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Abstract

Decision makers in the field of national security, counterterrorism and counterinsurgency
are faced with an uncertain, adaptive and asymmetrical threat. It should come as no surprise
that a great need exists to understand covert organizations, the structure of which becomes
known partially only after an attack or operation has occurred. What is known however is
that many covert networks are organized in compartmentalized cellular structures. To better
understand these cellular structures we model and analyze these cells as a collection of subsets
of all participants in the covert organization, i.e., as hypergraphs or affiliation networks. Since
terrorist cells can be viewed as graph theoretical cliques, i.e., everybody in the cell knows
everybody else, such a covert affiliation network structure is analyzed by evaluating the one-
mode projection of the corresponding hypergraph. First we provide a characterization of the
total distance in the one-mode projection using its corresponding cell-shrinked version. Secondly
we evaluate the one-mode projection with respect to the secrecy versus information tradeoff
dilemma every covert organization has to solve. We present and analyze affiliation networks
representing common covert organizational forms: star, path and semi-complete hypergraphs.
In addition we evaluate an example of a covert organization wishing to conduct an attack
and compare its performance to that of the common covert organizational forms. Finally we
investigate affiliation networks that are optimal in the sense of balancing secrecy and information
and we prove that among covert organizational forms in the class of hypertrees with the same
number of cells uniform star affiliation networks are optimal.

Subject classifications: Terrorism; Counterinsurgency; Intelligence; Defense; Covert networks; Af-

filiation networks.

Area of review: Military and Homeland Security.

JEL Classifications: C50, C78

1 Introduction

In decision making aimed at confronting covert organizations managers are faced with high-level,

long-term planning issues characterized by an uncertain and complex networked environment. The
aMilitary Operational Art & Science, Netherlands Defense Academy, P.O.Box 90002, 4800 PA Breda, The Nether-

lands. E-mail: rha.lindelauf.01@nlda.nl
bCentER and Department of Econometrics and OR, Tilburg University, P.O.Box 90153, 5000 LE Tilburg, The

Netherlands.
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amalgam of opponents in Afghanistan that confront ISAF and Operation Enduring Freedom for

instance should be viewed as interdependent rather than independent, autonomous units. They

exchange information via communication networks, diffuse weapons through trafficking networks

and their Shura councils meet in affiliation networks. Understanding the effects of such a complex

operational environment and evaluating its social aspects thus becomes extremely important in

launching a successful counterinsurgency campaign, a fact recognized by the U.S. counterinsurgency

doctrine (Petreaus et al. 2007).

Knowledge of the structure of a covert organization is often obtained only after operations or

attacks have occurred. Additional empirical analysis of covert networks is difficult as the nature of

data available on these systems is sparse, and even if such data exists it often is unstructured, messy,

inaccurate, incomplete and out of date (cf. Carley 2006). Therefore it is desirable to understand

and develop models of covert organizations that can function as a guide in pinpointing strengths

and weaknesses of such organizations. We argue that a combination of OR/MS tools related to

social network organization and decision analysis can be valuable in this respect.

Some attention has already been given to the use of OR/MS tools and experiments in the

domain of anti-terrorism planning, for instance in how to best respond to an anthrax attack (Craft

et al. 2005) or on using queuing theory to analyze scheduling policies in a surveillance system

to detect terrorists in time (Lin et al. 2009). Other examples include studies into the costs and

disruptions that might arise if U.S. domestic airlines adopted an antiterrorist measure aimed at

preventing baggage unaccompanied by passengers from traveling in aircraft luggage compartments

(Barnett et al. 2001) and models that identify resource-limited interdiction actions that maximally

delay the completion time of a nuclear’s weapons project (Brown et al. 2009). What is clear from

the current war on terror is that many decision makers in law enforcement, the military and other

security organs face opponents of a nature quite different than they were used to: asymmetrical,

irregularly operating groups and organizations. In this paper we present a new OR/MS related

tool that can function as a guide and benchmark for a specific class of such hybrid organizations:

covert affiliation networks.

Traditional models of organizations do not fully apply to organizations such as Al Qaeda which

is said to have transformed from a hierarchical terrorist organization to a multifaceted ‘network

of networks’ (Tucker 2001). Similarly Hamas abandoned its centralized, leadership structure and
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developed a compartmented organizational structure of sparsely overlapping cells (Gambill 2002).

More generally many covert organizations today, be they criminal, terrorist or insurgent, have

profited from the shift to networked organizational forms (Arquilla and Ronfeldt 2001, Asal et al.

