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Abstract— In this paper we present our multi-vehicle testbed
that was designed for verification and validation of cooperative
control algorithms involving environmental sensing. Two coop-
erative control algorithms: prioritized multi-sensing behavior,
and a distributed adaptive algorithm for nonholonomic sensor
networks are qualitatively verified using our multi-vehicle
testbed. The multi-vehicle testbed allows for a straightforward
transition from simulation to experimenting on actual hardware
and has the flexibility to interface various types of sensors,
vehicles, as well as enable indoor and outdoor experiments.

I. INTRODUCTION

Recently in the literature much attention has been paid

to the development of mobile robot teams capable of ac-

complishing various tasks through cooperation which would

be very inefficient if done by a single robot. Among the

recent advances in mobile robots is the idea of a dynamic or

reconfigurable sensor network, where each robot is equipped

with sensors that are capable of measuring some parameter of

the environment and able to reconfigure the network config-

uration based on these measurements. Through cooperation

the robot team should accomplish different tasks such as op-

timal sensor coverage, target tracking, or spatial distribution

mapping. Some motivating and practical applications include

search and rescue operations [1], [2], target detection [3], [4],

and hazardous contaminations [5] to name a few.

Although much attention has been paid to creating co-

operative control algorithms for dynamic sensor networks

less attention has been paid to the validation and verification

of these control algorithms on experimental hardware. The

focus of this paper is to expand our current experimental

testbed to accommodate environmental sensing applications.

To facilitate the development of novel cooperative control

algorithms specifically for environmental sensing, moni-

toring, and mapping, we extend our current multi-vehicle

testbed to enable a quick turnaround from simulations of the

control algorithms to actual hardware implementation.

With this addition, limitations in the cooperative control

algorithms can be identified and subsequently addressed in

further research. This approach to verification and validation

facilitates cooperative control algorithms that are imple-

mentable in real-wold scenarios.

The addition to our multi-vehicle testbed consists of

four Pioneer P3-AT mobile robots each equipped with an

environmental sensor suite. The multi-vehicle testbed was
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designed to interface various types of sensors as well as

various numbers of vehicles and types. Sensors and robots

can be added and removed on the fly based on user need.

Also, the multi-vehicle testbed is able to carry out indoor as

well as outdoor experiments.

A. Sensor Network Background

Recent research in sensor networks concentrates on cre-

ating a sensor network that can adapt to its environment.

In this sense, the trend is towards reconfigurable sensor

networks. Addressing reconfigurable sensor networks is typ-

ically done by utilizing mobile sensor platforms to adapt

to the environment, [6] and [7]. Mobile robots give the

network the ability to react to changes in the environment

through their mobility by placing sensors to more interesting

areas or places that may lack sensor coverage due to spatial

configurations or possible sensor failures. Mobile robots also

allow the network to verify or disregard abnormal (noisy)

data coming from a sensor by reconfiguring so that a second

sensor can obtain data to compare with.

Much of the research in reconfigurable sensor networks

focuses on surveillance and tracking tasks. The goal in these

applications is to identify and track targets moving within

the area the sensor network covers. In [6], Huntwork et al.,
create a sensor network with both mobile sensor platforms

as well as stationary sensors. The network is not assumed to

be configured in any optimized fashion, so mobile sensors

are used when a target is no longer visible by the stationary

sensors, or cannot be tracked at an adequate resolution.

Cortés, Martínez, and Bullo [8] and [9], use gradient

climbing algorithms to distribute sensor platforms in an

optimal fashion over the area in question to address spatial

distribution of the sensor platforms. Robot agents follow gra-

dients that maximize a static density function that is weighted

by a sensor performance function. The area is divided up

among the agents using Voronoi partitions. Hussein and

Stipanovic [10] use a gradient climbing method for control of

the sensor network as well, but without having to partition the

area among the team members, which reduces computational

overhead.

A large part of research in reconfigurable sensor net-

works is mostly concerned with issues related to moni-

toring, surveillance, and target tracking, but there are also

applications beyond a pure surveillance or tracking [7].

Mobile sensor platforms can be used as reconfigurable sen-

sor networks for mapping spatial distributions of physical

quantities [11]. We envision controlling a multi-robot team

to map these physical quantities, where the sensor network

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

U.S. Government work not protected by U. 3052



is reconfigured on-line based on the information from the

sensed environment.

