
Schedule Optimization based on Coloured

Petri Nets and Local Search

Gašper Mušič ∗

∗ University of Ljubljana, Faculty of Electrical Engineering, Tržaška
25, 1000 Ljubljana, Slovenia (e-mail: gasper.music@fe.uni-lj.si).

AbstractThe contribution deals with simulation-optimization of schedules that are modelled by
simple Coloured Petri nets (CPNs). CPN modelling of standard classes of scheduling problems
is addressed and compact CPN representations of scheduling problems are proposed. It is
shown how a combination of CPN representations with predefined transition sequence conflict
resolution strategy can be used to optimize schedules by standard local search optimization
algorithms. Possible neighbourhood construction procedures for various problem classes are
proposed with the emphasis on solutions feasibility.

Keywords: Petri-nets, Manufacturing systems, Scheduling algorithms, Optimization.

1. INTRODUCTION

Petri nets compose a general modelling formalism suitable
for description of systems with highly parallel and cooper-
ating activities. Among others, they are increasingly used
for modelling and analysis in the field of manufacturing
systems. An important advantage of Petri nets is that
production systems’ specific properties, such as conflicts,
deadlocks, limited buffer sizes, and finite resource con-
straints can be easily represented within a single formal
model (Tuncel and Bayhan, 2007).

The simplicity of model building, the possibility of real-
istic problem formulation as well as the ability of captur-
ing functional, temporal and resource constraints within
a single formalism motivated the investigation of Petri
net based optimization of manufacturing planning and
scheduling problems. In our previous work a simulation
based optimization approach applying Petri nets was in-
tensively studied, as well as other, more classical ap-
proaches, such as dispatching rules and reachability tree
based heuristic search (Gradǐsar and Mušič, 2007; Löscher
et al., 2007; Mušič, 2008).

In particular, the investigations focused on combination
of Petri net modelling approach and local search methods
(Löscher et al., 2007; Mušič, 2009).

This paper focuses on Coloured Petri net (CPN) models of
various classes of scheduling problems. General modelling
guidelines for standard problems, such as open shop, flow
shop and job shop problems are proposed. The paper also
explores the possibilities of use of the CPN models in
conjunction with state-of-the-art local search algorithms
provided a special type of parameterized conflict resolution
strategy and neighbouring solution generation procedure
are adopted. Constrained permutations on transition firing
vectors are used to generate neighbouring schedule solu-
tions that are always feasible, which improves the effec-
tiveness of CPN based exploration of solutions compared
to previous works.

2. CPN REPRESENTATIONS OF SCHEDULING
PROBLEMS

Literature on deterministic scheduling classifies the man-
ufacturing scheduling problems according to machine en-
vironment structure, processing characteristics and con-
straints, and objectives (Pinedo, 2008). Standard machine
environment structures lead to standard scheduling prob-
lems, e.g., open shop, flow shop and job shop problems,
which are commonly studied. All three problem classes
address a problem of sequencing n jobs (tasks) through a
set of m machines (resources) where every job has to be
processed once on every machine and every such job op-
eration requires a specified processing time. The problems
differ in restrictions on the job routings.

Petri nets can be used to effectively model all three
standard problem classes. In particular, Coloured Petri
nets enable to develop compact models with a chosen
level of abstraction, which are functionally equivalent to
basic Place/Transition model. To illustrate this, Figure 1
shows a simple open-shop problem of three jobs and two
machines.

The open shop problem structure states that the pro-
cessing order of job operations is arbitrary, i.e. there are
no restrictions with regard to the routing of each job
through machine environment (Pinedo, 2008). Therefore
the operations are represented as sequentially independent
PN transitions that share a set of machines on one hand,
and a set of jobs on the other. The shared resources are
linked to transition by self loops, which are for simplicity
of drawing represented by double arrowed arcs.