2007). These covert organizations assign tasks to cells to complete an operation. Furthermore

there is coordination and control among these cells to ensure operational succes. Even in case

of autonomous cell formation those cells need to be directed, i.e., they need strategic guidance

(Cruickshank and Hage Ali 2007). This covert organizational form has been studied mostly from

a qualitative perspective (see for instance Asal et al. 2007, Mishal 2005). Since it is important

to develop a more general framework in which the structure of a covert network can be predicted

and analyzed several formal models have been developed (McAllister 2004, McCormick and Owen

2000, Enders and Su 2007). What is recognized in this regard is the fact that the requirement

for secrecy distinguishes the covert organization from the overt organization (Baker and Faulkner

1993). Taking this dilemma explicitly into account Lindelauf et al. (2009) analyzed the problem

of covert network structure design from a multi objective optimization perspective. In this paper

we build upon this research by extending the analysis to the case of covert affiliation networks.

What we adopt from Lindelauf et al. (2009) is the method of measuring secrecy and information in

networks. Fundamentally different and new is the restriction to the domain of covert cells modeled

by affiliation networks. We focus on affiliation in cells because covert organizations employ cells

consisting of several indiviuals needed to complete a task. Furthermore, these cells have to be

coordinated and controlled to better guarantee mission success. Common types of such cells are for

instance a command and control cell, a tactical operations cell, an intelligence cell and a logistics

cell (Nance, 2008).

Overt affiliation networks have been studied abundantly. Examples include interlocking boards

of directors (Levine, 1972; Mariolis, 1975; Mintz and Schwartz, 1981a,b; Allen, 1982; Bearden

and Mintz, 1987), club memberships (Bonacich, 1978) and social gatherings (Davis et al., 1941;

Breiger 1974). However very few, if any, affiliation network analysis has been done in the important

domain of covert networks taking the aspect of secrecy explicitly into account. In this paper we

will present a general framework to analyze covert cells by evaluating them on the basis of the

one-mode projection of the corresponding affiliation network.

Analyzing cell structured affiliation topologies is of twofold importance: it increases the un-
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derstanding of their structure and henceforth helps to improve strategies to counter them, and it

enables military organizations to optimize covert operations. Perhaps the best known example of a

covert operation conducted according to cell structured affiliations is provided by Al Qaeda’s 9/11

operation. The organizational structure of the covert group conducting that operation equalled 4

cells of 19 people (Zwikael 2007). Additionally there was a command and control ‘cell’ guiding the

operation, consisting of Khalid Sheikh Mohammed, Mohammed Atef and Osama Bin Laden. A

more historical, nation-state, example is the case of Israeli’s operation Susannah (Johnson 2007,

Golan 1978). The belief among Israel’s defense chiefs was that by conducting underground opera-

tions in Egypt its military regime could be shown to be insufficiently reliable. Consequently it was

hoped for that the British decision to leave Egypt would be reconsidered. The covert network tasked

with conducting the attacks in Egypt consisted of two operational cells: one cell in Alexandria and

another one in Cairo. Command and control of these cells came from Israeli emissaries which can

be viewed as a third cell. The covert affiliation network conducting this operation can therefore

be seen to consist of three cells of varying size. After some initial operations the Alexandria cell

was detected by Egyptian intelligence and through observation and interrogation the Cairo cell

members were also uncovered and arrested. This incident illustrates the importance of being able

to evaluate several different possible cell structures before conducting and creating an underground

network. We will analyze an explicit but hypothetical example of a covert organization wishing to

conduct an attack (cf. Frantz et al 2005).

Many current covert organizational structures can be seen to consist of cells organized in one of

several standard forms: a star, path or hybrid structure (Arquilla and Ronfeldt 2001). For instance

Mishal et al. (2005) present several topological examples in case of Islamic terrorist organizations

such as Hamas star like compartmentalization and Hizballah’s infiltration of operatives into Israel

according to path like structures. More formally Frantz et al. (2005) discusses a characterization of

cellular networks. It is argued that often each cell in the network forms a clique, i.e., everybody in

the cell is connected to everybody else in the cell. The choice of adopting cellular structures clearly

is derived from maintaining secrecy and informational scrutiny. Assigning cell leaders and selecting

their interaction topology reflects the desired span of control: central in case of a star topology and

becoming more decentralized in case of a path, ending up in a hybrid structures. In this paper we

will formalize these basic organizational structures of covert affiliation networks as they can serve

as a starting point for the analysis of more advanced affiliation networks. Thus we will explicitly
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define the star and path structures consisting of cells that are cliques. In addition we analyze a

hybrid structure, called a semi-complete network, consisting of a ring of cells whose leaders are

all interconnected. First we will characterize the total distance for the one-mode projections of

such affiliation networks. Subsequently we evaluate the secrecy, information and total performance

measure for the one-mode projection of these three standard covert affiliation structures. Based on

these covert affiliation network indicators we discuss optimality within the class of hypertrees and

present a procedure to restructure the affiliation network structure while improving the trade-off

performance. Using this procedure we prove that uniform star affiliation networks are optimal in

balancing secrecy and information.

