This is accomplished by min-
imizing the average energy over all the correlation surfaces
using the training data. By taking advantage of the fact that
correlation in the space domain can be accomplished by an
element wise multiplication and conjugation in the frequency
domain as well as Parseval’s theorem, which states that en-
ergy is proportional in these two domains, the average corre-
lation energy (ACE) can be formulated as

ACE = h+

[
1

d ·N

N∑
i=1

XiX
∗
i

]
h (1)

Here, h represents the Fourier domain MACE filter we are
trying to find, d is the dimensionality of your training data



o, in our case, the number of pixels in the image, N is the
number of training samples, and Xi is a dxd diagonal matrix
conatining the ith training sample in the Fourier domain along
the diagonal. We often rewrite this as

ACE = h+Dh (2)

where D = 1
d∗N

∑N
i=1 XiX

∗
i . Since just minimizing the av-

erage correlation energy will not lead to sharp peaks, we also
add in a constraint at the origin of correlation surface. It can
be shown that the value at the origin of the correlation surface
can be expressed in the frequency domain as

X+h = d · u (3)

where X in this equation is the matrix containing the Fourier
domain representations of all the training samples along the
columns of the matrix and u is a vector of desired peak values.
Usually this is set to a vector of ones. By minimizing Eq. 2
subject to the constraints in Eq. 3, it can be shown that

h = D−1X(X+D−1X)−1u (4)

MACE filters tend not to perform well under noise degra-
dation however. MVSDF filters follow a similar derivation
and take a similar form of

h = C−1X(X+C−1X)−1u (5)

where C is the power spectrum of the noise along the diago-
nal. OTSDF filters end up taking the form of

h = T−1X(X+T−1X)−1u (6)

where T = (αC +
√
1− α2D)−1 and In most cases, we

assume Gaussian white noise which means C = I.

3.1.2. KCFA Framework

Redundant Class-Dependence Feature Analysis (CFA) is a
technique built upon these correlation filters originally used
for face matching on the FRGC dataset [25]. At its heart, CFA
uses these correlation filters as sets of linear feature extrac-
tors in order to generate new feature vectors for classification.
Since the filters are designed to be discriminative, they turn
out to work well in this regard. However, this technique has
been improved upon by incorporating kernel techniques into
it. All the feature extraction ends up being done through inner
products which can then be replaced with a kernelized version
leading to the KCFA framework [26, 27, 28]. As with other
kernel techniques, this allows us to extract higher dimensional
features without needing to store those dimensions leading to
nonlinear feature extractors in the original dimensionality.

In our experiments we train our KCFA framework on the
FRGC generic training set following the FRGC training pro-
tocol. One kernel correlation filter was trained for each of
the 222 subjects in the generic training set using a Gaussian
RBF kernel. This model was used in experiments involving
the FRGC database and the AR Face database.

4. EXPERIMENTS

In this section, we detail our major experiments: (1) a com-
parison between nose and face biometrics under large-scale
setting, and (2) a comparison between nose and face biomet-
rics for occluded faces. In each of the following subsections,
the experimental setup will be detailed followed by the exper-
imental results and discussions.

4.1. Experiment I: Large-scale Nose Biometrics vs. Face
Biometrics

In this experiment, we carry out the large-scale verification
experiments by following the FRGC matching protocols. The
FRGC Experiment 1 protocol matches the entire FRGC target
set to itself, involving over 256 million face match compar-
isons. Facial images in the target set are taken under con-
trolled environment with good lighting conditions. A more
challenging matching protocol is the FRGC Experiment 4
protocol, where the entire unconstrained probe set is matched
against the entire constrained target set, which involves over
128 million face match comparisons. We compare the nose
crop with the full face following the same protocols. The
training is carried out solely on the training set using the
KCFA method [21] on discrete transform encoded local bi-
nary patterns (DT-LBP) features whose effectiveness has
been previously observed [29, 30, 31, 32, 33, 34].