Timed Petri nets are used where a token is declared un-
available for a specified time period after every transition
firing. This way only a single operation of a job can be
processed at a time and also only a single operation can
be performed on a machine at a time. A single operation
occurrence in a sequence is enforced by additional places
which restrict the transition firing.



pJ1

pJ2

pJ3

M1

M2

p11

p12

p21

p22

p31

p32

t1

t2

t3

t4

t5

t6

p1

pJ

M1

M2

t1

t2

p2

p1,2 M1,2

pJ1,2

t1

6

Figure 1. PN and CPN models of an open shop scheduling problem

p11 p12

p21 p22

p31 p32

M1 M2

t1 t2

t3 t4

t5 t6

p1
p2

M1 M2

t1 t2 p1,2

M1,2

t1,2

Figure 2. PN and CPN models of a flow shop scheduling problem

The model is shown in three levels of abstraction, with
common Place/Transition Petri net (PN) structure used
in the leftmost model and CPNs used in the other two
models.

In the Place/Transition PN model the machines are de-
noted Mi and jobs by pJi. Start of every operation is
modelled by transition firing. Since the transitions related
to the same machine are in conflict, only one of the corre-
sponding transitions can fire at a time. Conflict resolution
strategy determines a schedule of machine assignments.
Additional places pij correspond to j-th operation of job
i and restrict the operations to be triggered only once in
a sequence.

In the first CPN model (central model in Figure 1) all jobs
are represented by the same set of places and transitions.
The distinction among different jobs is achieved by intro-
duction of token colours and transition occurrence colours.
Every token colour corresponds to a job, whereas every
occurrence colour corresponds to triggering of operation
within the job. This way various operation durations can
be represented by a single transition. In the next level of
abstraction also the machines are folded into one place.
Consequently also the transitions representing operation
triggering and places enforcing single operation triggering
are folded together into only one place-transition pair. All
the interrelations among different place tokens and tran-
sition firings are now encoded into complex colour based
enablement conditions of different transition occurrence
colours. E.g., for the model of Figure 1, marking of the
final CPN is determined by 6 token colours in p1,2, 3 token
colours in pJ1,2 and 2 token colours in M1,2, while t1 has
6 occurrence colours. Every occurrence of t1 defines a set
of colour dependent weights of the incoming and outgoing
arcs. The colour dependent weights related to a single arc
can be represented by a vector, and the weights of this

arc related to all transition occurrences form a matrix. In
the CPN models the problem structure is therefore folded
within arc weights that become matrices.

In general, an open shop problem with n jobs and m
machines requires n token colours in job place, n ·m token
colours in operation place and m token colours in machine
place. The number of transition occurrence colours equals
the number of distinct operations, i.e. n ·m. The self loop
arcs between job place and the transition are weighted by
n×nm matrices, the arc between operation place and the
transition by nm × nm matrix and self loop arcs between
machine place and the transition are weighted by m×nm
matrices.

Note that while the shown model is complete, it may be
advantageous to add additional n colours to job place
in order to represent the resulting schedule more easily.
The final marking of the model in Figure 1 is obtained
when all the operation tokens are consumed while all job
and machine tokens are back in place and available. The
schedule has to be reconstructed by observing unavailable
tokens in operation and machine places. This is easier if
tokens are deposited in operation place also during the
last operation, although these are not employed to enable
subsequent transition firing.

Similarly, any flow shop problem can be represented by
a PN structure similar to Figure 2. Again the model is
shown in three forms with increasing level of abstraction.
Compared to open shop problem, the flow shop problem
states that all jobs have the same routing, i.e. every job
is processed on all machines in exactly the same machine
order. In Place/Transition PN model this is achieved by
enforcing a directed token flow through a set of places
representing operations of a single job. Places are linked in
a chain with operation triggering transitions in between a
pair of places. Transitions representing the same machine



operation within all jobs are linked to a common place
that represents a machine resource. No additional places
are needed to ensure proper operation triggering as this
is now achieved by sequential ordering of job operation
places and transitions.