Section 2 discusses graph theoretical preliminaries and provides measures that capture the

notions of secrecy and information in covert organizations. In addition an example of a covert

organization is presented to illustrate the mathematical notation. Section 3.1 studies total distance

of one-mode projections of several basic hypergraphs. The computation of the total distance is

simplified by use of a proposition relating the total distance in a covert affiliation network to its

cell-shrinked version. The performance with regard to the information versus secrecy tradeoff of

the star, path and a hybrid affiliation structure is analyzed in section 3.2, and we compare their

performance to that of the example introduced previously. In addition we will show in section 4

that among all hypertrees of given order and size organizing the affiliation network according to a

star is optimal in balancing information and secrecy.

2 Mathematical Preliminaries

For a general overview of (hyper-)graph theory we refer to Bollobas (1986, 1998). Note that the

words graph and network will be used interchangeably throughout the text as well as the words

hypergraph and affiliation network.

A graph g is an ordered pair (N,E), where N represents the finite set of playersa and the set of

edges E is a subset of the set of all unordered pairs of players. An edge {i, j} connects the players

i and j and is also denoted by ij. The order of a graph is the number of players |N | = n and

the size equals its number of edges |E| = m. The set of connected graphs of order |N | is denoted
aA player is modeled as a node in a graph and represents an individual terrorist, insurgent or criminal engaged in

a covert organization.
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by G(N). For V ⊂ N , the V -induced subgraph of g is the graph g′ = (V, E′) whose edge set E′

consists of all the edges ij ∈ E of the original graph g that connect players i, j ∈ V . The set

of neighbors of player i ∈ N in graph g = (N, E) is indicated by Γi(g) = {j ∈ N |ij ∈ E}. We

denote the degree of player i in a graph g by di(g) = |Γi(g)|. The shortest distance (measured by

the number of edges) between player i and j in a graph is called the geodesic distance between

i and j. The geodesic distance between players i, j in g ∈ G(N) is denoted by lij(g). Clearly,

lij(g) = lji(g). We will write lij instead of lij(g) if there can be no confusion about the graph under

consideration. We set li(g) =
∑

j∈N lij(g). The total distance T (g) in the graph g = (N, E) is

defined by T (g) =
∑

i∈N li(g).

A hypergraph or affiliation network H is a pair (N, X), where N is a finite player set and

X ⊂ 2N is a collection of subsets of N . Elements of X are called events or cells. We denote

the set of cells a coalition of players S ⊂ N is engaged in by X(S) = {A ∈ X|A ∩ S 6= ∅}. A

player i ∈ N that is a member of more than one cell, i.e., such that |X({i})| ≥ 2, is called a cell

leader. We define the set of cell leaders in H by L(H). The order of a hypergraph is the number

of players |N | = n and the size equals its number of cells |X| = c. The set of all subsets of N

of size r is denoted by N r. An r−uniform hypergraph on N is a pair (N, X) where X ⊂ N r.

The hypergraph (N, X) is connected if for every i, j ∈ N there exists a sequence A1, ..., As of

cells with s ≥ 1, Al ∈ X, for all l ∈ {1, ..., s}, such that i ∈ A1, j ∈ As and At ∩ At+1 6= ∅ for

t = 1, ..., s − 1. The class of all connected hypergraphs with player set N is denoted by C(N).

A cycle in a hypergraph H = (N, X) is a sequence A1, ..., As with s ≥ 3 of s − 1 different cells

Al ∈ X, for all l ∈ {1, ..., s}, such that Ai ∩ Ai+1 6= ∅ for i = 1, ..., s− 1, A1 = As and Ai ∩ Aj = ∅
otherwise. A connected hypergraph is a hypertree if it contains no cycles. The class of connected

affiliation networks in which each two cells have at most one player in common is denoted by

H(N) = {(N, X) ∈ C(N)| |A ∩ B| ≤ 1 for all A, B ∈ X}. We denote the class of all r-uniform

hypergraphs in H(N) of size c by Hc
r(N), the class of all hypertrees in H(N) of size c by Hc

tree(N)

and the class of all r-uniform hypertrees in H(N) of size c is denoted by Hc
r−tree(N). We define

the one-mode projection graph g⊥(H) = (N, EH) ∈ G(N) corresponding to the affiliation network

H = (N, X) ∈ H(N) by letting ij ∈ EH if and only if there exists an A ∈ X such that i, j ∈ A.