B. Related Experimental Testbeds

We expand on our original testbed [12] COMET, to

include mechanisms that allow for environmental sensing

which enable validation and verification of cooperative con-

trol algorithms that depend on measurements of the sensed

environment. The original COMET testbed consisted of ten

all-terrain vehicles which are based on the Tamiya TXT-

1 chasis. The COMET testbed is used for validation of

cooperative control algorithms, however in its first generation

lacked environmental sensing capabilities.

Along the same lines, the experimental testbed at the

GRASP Laboratory at the University of Pennsylvania [13]

was designed for large-scale multi-robot systems for experi-

mental validation of distributed robot applications in a strictly

indoor environment. This testbed was specifically designed

to address situations such as formation control, search and

pursuit of targets of interest, and cooperative manipulation

tasks.

In a similar design to the testbed presented in this paper,

the authors of [14] utilize a group of 16 SwarmBots to

validate a coverage control algorithm that is based upon

information of the sensed environment. Sensory information

was simulated during one of the experiments to compare

the performance against a known ground truth then during

a second experiment sensory information was taken from

onboard light sensors.

The GRASP testbed is more tailored for validating control

algorithms such as formation control, search and pursuit of

targets, and cooperative manipulation, rather than sensing

environmental data which is the focus of our testbed. Also,

the group of SwarmBots use only a single source of data

rather than data from multiple spatial distributions in the

environment which our current testbed is equipped to handle.

II. HARDWARE DESCRIPTION

A. Vehicle Description

The Pioneer P3-AT stores up to 252 Wh of hot-swappable

batteries. The P3-AT can reach speeds of 0.8 m/s and carry

a payload of up to 30 kg as well as climb a steep 45%

gradient. Also, laser-based navigation options, integrated

inertial correction to compensate for slippage, GPS, bumpers,

gripper, vision, stereo rangefinders, and compass options are

available commercially for the P3-AT [15].

Our current testbed can accommodate laser-based naviga-

tion, GPS navigation, as well as gripper/manipulator tasks.

Although this paper concentrates on experiments conducted

with the Pioneer P3-AT robots, our testbed also contains ten

all-terrain vehicles which are based on the Tamiya TXT-1

chasis as well as a Drangonflyer X-Pro quadrotor and two

AscTec Hummingbird quadrotors.

B. Environmental Sensor Suite

The environmental sensor suite consists of a Phidgets

8/8/8 USB interface I/O board capable of measuring eight

Fig. 1. Pictured are four precision light sensors (top) three magnetic sensors
(middle) and a Hokuyo UHG-08LX laser range finder (bottom) all mounted
on a custom fixture that is attached to a robot.

digital and eight analog inputs and capable of driving eight

digital outputs. The Phidgets I/O board can accommodate

pressure, temperature, humidity, light intensity, and magnetic

field sensors as well as many others.

A special aluminium plate and mounting system was

created to interface the environmental sensor suite. The plate

and mounting system allows for multiple sensor configura-

tions as well as the ability to mount multiple accessories

on each robotic platform. Figure 1 shows the custom built

aluminum plate with four precision light sensors and three

magnetic sensors. Also shown is a Hokuyo UHG-08LX

laser range finder. The addition of the custom plate and

mounting brackets allow for a quick swapping of sensors

and accessories to address a variety of experimental tests.

The experimental testbed has its own dedicated IEEE 802.11

WLAN, which provides a low-latency network that is used

by the robotic platforms for communication as well as for

Player server/client communications.

III. PLAYER/STAGE/GAZEBO/USARSIM INTERFACE

One of the most widely used robotics software packages

is the Player/Stage/Gazebo (PSG) [16]. The PSG project

consists of libraries that provide access to communication

and interface functionality on robot hardware. The robot

“server” Player, provides an architecture where multiple

modules, also known as drivers, can be written independently

and connected via a custom middleware that relies on TCP

communication. Users write “client” applications (control

algorithms) that connect to and command modules (drivers)

running on a Player “server.” Additionally, PSG provides

a 2D simulator, Stage, and a 3D physics-based simulation

environment Gazebo. Additionally USARSim [17] is a high-
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fidelity simulator of robots as well as environments which is

based upon the Unreal Tournament game engine which can

be used with a Player “server.” USARSim allows for realistic

robotic environments with kinematically accurate robot mod-

els. These simulators provide a transparent transition from

simulation code using a virtual environment to the actual

robot hardware.