As before, the CPN model can be obtained by merging
together the job operation chains, which are folded into a
single sequence of places and transitions as shown in the
center of Figure 2. The final CPN model is obtained by
folding together the machine places, which consequently
folds together also operation places and transitions. The
required token flow is achieved by introduction of token
colours, transition occurrence colours and arc weights in
matrix form as described above. For a flow shop problem
with n jobs and m machines, n · m token colours are
required in job operation place and m token colours
in machine place. The number of transition occurrence
colours equals the number of distinct operations, i.e.
n · m. The arcs between job place and the transition
are weighted by nm × nm matrices and arcs between
machine place and the transition are weighted by m ×
nm matrices. The final marking of the model is obtained
when all the job operation tokens are consumed while all
machine tokens are back in place and available. Similarly
as above additional n colours can be added to job place to
reconstruct the resulting schedule more easily.

In general, the model of Figure 2 represents a problem,
where jobs are not processed in the same order on every
machine. E.g., a job can pass another job while waiting
for processing on a particular machine. Often the same job
processing order is required on all machines, which forms
a permutation flow shop problem. Within the optimization
approach described in the next section, this can be easily
achieved if the machine sequences are mutually dependent.

A job shop scheduling problem is modelled very much
in the same way as flow shop. The difference is only in
machine assignments, which are not the same for every
job. Instead, each jobs follows its own route through
the set of machines, while it still visits every machine
only once. The different machine assignments reflect in
diverse connections of operation transitions to machine
places in P/T PN model. The final CPN model has the
same graphical representation as in Figure 2; the machine
assignments are hidden within arc weights in matrix form.

2.1 Simple Coloured Petri nets

Building on the two above examples a formal definition
of Coloured Petri nets is given as follows. Note that the
definition is different from Jensen (1997) in the sense
that it does not alow for transition guards. Instead it
closely follows one of the representations used in Basile
et al. (2007) with an important difference: a different
interpretation of transition delays is used, which is closer
to that of Jensen (1997).

A CPN = (N ,M0) is a Coloured Petri net system, where:
N = (P, T, Pre, Post, Cl, Co) is a Coloured Petri net
structure:

– P = {p1, p2, . . . , pk}, k > 0 is a finite set of places.
– T = {t1, t2, . . . , tl}, l > 0 is a finite set of transitions

(with P ∪ T 6= ∅ and P ∩ T = ∅).

– Cl is a set of colours.
– Co : P ∪ T → Cl is a colour function defining place

marking colours and transition occurrence colours.
∀p ∈ P,Co(p) = {ap,1, ap,2, . . . , ap,up

} ⊆ Cl is the
set of up possible colours of tokens in p, and ∀t ∈
T,Co(t) = {bt,1, bt,2, . . . , bt,vt

} ⊆ Cl is the set of vt

possible occurrence colours of t.
– Pre(p, t) : Co(t) → Co(p)MS is an element of the

pre-incidence function and is a mapping from the set
of occurrence colours of t to a multiset over the set of
colours of p, ∀p ∈ P,∀t ∈ T . It can be represented by
a matrix whose generic element Pre(p, t)(i, j) is equal
to the weight of the arc from p w.r.t colour ap,i to t
w.r.t colour bt,j . When there is no arc with respect to
the given pair of nodes and colours, the element is 0.

– Post(p, t) : Co(t) → Co(p)MS is an element of the
post-incidence function, which defines weights of arcs
from transitions to places with respect to colours.

M(p) : Co(p) → N is the marking of place p ∈ P and
defines the number of tokens of a specified colour in the
place for each possible token colour in p. Place marking
can be represented as a multiset M(p) ∈ Co(p)MS and
the net marking M can be represented as a k × 1 vector
of multisets M(p). M0 is the initial marking of a Coloured
Petri net.