Example 2.1 (cf. Frantz et al.)

Consider an organization wishing to carry out an attack with an explosive device. In addition
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assume that the organization has 16 individuals available to prepare for and conduct such an

attack. In preparing the attack several tasks have to be conducted, such as bomb building, delivery

of materials and finances, target reconnaissance, target site preparation, etc. The organization

adopts a cellular structure by having each cell conduct one such task. We present a possible

affiliation structure for the preparation and planning of the attack as follows: we label the players

1 through 16 and assume that player 1,2,...,6 constitute the attack cell, player 7,8,...,12 the bomb

building cell, player 1 and 7 coordinate between the attack cell and the bomb building cell, player

13 coordinates the finances with player 7, player 16 delivers the materials to player 10, player 14

conducts reconnaissance and delivers information on the target to player 12, and finally player

15 prepares the target site and coordinates this with player 11. Note that this organizational

structure corresponds to an example of a covert network as introduced by Frantz et al. (2005). The

hypergraph corresponding to this organization is denoted by Hex = (N, X) with N = {1, 2, ..., 16}
and,

X = {A1, A2, ..., A7}

with cells A1 = {7, 8, 9, 10, 11, 12}, A2 = {7, 13}, A3 = {10, 16}, A4 = {12, 14}, A5 = {11, 15},
A6 = {1, 7} and A7 = {1, 2, 3, 4, 5, 6}. Clearly Hex ∈ H7

tree and L(Hex) = {1, 7, 10, 11, 12}. The

corresponding one-mode projection g⊥(Hex) is presented in Figure 1.

12
10

7

9
8

11

15

14

16

13

1

2

3

4

5

6

Figure 1: One-mode projection of the affiliation network of example 2.1.
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Next we formally define several standard affiliation networks representing basic covert network

organizational designs. In particular we model a cell in a covert organization as a cell in a hyper-

graph (cf. Frantz et al. 2005), and we consider a star, a path and a hybrid topology (cf. Arquilla

and Ronfeldt 2001).

Let H = (N, X) ∈ Hc
r(N) be a hypergraph such that X = {Ai}c

i=1, c ≥ 2.

The hypergraph H is called an r-star, denoted by Hc
r−star, if there is a l ∈ N such that Ai∩Aj = {l}

for all i, j ∈ {1, ..., c} with i 6= j. Observe that |L(Hc
r−star)| = 1.

The hypergraph H is called an r-path, denoted by Hc
r−path, if |Ai∩Aj | = 1 if and only if j = i+1

with i ∈ {1, ..., c− 1}. Obviously |L(Hc
r−path)| = c− 1.

For c ≥ 3, the hypergraph H is called an r-ring, denoted by Hc
r−ring, if |Ai ∩ Aj | = 1 if and

only if j = i + 1 with i ∈ {1, ..., c− 1} or i = c and j = 1. Observe that |L(Hc
r−ring)| = c.

Finally we introduce a hybrid affiliation network in which cell leaders have an active coordinating

role. We do this by considering a ring structure where all cell leaders connect in one additional

cell.

Consider H = (N, X) ∈ C(N) of size c + 1, c ≥ 3, with X = {Ai}c+1
i=1 . The hypergraph H is

called r-semicomplete, denoted by Hc+1
r−semicomp, if it satisfies the following two properties:

(i) (N, {Ai}c
i=1) is an r-ring,

(ii) L((N, {Ai}c
i=1)) = Ac+1.

Note that typically Hc+1
r−semicomp 6∈ H(N).

Figure 2: One-mode projections of H4
3−star (left), H4

3−path (middle) and H5
3−semicomp(right).

In Table 1 we indicate the order and size of the one-mode projection graphs for the three

standard affiliation networks.
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g⊥(H) = (N, E) |N | = n |E| = m

H = Hc
r−star c(r − 1) + 1 cr(r−1)

2

H = Hc
r−path c(r − 1) + 1 cr(r−1)

2

H = Hc+1
r−semicomp c(r − 1) c(r(r−1)+c−3)

2

Table 1: Order and size of the three one-mode projections of standard hypergraphs.

Finally we recall the definitions of measures specifically designed for the analysis of the interac-

tion structure of covert networks as introduced in Lindelauf et al. (2009). The average information

performance I(g) of a network g ∈ G(N) with |N | = n is defined as the normalized reciprocal of

the total distance T (g),

I(g) =
n(n− 1)

T (g)
. (1)

It follows that 0 ≤ I(g) ≤ 1. The secrecy performance S(g) of a network g ∈ G(N) with |N | = n

and size m is given by

S(g) =
n2 − n− 2m

n2
(2)

with 0 ≤ S(g) ≤ 1. Lindelauf et al. (2009) show that S(g) represents the expected fraction of

the network that ‘survives’ given an uniform exposure probability distribution and the assumption

that upon exposure of individual i all individuals with which he is connected are also exposed.

