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Abstract: In this article, a robust non-linear recursive algorithm, featuring a highly reduced
computational load, is proposed to estimate the thrust acceleration of a typical flight vehicle.
The robustness of this new algorithm allows a significant increase of deviations in initial values
of the estimated parameters. In the proposed algorithm, at first, a transformation of the non-
linear measurement equation to a linear one, without any approximation, is obtained. Then
the recursive least squares algorithm is applied to the transformed equation. The maximum
achievable accuracy of the estimation for the non-linear problem is obtained analytically by the
Cramer–Rao lower bound and is compared with simulation results. Extensive simulations showed
that the new method provides an unbiased as well as a more robust thrust acceleration estimate
in comparison with the extended Kalman filter. Moreover, the proposed method is beneficial in
that it has a lower number of parameters and results in a simple design with less computational
effort.

Keywords: thrust acceleration, non-linear recursive least squares, extended Kalman filter,
robustness

1 INTRODUCTION

Power plant is one of the major systems of any
flight vehicle, and thrust deviations cause the per-
turbations about the nominal trajectory. Thrust devi-
ations usually result from uncertainties associated
with propellant compositions as well as nozzle geom-
etry alterations [1] that are very difficult to predict
and quantify [2]. Therefore, estimation of the actual
thrust acceleration parameters is the major of the
guidance and control system of a flight vehicle. This
estimation is also used to reconstruct the boost tra-
jectory [3, 4] and to monitor the condition of reusable
launch vehicles [5].

In the powered flight stage of every flight vehicle,
thrust acceleration is a non-linear function of mass
parameters. In general, the non-linear estimation
problem requires a complex iterative scheme to obtain
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the optimal solution [6]. The most straightforward way
is to linearize the non-linear prediction function and
to apply the linear estimation approaches. In some
cases, a non-linear problem can be segmented into
two or more separate linear problems, and then the
recursive least squares (RLS) method is used to solve
each problem [7]. A drawback of the estimators based
on an approximated linear model is their sensitivity to
modelling error.

Some other non-linear estimation approaches such
as the extended Kalman filter (EKF) and the Gaussian
second-order filter [8, 9] address the non-linearities
of the measurement and process dynamics models
by utilizing Taylor series expansions of the non-linear
equations. A good survey of non-linear estimation
methods is given in [10]. The EKF has been applied
extensively to real-time aerospace problems [11–
14]. Thrust estimation and failure detection can be
achieved using the EKF. However, it often requires an
accurate process model, good initializing, and pro-
cess noise to compensate for modelling errors and
approximations. Consequently, in this method the
tracking performance of the filter is highly dependent
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on a priori information. Poor performance or even
divergence arising from the linearization in the EKF
has led to the development of other non-linear fil-
ters such as the two-step optimal estimator [15]. One
significant limitation of most of these non-linear esti-
mation problems for the on-line applications is that
the computational complexity has increased.

In this article, an on-line non-linear recursive least
squares (NRLS) algorithm is proposed to estimate
the thrust acceleration of a typical flight vehicle with
emphasis on the robustness of the approach in the
presence of uncertainties. In this approach, first, a
linearizing transformation [9, 16] for the non-linear
measurement function of acceleration is obtained,
and then the parameters using the RLS method are
estimated without any approximation.The advantages
of this approach are: (a) it may be obtained by direct
calculations with less computational effort, whereas
non-linear estimation procedures require complex
iterative schemes and (b) there is no approxima-
tion in the linearizing transformation. Therefore, this
approach is more accurate and robust to estimate the
parameters of a class of non-linear processes.

The maximum achievable accuracy of the proposed
estimator for non-linear problems is obtained by the
Cramer–Rao lower bound (CRLB) [17, 18] analytically.Q1
CRLB is used in simulation to compare the EKF and
NRLS accuracies with a lower bound on the error
covariance that can be achieved by any unbiased esti-
mate for a non-linear stochastic system in terms of the
Fisher information matrix.

The article is organized as follows: in section 2,
the problem is formulated, in section 3 the EKF is
reviewed, the proposed on-line NRLS estimator is
presented in section 4, covariance analysis of the
non-linear estimation problem using the Cramer–Rao
bound (CRB) is given in section 5, and in section 6
the results obtained from the simulation of the pro-
posed approach are presented. Finally, conclusions are
presented in section 7.

2 PROBLEM FORMULATION

The objective is to estimate the thrust acceleration
of a typical flight vehicle using the non-linear mea-
surement model in the presence of the measurement
noise.

2.1 Accelerometer output model

The applied non-gravitational acceleration vector a of
a vehicle has the following components

a = aT + aA (1)

in which aT is the thrust acceleration and aA is
the aerodynamic acceleration of the vehicle. An

accelerometer is insensitive to the gravitational accel-
eration (g) and thus provides an output proportional
to the non-gravitational force per unit mass to which
the sensor is subjected along its sensitive axis [19].
The thrust and drag can be combined into the specific
thrust [4]. From equation (1) the axial acceleration is

a(t) = T
m(t)

= T
m0 − ṁt

(2)

in which m0 is the initial mass of the vehicle, ṁ the
mass flowrate of the propellant, T the thrust, and t the
time from motor ignition. The resultant momentum
and pressure thrust is given by [20]