2.2 Timed models

As described in Bowden (2000), there are three basic
ways of representing time in Petri nets: firing durations
(FD), holding durations (HD) and enabling durations
(ED). When using FD principle the transition firing has a
duration. In contrast, when using HD principle, a firing has
no duration but a created token is considered unavailable
for the time assigned to transition that created the token,
which has the same effect. With ED principle, the firing
of the transitions has no duration while the time delays
are represented by forcing transitions that are enabled to
stay so for a specified period of time before they can fire.
The ED concept is more general than HD. Furthermore, in
Lakos and Petrucci (2007) an even more general concept is
used, which assigns delays to individual arcs, either inputs
or outputs of a transition.

When modelling several performance optimization prob-
lems, e.g. scheduling problems, such a general framework
is not needed. It is natural to use HD when modelling most
scheduling processes as operations are considered non-
preemptive. HD principle is also used in timed version of
CPNs defined by Jensen (1997), where the unavailability of
the tokens is defined implicitly through the corresponding
time stamps. While CPNs allow the assignment of delays
both to transition and to output arcs, we further simplify
this by allowing time delay inscriptions to transitions only.
This is sufficient for the type of examples investigated here,
and can be generalized if necessary.

To include a time attribute of the marking tokens, coloured
tokens are accompanied with a time stamp where time
stamps are elements of a time set TS, which is defined as
a set of numeric values. In many software implementations
the time values are integer, i.e. TS = N, but will be here
admitted to take any positive real value including 0, i.e.
TS = R

+

0 . Timed markings are represented as collections



of time stamps and are multisets over TS: TSMS . By
using HD principle the formal representation of a Coloured
Timed Petri net is defined as follows.

CTPN = (N ,M0) is a Coloured Timed Petri net system,
where:

– N = (P, T, Pre, Post, Cl, Co, f) is a Coloured Time
Petri net structure with (P, T, Pre, Post, Cl, Co) as
defined above.

– f : Co(t) → TS is the time function that assigns a
non-negative deterministic time delay to every occur-
rence colour of transition t ∈ T .

– M(p) : Co(p) → TSMS is the timed marking, M0 is
the initial marking of a timed Petri net.

As mentioned before, in the CPN models the problem
structure is folded in arc weights represented by matrices.
This is convenient for automatic generation of the models
as matrices can be easily constructed algorithmically and
the graphical representation of CPNs is rather simple
compared to graphical layout of P/T Petri nets with
high number of places, transitions and arcs. CPNs can
be therefore effectively applied as a modelling framework
in conjunction with automatic model generation and opti-
mization based on production management data.

3. NEIGHBOURHOOD SOLUTION GENERATION
STRATEGY

In our previous work (Löscher et al., 2007; Mušič et al.,
2008) different ways of solution space exploration were
studied. Extensive testing of the reachability tree search
based approaches has been performed as well as applica-
tion of local search techniques.

3.1 Prescribed transition firing sequences

In Löscher et al. (2007) the approach is presented, which
extends the Petri net representation by sequences and
priorities. When using sequences, disjoint groups of transi-
tions are selected and mapped to sequence vectors. A firing
list is defined by ordering transitions within the group.
During the model evolution a set of sequence counters is
maintained and all transitions belonging to sequences are
disabled except of transitions corresponding to the current
state of the sequence counters. After firing such a transi-
tion the corresponding sequence counter is incremented.

This way the transition firing sequence can be param-
eterized. If the model represents a scheduling problem,
the sequence obtained by a sequence-supervised simulation
run of the Petri net model from the prescribed initial to the
prescribed final state is a possible solution to the problem,
i.e. it represents a feasible schedule.

To illustrate this, consider a simple job shop example
of four jobs and four machines. Operation durations are
shown in Table 1 and resource requirements in Table 2.

The problem is modelled by a CPN similar to Figure 2.
The model can then be simulated by applying SPT rule
(Haupt, 1989) as a default conflict resolution mechanism.
The resulting sequence represents a possible schedule,
shown in Figure 3.