Moreover it was argued on the basis of multi-objective optimization and bargaining theory that a

covert organization that wishes to balance the tradeoff between secrecy and information does best

by adopting a network g that maximizes the performance measure µ, defined by

µ(g) = S(g)I(g). (3)

3 One-mode Projection Analysis

3.1 Total distance

Computing the total distance of the one-mode projections g⊥(H) corresponding to a hypergraph H

can be cumbersome. We will prove that to compute the total distance in the one-mode projection

of r-uniform hypertrees one only needs to compute the total distances of a certain subset of its

9



players. This subset arises from the so-called corresponding ‘cell-shrinked’ version of the hypertree.

The cell shrinked graph g−(H) corresponding to an r-uniform hypertree H = (N,X) ∈ Hc
r−tree(N)

is defined as follows. For each A ∈ X such that |A ∩ L(H)| = 1 we take exactly one representative

jA ∈ A \ L(H) and define R(H) = {jA|A ∈ X, |A ∩ L(H)| = 1}. We set LR = L(H) ∪ R(H) and

define g−(H) as the LR-induced subgraph of g⊥(H). See Figure 3 below for an illustration.

Figure 3: One-mode projection g⊥(H) (left) and its cell shrinked version g−(H) (right), the leaders
are represented by solid dots and the representatives by bold line dots.

We relate the total distance in an r-uniform hypertree H = (N,X) to the total distance of the

players in its corresponding cell-shrinked version. For this aim define nA = |A∩LR| for all A ∈ X

and let

wk(H) = 1 +
∑

A∈X:k∈A

r − nA

nA

for all k ∈ LR. Note that nA = 2 if |L(H) ∩A| = 1, and that nA ≥ 2 otherwise.

Proposition 3.1 Let H = (N, X) ∈ Hc
r−tree. Set g−(H) = (LR, E). Then

(i) For all j ∈ N \ LR and A ∈ X the unique event such that j ∈ A it holds that

lj(g⊥(H)) = n−r
nA

+ 1
nA

∑
k∈LR∩A lk(g⊥(H)),

(ii) T (g⊥(H)) =
∑

k∈LR wk(H)lk(g⊥(H)) + (n− r)
∑

A∈X
r−nA

nA
.

Proof:

(i) Consider j ∈ N \ LR and let A ∈ X be the unique event such that j ∈ A. Let k ∈ LR ∩ A

and define Nk(j) = {z ∈ N \ {k}|lkz(g⊥(H)) < ljz(g⊥(H))}. It readily follows that

lj(g⊥(H)) = lk(g⊥(H)) + |Nk(j)|.
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Therefore,

lj(g⊥(H)) =
1

nA

∑

k∈A∩LR

(lk(g⊥(H)) + |Nk(j)|) =
1

nA

∑

k∈A∩LR

lk(g⊥(H)) +
n− r

nA
.

(ii) Note that

T (g⊥(H)) =
∑

k∈LR

lk(g⊥(H)) +
∑

j∈N\LR

lj(g⊥(H))

=
∑

k∈LR

lk(g⊥(H)) +
∑

A∈X

∑

j∈A\LR

lj(g⊥(H))

=
∑

k∈LR

lk(g⊥(H)) +
∑

A∈X

(r − nA)[
n− r

nA
+

1
nA

∑

k∈LR∩A

lk(g⊥(H))]

=
∑

k∈LR

lk(g⊥(H)) + (n− r)
∑

A∈X

r − nA

nA
+

∑

A∈X

r − nA

nA

∑

k∈LR∩A

lk(g⊥(H))

=
∑

k∈LR

lk(g⊥(H)) + (n− r)
∑

A∈X

r − nA

nA
+

∑

k∈LR

lk(g⊥(H))
∑

A∈X,k∈A

r − nA

nA

=
∑

k∈LR

{1 +
∑

A∈X,k∈A

r − nA

nA
}lk(g⊥(H)) + (n− r)

∑

A∈X

r − nA

nA

=
∑

k∈LR

wk(H)lk(g⊥(H)) + (n− r)
∑

A∈X

r − nA

nA
.