IV. CONTROL ALGORITHMS

A. Prioritized Multi-Sensing Behavior

In [18], we propose a decentralized coordination algorithm

that allows a team of sensor-enabled robots to navigate a

region containing non-convex obstacles and take measure-

ments within the region that contain the highest probability of

having “good” information first. This approach is motivated

by scenarios where prior knowledge of the search space is

known or when time constraints are present that limit the

amount of area that can be searched by a robot team. One

very practical application is that of a hazardous contamina-

tion in the environment. With some prior knowledge of where

the contamination may have occurred, the coordination al-

gorithm allows for prioritizing searching/sensing efforts. An

outline of the control algorithm is described below.

1) (Voronoi region) Determine the Voronoi partitioning

based on robot positions.

2) (Global optimization) Apply the Monte Carlo opti-

mization method over robots Voronoi partition on the

Probability Of Detection (POD) map.

3) (Check feasibility) Determine if the goal point is reach-

able by solving the shortest-path problem from the

graph that creates the navigation function. If goal point

is not reachable then go to Step 2 and determine next

best possible goal point.

4) (Navigation function) Create a modified navigation

function with the goal point.

5) (Control actuation) Apply a gradient descent control

based on the modified navigation function.

6) (Local map update) For all points that are inside the

sensing radius R, update the POD map.

7) (Global map update) Each robot communicates with

its neighbors and exchanges its current position. All

robots update their local maps with all other robots

local maps to create a synchronized global map.

8) (Termination) Check if t ≥ Tsearch if true, stop. Else

goto Step 1. Tsearch is taken to be the time allowed

for the search.

As an extension to [18] we introduce the idea of a multi-

sensing framework, where robotic platforms are equipped

with more than one sensing modality. This multi-modal

approach becomes very practical in such applications as

search and rescue or hazardous contaminations where more

than one factor may play a role in decision making.

From our previous work [18] we have shown how to

prioritize searching/sensing efforts through the use of a

probability of detection map. To address the multi-sensing

framework we propose the use of logistic regression to

express the contributions of each sensing modality and its

factor on the overall probability of detection (POD) map.

This approach allows one to weigh a particular sensing

behavior over another depending on need or usefulness of

the sensing data.

The logistic function is defined in the following way,

f(y) =
1

1 + e−y
, (1)

where y is defined as

y = α0 + α1x1 + α2x2 + · · ·+ αkxk. (2)

In equation (1), the output represents the probability of a

particular outcome. For our purposes f(y) in (1) represents

the probability of finding useful information at a partic-

ular point in the area or interest. In (2), the parameters

α1, α2, . . . , αk are the regression coefficients which describe

the contribution of the risk factors, x1, x2, . . . , xk. α0 repre-

sents the probability of finding useful information given all

risk factors are equal to zero. For our purposes risk factors

will be different sensors probability of detection maps. In this

sense, through logistic regression we are able to fuse a variety

of different sensing objectives (POD maps) into a single

objective that is weighted based on user need or the mission

objective. Figure 2 shows a one-dimensional example of

combining multiple POD maps. Notice that although the

map represented by the blue line has the highest POD value

initially, when combined with the other POD maps it has the

lowest POD value. This is due to its regression coefficient,

which is taken to be 0.6. In this way, although there is a

good indication that some useful information may be there,

it may not be a primary objective of the mission. Through

this linear regression technique the user can bias what the

robots should search/sense first but also allow the possibility

of searching/sensing secondary objectives if time permits.

B. Adaptive Algorithm for Nonholonomic Sensor Networks

Having a density function of a measurable phenomenon

we can employ dynamic sensor networks to get an estimation

of the concentration. In our particular case a group of

nonholonomic vehicles equipped with sensors are distributed

in an unknown area and position themselves near optimally

over the sampling space estimating the available sensory

information. The sensory function is assumed to be dynamic

(e.g., an oil spill [19] or a forest fire [20]).

The work of Schwager et al., presented in [14] and [21]

consists of implementing a stable and decentralized coverage

control law over a population of mobile sensors to solve a

facility location problem [22] by using centroidal Voronoi

tesselations. A consensus algorithm is used to propagate

the measurement information through the sensor network

using an adaptation law with a gradient estimator [23]. The

theoretical framework in [22] is developed for a distributed

controller considering holonomic vehicles.

In this paper, on the other hand, we propose a nonlinear

polar controller to drive a team of nonholonomic agents. The

control algorithm for each robot is organized as follows.
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Fig. 2. One-dimensional example of the linear regression algorithm.
Three POD maps (red (circles), cyan (triangles), blue (asterisks)) with
high probabilities of containing good information at x = −2, 0, and 2
respectively, are combined into a single one-dimensional POD map (black
(solid line)) that reflects the overall mission objective. LR POD Map (black
(solid line)) in the legend corresponds to the overall POD map after the
linear regression step. Here the POD map with the lowest probability (cyan
(triangles)) is the most important to the mission objective which is reflected
after the linear regression is done.