Table 1. Operation durations for a simple job
shop problem

Operation\Job J1 J2 J3 J4

o1 54 9 38 95

o2 34 15 19 34

o3 61 80 28 7

o4 2 79 87 29

Table 2. Machine requirements for a simple job
shop problem

Operation\Job J1 J2 J3 J4

o1 3 4 1 1

o2 1 1 2 3

o3 4 2 3 2

o4 2 3 4 4

Figure 3. A possible solution of the given job-shop problem

The same schedule can be obtained by fixing the se-
quential order of transitions in conflicts related to shared
resources in the system. E.g. in the above example the
shared resources are machines M1 to M4 modelled by four
token colours in place M1−4. Related sets of transition
occurrence colours are:

SM1 = {t1,c3, t1,c4, t2,c1, t2,c2}
SM2 = {t2,c3, t3,c2, t3,c4, t4,c1}
SM3 = {t1,c1, t2,c4, t3,c3, t4,c2}
SM4 = {t1,c2, t3,c1, t4,c3, t4,c4}

(1)

where ti,cj denotes the occurrence colour of t1−4; cj
corresponds to job Jj and i corresponds to the operation
number within the job.

If these sets are mapped to four independent sequences,
and a set of index vectors

V = {V1, V2, V3, V4}

is adjoined, where Vi is a corresponding permutation of
integer values i, 1 ≤ i ≤ 4:

V1 = {1, 4, 2, 3}
V2 = {1, 2, 4, 3}
V3 = {1, 3, 4, 2}
V4 = {1, 3, 2, 4}

(2)

a supervised simulation run, which forces the prescribed
sequential order of conflicting transitions, results in the
same schedule as above.

The sequence-supervised simulation is implemented by
a simple modification of the regular CTPN simulation
algorithm. After the enabled transitions are determined in
each simulation step, the compliance of the set of enabled
transitions to the state of the sequence counters is checked.
Transitions that take part in defined sequences but are not
pointed to by a counter are disabled.

The exploration of the solution space and the related
search for the optimal schedule can then be driven by
modifications of sequence index vectors. The problem of
this approach is that by perturbing sequence index vectors



the resulting transition firing sequence may easily become
infeasible, which results in a deadlock during simulation (a
sequence imposed deadlock). Such an infeasible solution
can be ignored and a new perturbation can be tried
instead. While this works for many problems, in some cases
the number of feasible sequences is rather low and such an
algorithm can easily be trapped in an almost isolated point
in the solution space.

3.2 Generation of neighbourhood solutions

In the Operation Research (OR) literature several neigh-
borhood generation operators have been proposed (Blaze-
wicz et al., 1996; Jain et al., 2000). The question is how
to link these operators and related effective schedule op-
timization algorithms with Coloured Petri net represen-
tation of scheduling problems. As mentioned above the
Petri net scheduling methods have advantages in unified
representation of different aspect of underlying manufac-
turing process in a well defined framework. Unfortunately,
the related optimization methods are not as effective as
some methods developed in the OR field. The link of
two research areas could be helpful in bridging the gap
between highly effective algorithms developed for solving
academic scheduling benchmarks and complex real-life ex-
amples where even the development of a formal model can
be difficult (Gradǐsar and Mušič, 2007).

A possible way of such a link is the establishment of a
correspondence of a critical path and the sequence index
vectors. In a given schedule the critical path CP is the
path between the starting and finishing time composed of
consequent operations with no time gaps:

CP = {Oi : ρi = ρi−1 + τi−1, i = 2 . . . n} (3)

where Oi are operations composing the path, ρi is the
release (starting) time of operation Oi, and τi is the
duration of Oi.

The operations Oi on the path are critical operations.
Critical operations do not have to belong to the same
machine (resource) but they are linked by starting/ending
times.

Critical path can be decomposed in a number of blocks. A
block is the longest sequence of adjacent critical operations
that occupy the same resource.