Where the third equality follows from (i). 2

Proposition 3.2 Let H = (N, X) ∈ Hc
r−tree be such that nA = 2 for all A ∈ X. Then

T (g⊥(H)) = (r − 1)
∑

k∈LR

wk(H)lk(g−(H)) + (n− r)
∑

A∈X

r − nA

nA
. (4)

Proof:

Since nA = 2 for all A ∈ X it holds that g−(H) is a tree. Hence, since every cell of g⊥(H)

contains r players it follows that

li(g⊥(H)) = (r − 1)li(g−(H)) for all i ∈ LR.

and the result follows from Proposition 3.2(ii). 2

For the three standard types of hypergraphs the total distances of their one-mode projections

are provided in the lemma below.
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Lemma 3.1

(i) T (g⊥(Hc
r−star)) = c(r − 1)[r + 2(c− 1)(r − 1)]

(ii) T (g⊥(Hc
r−path)) = c(r − 1)(cr + 1

3c2r + 4
3 − c− 1

3r − 1
3c2)

(iii) T (g⊥(Hc+1
r−semicomp)) = c(r − 1)(3cr + 7− 5c− 4r)

Proof:

(i) Consider H = Hc
r−star and let i ∈ N be the unique leader of H. Clearly i has distance 1 to

all other c(r − 1) nodes, i.e.,

li(g⊥(H)) = c(r − 1).

The nodes j ∈ N \{i} have distance 1 to each other member of the cell they belong to and distance

2 to the remaining nodes, hence

lj(g⊥(H)) = (r − 1) + 2(c− 1)(r − 1)

for all j ∈ N \ {i}. Consequently

T (g⊥(H)) = c(r − 1) + c(r − 1)[(r − 1) + 2(c− 1)(r − 1)]

and the result follows.

(ii) Consider H = Hc
r−path = (N, X). Since nA = 2 for all A ∈ X we can use the result in

Proposition 3.2 to determine T (g⊥(H)). Let g = g−(H) = (LR,E) with LR = L(H) ∪ R(H).
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Clearly |L(H)| = c− 1 and |R(H)| = 2. Then

T (g⊥(H)) = (r − 1)
∑

k∈LR

wk(H)lk(g) + (n− r)
∑

A∈X

r − nA

nA

= (r − 1)
∑

k∈L(H)

wk(H)lk(g) + (r − 1)
∑

k∈R(H)

wk(H)lk(g) + (n− r)c(
r − 2

2
)

= (r − 1)
∑

k∈L(H)

(r − 1)lk(g) + (r − 1)
∑

k∈R(H)

r

2
lk(g) +

1
2
c(c− 1)(r − 2)(r − 1)

= (r − 1)2
∑

k∈L(H)

lk(g) +
r(r − 1)

2
· 2 · c(c + 1)

2
+

1
2
c(c− 1)(r − 2)(r − 1)

= (r − 1)2[
c(c + 1)(c + 2)

3
− c(c + 1)] +

1
2
rc(r − 1)(c + 1) +

1
2
c(c− 1)(r − 2)(r − 1)

and the result follows. Note that the last equality follows from the fact that T (g) = c(c+1)(c+2)
3 as

is derived in Lemma 2.1 of Lindelauf et al. (2009).

(iii) Consider H = Hc+1
r−semicomp = (N, X). Take i ∈ L(H). Clearly

li(g⊥(H)) = 1 · (2(r − 2) + c− 1) + 2(c(r − 1)− 1− (2(r − 2) + c− 1))

= 2(c + 1)r + 6− 4r − 3(c + 1).

Now take j ∈ N \ L(H). Then

lj(g⊥(H)) = 1 · (r − 1) + 2(c− 2 + 2(r − 2)) + 3(c(r − 1)− 1− (r − 1 + c− 2 + 2(r − 2)))

= 3(c + 1)r − 4(c + 1)− 7r + 9.

Then

T (g⊥(H)) =
∑

i∈L(H)

li(g⊥(H)) +
∑

j∈N\L(H)

lj(g⊥(H))

= c[2(c + 1)r + 6− 4r − 3(c + 1)] + c(r − 2)[3(c + 1)r − 4(c + 1)− 7r + 9]

and the result follows. 2
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3.2 Covert affiliation network performance

In analyzing covert affiliation networks their one-mode projection graphs can be seen to represent

the interaction structure among the members of the organization. In this section we analyze the

performance measure µ for the one-mode projections of the three basic covert affiliation networks

Hc
r−star, Hc

r−path and Hc+1
r−semicomp.