1) (Voronoi region) Determine the Voronoi partitioning

based on robot positions.

2) (Density function measurement) Take a measurement

of the density function from the environmental sensors.

3) (Gradient estimator) Approximate the calculation of

a gradient estimator using difference equations to pa-

rameterize the density function.

4) (Consensus error) Calculate the consensus error vector

to calculate the adaptation law using the gradient

estimator output.

5) (Center of mass) Approximate the center of mass of

the Voronoi region based on the estimated density

function.

6) (Polar coordinate conversion) Carry out the axis trans-

lation and trigonometric conversions to obtain the polar

coordinate position.

7) (Control actuation) Apply the nonlinear polar control

law to drive the robots to the center of mass of its

Voronoi region.

8) (Change of estimate parameters) Check for a problem

dependent condition to change the estimate parameters.

This is useful for dynamic density functions.

9) (Termination) Check if a problem dependent time

condition is fulfilled. If true, stop. Else goto Step 1.

To carry out the simulation and the experiments related to

our controller, we use a population of four robots to sense

a concentration of yellow light in a rectangular sampling

space of 4.7m×6.6m . The sampling space was divided in a

8× 8 grid where the geometric centroid of each rectangular

cell corresponds to the mean of a bidimensional Gaussian

function given by

Ki = 0.5e
−(q−μi)

2

2σ2
i , (3)

with σi = 0.7 m.

The light concentration is considered a time-varying den-

sity function φ(q, t) = K(q)T a(t) where the parameter vec-

tor a(t) is a piece-wise constant function a(t) : �m
+ �→ �m

+

and is right continuous. Also, we assume that limt→∞ a(t) =
ac where ac ∈ �m

+ is a constant value i.e., the density

function reaches a stable state.

We assume that the adaptation law rate and the angular

and linear speed of the agents are fast enough to follow the

slow dynamics of the density function.

The Voro++ library is used to calculate the Voronoi

tessellation vertices, and the numerical integral for the cen-

troid equation was approximated by Riemann summations

discretizing the inside of the polygons in a 8 × 8 grid

and adding the volumes of the hexahedra corresponding

to every division. In both control algorithms presented, the

partitioning of the space is done based on location of the

robots only.

V. RESULTS

A. Simulations

To simulate the prioritized multi-sensing behavior and

adaptive sensor network algorithm, we use the Player/Stage

interface which utilizes software drivers for the Pioneer P3-

AT robots that mimic their physical behavior when inter-

acting in an environment. Because of the realistic feedback

of the Player/Stage interface, the actual experimental envi-

ronment was roughly reconstructed in a two dimensional

representation. During simulation as well as in the actual

hardware experiment we opted to use magnetic and light

sources for the multi-sensing behavior and multiple light

sources for our adaptive algorithm.

This allows for simulations in Stage to behave very closely

to the actual hardware experiments, which allows for a

quick turnaround from simulation to experiments. Although

hardware drivers are available for the Phidgets Interface Kit

in Stage there does not exist software drivers for accessing

data from a “virtual” sensor. To overcome this setback during

simulation we choose to create “virtual” sensor data for the

magnetic and light sources. The “virtual” sensor data for both

the magnetic and light sources come from Gaussian functions

where sensor values are based on the current robot positions.

In this way we are able to simulate the physical environment

through Stage but also the sensing environment.

B. Experiments

Both the prioritized multi-sensing behavior and adaptive

algorithm for nonholonomic sensor networks were imple-

mented on our multi-vehicle testbed for qualitatively veri-

fication. However, our multi-vehicle testbed also allows for

more rigorous verification and validation if need be. A short

video showing snapshots of the experiments accompanies

this paper.
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1) Prioritized Multi-Sensing Behavior: The two spatial

distribution quantities that our sensors are measuring are

magnetic intensity as well as light intensity. Sensor mea-

surements taken by the robots are subject to noise, however

a detailed investigation of the affect of noisy measurements

on the algorithms is out of the scope of this paper. A

large magnet is placed at (.5m,−1.5m) and a light source

is emanating directly above (0m, 2m) in the search space.