The length of the path equals the sum of durations of
critical operations and defines the makespan Cmax:

Cmax =
∑

Oi∈CP

τi (4)

Figure 4 shows a redrawn gantt chart from Figure 3 with
indication of the critical path (grey) and the sequence of
critical operations. The shown critical path consists of 5
blocks.

Critical operations in Figure 4 are denoted by transition
labels that trigger the start of a critical operation when
fired. A transition that triggers a critical operation will be
called a critical transition.

The scheduling literature describes several neighborhoods
based on manipulations (moves) of critical operations
(Blazewicz, Domschke, and Pesch, 1996). One of the clas-
sical neighborhoods is obtained by moves that reverse the

Figure 4. A critical path within a schedule and critical
transitions

Figure 5. An optimized solution of the given job-shop
problem

processing order of an adjacent pair of critical operations
belonging to the same block (van Laarhoven, Aarts, and
Lenstra, 1992). Other neighbourhoods further restrict the
number of possible moves on the critical path, e.g. (Now-
icki and Smutnicki, 1996).

Clearly every critical transition participates in one of the
conflicts related to shared resources. If these transitions
are linked to predefined firing sequences parameterized by
index vectors, a move operator corresponds to a permuta-
tion of an index vector.

For example, in the schedule shown in Figure 4 a move
can be chosen, which swaps the two operations in the third
block on the critical path. This corresponds to the swap
of transitions t4,c2 and t2,c4 in the sequence SM3, which is
implemented by the exchange of third and fourth element
within V3 index vector:

move(V3) : {1, 3, 4, 2} 7→ {1, 3, 2, 4}

A new schedule obtained by simulation with modified V3

results in a shorter makespan. Similar swap of the last
two operations in the sequence SM2 leads to the optimal
schedule (with the shortest makespan) shown in Figure 5.

When the move is limited to swap of a pair of the adjacent
operations in a block on the critical path this narrows
down the set of allowed permutations. The most important
feature of such a narrowed set of permutation on the index
vector is that every permutation from this set will result in
a feasible firing sequence, i.e. a feasible schedule. Therefore
no deadlock solutions can be generated, which are often
encountered when unrestricted permutations on the index
vectors are used.

The described approach is well suited to optimization
of job shop problems. With minor modifications it can
however also be used for optimization of other scheduling
problem classes. The problem class specific constraints
can be enforced as additional permutation constraints.
E.g., permutation flow shop restrictions can be enforced
by keeping all the sequence vectors in synchronization.
In contrast, open shop problems have no restrictions



on job routings. Fixing transition firing sequences for
each individual machine therefore does not resolve all the
conflicts in the model. The remaining conflicts can be
solved on the fly during simulation in a random manner
in order to cover as much as possible wide set of problem
solutions.

It is also important to note that such a neighbourhood
function is comparable to exploring the reachability tree in
an event driven manner. It is possible that certain feasible
firing sequence imposes one or more intervals of idle time
between transitions, i.e. some transitions are enabled but
can not fire due to sequence restrictions. This is different
from the exploration in a time driven manner when a
transition has to be fired whenever at least one transition
is enabled. The difference is important in cases when the
optimal solution can be missed unless some idle time is
included in the schedule as shown in Piera and Mušič
(2011). In other words, the schedules generated in the
proposed way belong to the class of semi-active schedules
(Pinedo, 2008).

E.g., in the example of Figure 5 a small fraction of idle
time is introduced before processing job 4 on machine 3.
Job 2 has already been ready for processing on the same
machine, which resulted in non-optimal schedule obtained
by SPT rule (Figure 3). The chosen change in the firing
sequence enforced the firing of t2,c4 before t4,c2 although
t4,c2 has been marking-enabled first. This way a schedule
with shorter makespan was obtained.

4. CONCLUSIONS

The described neighbourhood generation procedure was
coded in Matlab and used in combination with a simple
Simulated annealing (SA) search algorithm. Comparison
of the minimum makespan for some standard open shop,
flow shop and job shop problems calculated by the pro-
posed algorithm and some other standard algorithms has
been performed. The proposed algorithm performs well
and is able to improve the initial SPT solutions with a
moderate effort, although it is not able to reach optimum
for complex benchmarks.