From the definition of the information performance measure I as given in equation (1) together

with Table 1 and Lemma 3.1 one readily derives

Lemma 3.2

(i) I(g⊥(Hc
r−star)) = c(r−1)+1

2cr−2c−r+2

(ii) I(g⊥(Hc
r−path)) = 3(c(r−1)+1)

3cr+c2r+4−3c−r−c2

(iii) I(g⊥(Hc+1
r−semicomp)) = c(r−1)−1

3cr−5c−4r+7

From the definition of the secrecy measure S in (2) and Table 1 together with Lemma 3.1 we find

Lemma 3.3

(i) S(g⊥(Hc
r−star)) = c(c−1)(r−1)2

(c(r−1)+1)2

(ii) S(g⊥(Hc
r−path)) = c(c−1)(r−1)2

(c(r−1)+1)2

(iii) S(g⊥(Hc+1
r−semicomp)) = (r−2)(r(c−1)−2)

c(r−1)2

In addition we present an asymptotic analysis in Table 2.

H Hc
r−star Hc

r−path Hc+1
r−semicomp

lim
r→∞ I(g⊥(H)) c

2c−1
3c

c2+3c−1
c

3c−4

lim
c→∞ I(g⊥(H)) 1

2 0 r−1
3r−5

lim
r→∞S(g⊥(H)) c−1

c
c−1

c
c−1

c

lim
c→∞S(g⊥(H)) 1 1 r(r−2)

(r−1)2

Table 2: Asymptotic analysis of the information and secrecy performance measure.

From Lemma 3.2(i) and (ii) it follows that for sufficiently many cells, the star affiliation network

outperforms the path with regard to information performance. Intuitively this is clear: the distance

between cells in a star affiliation network is maximally 2 whereas it becomes increasingly more
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difficult to reach other cells in case of a path affiliation structure. However, it can also be seen

that in case of a small number of cells the semi-complete hypergraph may outperform the star.

From Lemma 3.3 it can be seen that in case of a low value of r, i.e., small cells, the star affiliation

network outperforms the path and semi-complete hypergraph with regard to secrecy. From Table

2 it can also be seen that the star network outperforms the other networks asymptotically.

From the definition of the performance measure in (3), Lemma 3.2 and Lemma 3.3 we find

Theorem 3.1

(i) µ(g⊥(Hc
r−star)) = c(c−1)(r−1)2

(c(r−1)+1)(2cr−2c−r+2)

(ii) µ(g⊥(Hc
r−path)) = 3c(c−1)(r−1)2

(c(r−1)+1)(3cr+c2r+4−3c−r−c2)

(iii) µ(g⊥(Hc+1
r−semicomp)) = (c(r−1)−1)(r−2)(r(c−1)−2)

c(r−1)2(3cr−5c−4r+7)

We compare the total performance of the star, path and semi-complete covert network affiliation

structures in Figure 4.
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Figure 4: Performance measure µ of Hc
r−path (–), Hc

r−star (x) and Hc+1
r−semicomp (∆) as a function

of the number of cells c (horizontal axis) and the number of nodes r per cell. Top left: r=3, top
right: r=4, down left: r=5, down right: r=6.

It can be seen that the star affiliation network outperforms the other basic affiliation networks.

Example 3.1

In example 2.1 we introduced an organization wishing to carry out an attack. Seven tasks were

divided among as many cells. We compare the information, secrecy and trade-off performance of
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the affiliation network Hex as presented in example 2.1 with that of comparable basic affiliation

networks. For this purpose we consider a star and path network consisting of 7 cells, i.e., H7
3−star

and H7
3−path, and since semi-complete networks have an additional cell of leaders, H8

3−semicomp.

I(g⊥(H)) S(g⊥(H)) µ(g⊥(H))
H = H7

3−star 0.56 0.75 0.42
H = H7

3−path 0.32 0.75 0.24
H = H8

3−semicomp 0.56 0.57 0.32
H = Hex 0.44 0.66 0.29

Table 3: A comparison of the information, secrecy and total trade-off performance in the setting
of example 2.1.

Both the star and semi-complete affiliation structures outperform the actual structure, whereas

the path affiliation network performs worse. This leads to the conclusion that, assuming that

secrecy and information are the most decisive parameters in conducting such a covert operation,

the organizational structure could be improved upon.

4 On optimal affiliation networks

The results in section 3 indicate that an r-star hypergraph is a good affiliation network for covert

organizations in terms of secrecy and information performance. This leads us to investigate the

performance of the star hypergraph affiliation network Hc
r−star in more detail. In this section we

will show that the r-star outperforms all comparable hypertrees with the same number of cells

and of the same order. Before we formally state and prove this assertion in Theorem 4.1 we first

describe a ‘tree-to-star’ transformation procedure.

Consider a hypertree H = (N, X) ∈ Hc
tree, consisting of c cells, of possibly different size. With

j, k ∈ N , k 6= j, define

Nk(j) = {i ∈ N |lki(g⊥(H)) < lji(g⊥(H))}

as the set of nodes closer to k than to j in the one-mode projection of H. The ‘tree-to-star’

transformation consists of the following five steps.