The experimental results are consolidated in Table 1
where the verification rates (VR) at 0.1% and 1% false accept
rate (FAR), as well as the equal error rates (EER) are reported.
The ROC curves are shown in Figure 3. In this experiment,
the nose crop is only about 15% of the size of the full face,
and yet it is doing a very good job as compared to the full
face. The performance of the two is even closer to each other
when it is under the constrained matching protocol.

4.2. Experiment II: Nose Biometrics vs. Face Biometrics
for Occluded Faces

In this experiment, we work with facial occlusion database:
the AR Face database. As a benchmark, we first run PittPatt
(SDK 5.2.2) on the original JPEG images and obtain the
matching scores. The protocol we follow in this experiment
is straight forward: the entire AR database is matched against
itself, resulting in a similarity matrix of size 3, 288 × 3, 288,
ideally resulting in a block-diagonal matrix.

Next, we extract the KCFA features for the nose crop of
every image in the AR database. It is worth noting that the
training is done using the generic training set from the FRGC
database as discussed in our Experiment I, and once the sub-
space is learned, we project all 3,288 images from the AR
database onto the subspace and obtain the final KCFA fea-
tures. Not a single AR image is observed during training.

We have shown the experimental results in Table 2, where
VR at 0.1% and 1% FAR and EER are reported. The ROC
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Fig. 3. (L) ROC curves for Experiment I: large-scale FRGC
experiments. The solid lines are FRGC Experiment 1, and
the dashed lines are FRGC Experiment 4. (R) ROC curves
for Experiment II: occluded face matching experiment.

Table 1. VR at 0.1% and 1% FAR, and EER for Exp. I.
VR at 0.1% FAR VR at 1% FAR EER

Exp.1 Full Face 0.8638 0.9381 0.035
Exp.1 Nose Crop 0.7024 0.8414 0.070
Exp.4 Full Face 0.5929 0.7623 0.081
Exp.4 Nose Crop 0.3452 0.4981 0.174

curves are shown in Figure 3. We can see that our nose
biometrics with KCFA feature can achieve a high 43.5% ver-
ification rate at 0.1% FAR on such a challenging occlusion
database, which significantly outperforms the PittPatt SDK
5.2.2 face matcher. With real-world occlusions, we have
shown that the nose biometrics is significantly more feasible
and robust than traditional full face biometrics.

This protocol is more challenging than the one that allows
same subjects being observed and trained on during the train-
ing stage. We would expect further performance improve-
ment if trained on the same database.

5. CONCLUSIONS

In this work we present, to the best of our knowledge, the first
feasibility study which examines image based nose biomet-
rics. Nose images have some advantages over full face images
such as more tolerance to expressions and availability under
certain facial occlusions such as sunglasses. Our experiments
show that image based nasal features contain enough discrim-
inative information which can be capitalized on by nonlinear
techniques, such as advanced kernel correlation filters. We

Table 2. VR at 0.1% and 1% FAR, and EER for Exp. II.
VR at VR at

0.1% FAR 1% FAR EER
PittPatt on Original JPG Img 0.2221 0.3934 0.334
KCFA on Nose Crop (Open Set) 0.4350 0.5297 0.211

find that nasal features have enough biometric information to
perform competitively to full face recognition with all meth-
ods that we explore. The efficacy of our extracted nose bio-
metric feature is benchmarked against the full face biometric
under a large scale verification setting by following the FRGC
Experiment 1 and Experiment 4 matching protocols. More-
over, when tested on the AR facial occlusion database, our
KCFA features extracted from the nose region significantly
outperforms one of the best commercial face matchers which
utilizes the whole JPEG image.

Overall, nose biometrics prove themselves to be worthy of
further investigation. Since most occluded faces in the real-
world can be argued to have either the periocular region or
the nose accessible, powerful combinations of periocular and
nose biometrics would be interesting to explore. Such mod-
els might be flexible yet powerful enough to handle highly
occluded faces robustly in unconstrained scenarios. Another
interesting thrust would be to develop models which capital-
ize on the biometric information encoded in the 3-D structure
of the nose.
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