Therefore a prototype implementation of tabu search
algorithm has also been tested. The obtained results are
comparable to the SA based search. It is expected that the
tests with other neighbourhood operators would further
improve the obtained results, which is one of the tasks for
the future work.

ACKNOWLEDGEMENTS

The presented work has been partially performed within
Competence Centre for Advanced Control Technologies,
an operation co-financed by the European Union, Euro-
pean Regional Development Fund (ERDF) and Republic
of Slovenia, Ministry of Higher Education, Science and
Technology.

REFERENCES

Basile, F., Carbone, C., and Chiacchio, P. (2007). Sim-
ulation and analysis of discrete-event control systems
based on Petri nets using PNetLab. Control Engineering
Practice, 15, 241–259.

Blazewicz, J., Domschke, W., and Pesch, E. (1996). The
job shop scheduling problem: Conventional and new
solution techniques. European Journal of Operational
Research, 93, 1–33.

Bowden, F.D.J. (2000). A brief survey and synthesis of the
roles of time in petri nets. Mathematical & Computer
Modelling, 31, 55–68.

Gradǐsar, D. and Mušič, G. (2007). Production-process
modelling based on production-management data: a
Petri-net approach. International Journal of Computer
Integrated Manufacturing, 20(8), 794–810.

Haupt, R. (1989). A survey of priority rule-based schedul-
ing. OR Spectrum, 11(1), 3–16.

Jain, A., Rangaswamy, B., and Meeran, S. (2000). New
and ”stronger” job-shop neighborhoods: A focus on the
method of nowicki and smutnicki(1996). Journal of
Heuristics, 6(4), 457–480.

Jensen, K. (1997). Coloured Petri Nets: Basic Con-
cepts,Analysis Methods and Practical Use, volume 1.
Springer-Verlag, Berlin, 2 edition.

Lakos, C. and Petrucci, L. (2007). Modular state space
exploration for timed Petri nets. International Journal
on Software Tools for Technology Transfer, 9, 393–411.

Löscher, T., Mušič, G., and Breitenecker, F. (2007). Op-
timisation of scheduling problems based on timed petri
nets. In Proc. EUROSIM 2007, volume II. Ljubljana,
Slovenia.

Mušič, G. (2008). Timed Petri net simulation and related
scheduling methods: a brief comparison. In The 20th
European Modeling & Simulation Symposium, 380–385.
Campora S. Giovanni (Amantea, CS), Italy.

Mušič, G. (2009). Petri net base scheduling approach
combining dispatching rules and local search. In 21th
European Modeling & Simulation Symposium, volume 2,
27–32. Puerto de La Cruz, Tenerife, Spain.

Mušič, G., Löscher, T., and Breitenecker, F. (2008). Sim-
ulation based scheduling applying Petri nets with se-
quences and priorities. In UKSIM 10th International
Conference on Computer Modelling and Simulation,
455–460. Cambridge, UK.

Nowicki, E. and Smutnicki, C. (1996). A fast taboo
search algorithm for the job shop problem. Management
Science, 42(6), 797–813.

Piera, M.A. and Mušič, G. (2011). Coloured Petri net
scheduling models: Timed state space exploration short-
ages. Math.Comput.Simul., 82, 428–441.

Pinedo, M.L. (2008). Scheduling: Theory, Algorithms, and
Systems. Springer Publishing Company, Incorporated,
3rd edition.

Tuncel, G. and Bayhan, G.M. (2007). Applications of
Petri nets in production scheduling: a review. Interna-
tional Journal of Advanced Manufacturing Technology,
34, 762–773.

van Laarhoven, P., Aarts, E., and Lenstra, J. (1992). Job
shop scheduling by simulated annealing. Operations
Research, 40, 113–125.