(1) Select A ∈ X such that |A ∩ L(H)| > 1. Note if H is not a star, this is possible.

(2) Set A ∩ L(H) = {a1, ..., at}.
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(3) Set X1 = X.

(4) For i = 2 to t do

(i) set Bi = X({ai}) \ {A},

(ii) for all C ∈ Bi let C̄ = (C \ {ai}) ∪ {a1},

(iii) let B̄i = {C̄|C ∈ Bi},

(iv) set Xi = (Xi−1 \Bi) ∪ B̄i.

(5) Set X = Xt. If {A ∈ X||A ∩ L(H)| > 1} 6= ∅ return to step 1, otherwise stopb.

This procedure results in a hypergraph whose one-mode projection equals a star graph, possibly

with cells of different sizes. We illustrate this procedure by an example.

Example 4.1: Let H = (N,X) with N = {1, 2, ..., 16} and

X = {A1, ..., A5}

with cells A1 = {1, 2, 3, 15, 16}, A2 = {3, 4, 5, 11, 14}, A3 = {5, 6, 7}, A4 = {7, 8, 9, 10} and

A5 = {11, 12, 13} (see Figure 5 top left for g⊥(H)). Clearly L(H) = {3, 5, 7, 11}. In step 1

select A = A2 with A2 ∩ L(H) = {5, 11, 3} and set a1 = 5, a2 = 11 and a3 = 3. Since

X({11}) = {A2, A5} it follows that B2 = {A5} (step 4i) and we obtain Ā5 = {5, 12, 13}, B̄2 =

{{5, 12, 13}} and X2 = {A1, A2, A3, A4, {5, 12, 13}} (in Figure 5 top right the one-mode projec-

tion of this intermediate hypergraph is presented ). Similarly we find B̄3 = {{1, 2, 5, 15, 16}} and

X3 = {{1, 2, 5, 15, 16}, A2, A3, A4, {5, 12, 13}}. Now A3 ∩ L(H) = {5, 7}, hence we return to step 1

and repeat. Choosing a1 = 5 and a2 = 7 results in the star H ′ = (N,X ′) with

X ′ = {{3, 4, 5, 11, 14}, {1, 2, 5, 15, 16}, {5, 6, 7}, {5, 8, 9, 10}, {5, 12, 13}}.

In Figure 5 bottom the resulting one-mode projection g⊥(H ′) is presented.

bThe algorithm stops since each iteration the number of cell leaders is reduced.
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Figure 5: Illustration of the ’tree-to-star’ transformation procedure in Example 4.1.

We now show that the r-star hypergraph maximizes the performance µ among all fixed size and

order hypertrees by first showing that each iteration in the ‘tree-to-star’ transformation procedure

increases the value of µ for the corresponding hypergraph and second that among all star affiliation

networks with cells of different sizes r-uniform ones are optimal.

Theorem 4.1 µ(g⊥(Hc
r−star)) ≥ µ(g⊥(H)) for all H ∈ Hc

tree of order n = (r − 1)c + 1.

Proof:

Let H = (N, X) ∈ Hc
tree with |N | = (r − 1)c + 1 and apply the ‘tree-to-star’ transformation

procedure. Denote the resulting star hypergraph by H ′ = (N, X ′). Note that every iteration of

steps 4 reduces the total distance in the corresponding one-mode projections (in fact within each

iteration i the total distance reduces by 2|Nai(a1)| · |Na1(ai)|). Since the size and order of the one-

mode projection remain constant during the transformation it follows that µ(g⊥(H ′)) > µ(g⊥(H)).

Let g⊥(H ′) = (N,E) with |E| = m. Note that there are exactly m pairs ij such that

lij(g⊥(H ′)) = 1 and hence
(
n
2

)−m pairs ij with lij(g⊥(H ′)) = 2. Then,

T (g⊥(H ′)) = 2(m + 2(
(

n

2

)
−m)) = 2n(n− 1)− 2m.
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Therefore

µ(g⊥(H ′)) =
(n2 − n)(n2 − n− 2m)

n2(2n2 − 2n− 2m)

and consequently ∂µ
∂m = −1

2
(n−1)2

(n2−n−m)2
< 0. Since m is minimal for Hc

r−star it follows that

µ(g⊥(Hc
r−star)) ≥ µ(g⊥(H ′)) 2

Theorem 4.1 shows that organizing cells in a r-star topology does well in balancing the trade-off

between information and security. Clearly Hc
r−star does not exist if n−1

c is not integer. However

Theorem 4.1 can easily be extended to these cases by considering the star hypergraph ‘closest’ to

Hc
r−star: stars consisting of cells which differ at most one in size.
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