The magnetic source used during the experiment was a “C”

shaped ferrite magnet placed in a box, which is capable of

producing a magnetic intensity of 126 gauss at a distance

of 40cm. The light source used for the experiment was a

100W flood lamp placed 2.5m above the ground. Also two

obstacles were placed in the search area to show the collision

avoidance capability of the control algorithm.

Laser range finders are used only for obstacle avoidance.

Localization currently is done through odometry, however

a Vicon motion capture system is currently being installed.

The sensed data is coupled with an (x,y) coordinate that

corresponds to a point in the world coordinate which is

subject to localization errors. To minimize localization errors,

the prioritized multi-sensing behavior was only run for 30

iterations. This was long enough to verify the qualitative

behavior of the algorithm.

Figure 5 shows the initial POD map used for the exper-

iment. Each robot first calculates its own Voronoi partition

based on its position as well as its neighbors. Next the point

that has the highest probability of containing “good” infor-

mation is calculated. For our experiment “good” information

represents a magnetic or light source. We notice also in

Figure 5 that after 30 iterations of the algorithm the POD

map has been reduced by a factor of two. Figure 3 shows the

points in the search space that the robots took measurements

from, in other words, where the highest probability of

obtaining good magnetic or light readings.

Figure 4 depicts the magnetic and light intensity maps after

30 iterations of the control algorithm. We see that indeed

the highest intensity values coincide with locations of the

magnetic and light sources respectively. We also notice that

two of the robots were taking measurements that coincided

with the magnetic and light sources, however the third robot

was taking measurement that did not coincide with any

source. This shows the dependence of the control algorithm

on prior information. Although the experiment was only ran

for 30 iterations, in simulation it is observed that the third

robot would eventually make its way towards one of the other

robots to help reduce the POD map or begin reducing the

POD map in areas that have yet to be reduced.

2) Adaptive Algorithm for Nonholonomic Sensor Net-
works: For the experiments we use four Pioneer P3-AT

robots as the one shown in Figure 1. The light is measured by

four precision light sensors fixed to the top of the aluminum

plate. The robots location is controlled through the odometry

system embedded in the robots which involves a gyroscope

and wheel encoders.

In Figure 6 we show the behavior of the euclidean distance

between the robots and the centers of mass of their Voronoi

Fig. 3. The robot trajectories during the experiment. The red dots indicate
the robot initial positions and the colored dots indicate the places that sensor
data was taken, i.e. the areas with the highest probability of detection based
on each robots voronoi partition.

partitions, and the consensus error which is an indicator of

the similarity of the parameter estimation between the robots.

Notice in both cases that the robots are reducing their average

distance to the centroids and the averaged difference of the

estimate parameter.

The plots in Figure 6 are affected by the noise of the

sensor measurements and the numeric approximation of the

centroid integrals. We show a filtered version of the signal

in red that illustrates the convergence.

Furthermore, the effect of the adaptive law approximation

is evident again in Figure 6, where the constant value

intervals correspond to the moment the robots are traveling

to their Voronoi cell centroid. The discontinuous edges

correspond to the moment the robots take a light measure-

ment and calculate the new centroids. Measurements are not

continuous, rather taken when the robots reach the desired

position.

Figure 7 depicts the average estimated light distribution

obtained by the robots during the experiment, before and

after the light concentration was moved in the search space.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we presented our multi-vehicle testbed for

environmental sensing and included experimental results

from two cooperative control algorithms, prioritized multi-

sensing behavior and a distributed adaptive algorithm for

nonholonomic sensor networks. The testbed provides an easy

transition from simulation to experimentation and has the

flexibility to be easily reconfigured to allow for a variety of

experiments involving measurements from the environment.
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Fig. 4. The top figure shows the magnetic intensity map 30 iterations of
the cooperative control algorithm. We see that the highest concentration of
the magnetic field is near (.5m,-1.5m). The bottom figure shows the light
intensity map after 30 iterations of the cooperative control algorithm. We
see that the light is concentrated near (0m,2m).

Future work entails further development of the multi-

vehicle testbed to enable experiments with both ground and

aerial vehicles with environmental sensing capabilities, as

well as the development of novel cooperative control algo-

rithms that make use of both ground and aerial vehicles for

environmental sensing, monitoring, and mapping. Another

avenue of future research is in the connectivity of the robot

team. In these algorithms connectivity was assumed, in a

more realistic setting, this assumption may not hold. We hope

to incorporate some aspects of communication constraints in

future algorithms to better model the real-time nature of the

robot communication network.
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