T =
(

Ve + (Pe − Pa)Ae

ṁ

)
ṁ (3)

where Ve is the exhaust velocity of the propellant, Pe

the nozzle exit pressure, Pa the ambient pressure, and
Ae the nozzle exit area. The effective exhaust velocity,
c = Ve + (Pe − Pa)Ae/ṁ frequently defines motor per-
formance. In a solid motor, the thrust-level value may
change as much as ±10 per cent of its nominal value
due to temperature and pressure variations [21]. For a
solid motor, equation (2) can be written as

a(t) =
⎧⎨
⎩f (t) = 1

x1 + x2 t
t � tb

Tail(t) t > tb

(4)

where tb is the burn time and

x1 = m0

T
, x2 = −ṁ

T
= −1

c
(5)

In equation (4), Tail(t) is a function that describes
the tail behaviour of the acceleration, and it can be
approximated by a linear function. Generally, the time
deviation of the tail is small and its initial value can be
determined, Tail(tb) = f (tb). Therefore, in this article,
only the parameters of f (t) are estimated.

2.2 Performance index

Suppose that there are N measurements from a fixed-
regressor non-linear model with a known relationship
f (·). Thus

yi = fi(x) + vi, i = 1, 2, . . . , N (6)

where yi ∈ R is the ith measurement, x ∈ Rp the vector
of p unknown parameters or states and {vi} a random
sequence of zero-mean Gaussian white noise process
with variance given by σ 2. Assume that function f (·)
is differentiable with respect to x. The least squares
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estimate of x, denoted by x̂, minimizes the error sum
of squares

C(x) =
N∑

i=1

[ yi − fi(x)]2 (7)

This is a non-linear least squares problem. To obtain
the optimal solution, the non-linear estimation prob-
lem generally requires the complex iterative scheme
with high computational effort. If the estimation can
be done off-line, various non-linear search and itera-
tive batch algorithms can be used to minimize the cost
function, resulting in an optimal estimate [16]. How-
ever, many applications require real-time parameter
estimates obtained by a recursive algorithm. A num-
ber of approximate recursive algorithms have been
developed [8]. Standard non-linear recursive estima-
tors, such as the EKF, linearize the cost function to use
the well-known linear Kalman filter equations. This
approximation, however, results in an estimate that
is suboptimal and biased, i.e. the expected value of the
estimator is not the true value of the parameters.

In some cases, a transformation of variables z =
ϕ( y) can be introduced in such a way that the result-
ing function ϕ[ f (x)] is linear in x. Then the linear
least squares method can be applied to estimate x. In
this article, a linearizing transformation is proposed
in order to convert the non-linear acceleration func-
tion into a linear one without approximation. The
advantage of this approach is that the estimation may
be accurately obtained by less computational effort,
whereas non-linear estimation procedures require
complex iterative schemes.

3 REVIEW OF THE EKF

Consider the measurement yi and the non-linear
observation vector hi(x)

yi = fi(x) + vi, i = 1, 2, . . . , N

hi(x) = ∂yi

∂x

(8)

Measurement noise {vi} is a random sequence of zero-
mean Gaussian white noise with variance given by r.
After equation linearization, the EKF state estimate
x̂i and covariance matrix Pi are updated sequentially
when a measurement yi becomes available at discrete
time i [8, 22]

Ki = Pi(−)hi(−)

hT
i (−)Pi(−)hi(−) + r

(9a)

Pi(+) = [I − Kih
T
i (−)]Pi(−) (9b)

x̂i(+) = x̂i(−) + Kiei (9c)

ei = yi − f (x̂i) (9d)

where Ki is the Kalman filter gain. In the above equa-
tions, (−) indicates the value immediately before the
update and (+) indicates the value immediately after
the update. According to equations (9), the estimates
are updated with the non-linear measurement func-
tion f (x̂i), whereas the EKF gains Ki depend on the
measurement observation vector. Between succes-
sive updates, the non-linear dynamic system may be
integrated forward from i to the next measurement
update i + 1

x̂i+1(−) = g(x̂i(−)) + wi (10a)

Pi+1(−) = FiPi(−)FT
i + Q (10b)

in which w is the Gaussian white noise process with
zero-mean and covariance matrix E{wwT } = Q, x̂i(+)

and Pi(+) are initial conditions, and the linearized
dynamics matrix Fi may be determined by Fi = ∂g/∂x.
Pi+1(−) and x̂i+1(−) are updated using equations (9b)
and (9c) when the next measurement becomes avail-
able. An important limitation of the EKF is that the
prior covariance Pi(−) is not updated using the actual
statistics of ei. Instead, these statistics are inferred
from the relation

E[e2
i ] = si, si = hT

i (−)Pi(−)hi(−) + r (11)

Although this relation is valid for a linear process,
non-linear effects can cause differences between
the actual and modelled statistics of the filter
such that E[e2

i ] �= si. Therefore, Pi(+) may not accu-
rately indicate the statistics of actual estimates’
errors.

4 ON-LINE NRLS ESTIMATOR

Here, an algorithm using a transformation is pre-
sented to solve the non-linear least squares prob-
lem shown in equation (7). In the first step, the
non-linear measurement model y = f (x) is trans-
formed by a function z = ϕ( y) in such a way that
the function ϕ[ f (x)] is linear in parameter vector x.
Then, the least squares method [23, 24] is applied to
estimate x.

4.1 RLS approach

The RLS method calculates a new update for the Q2
parameter vector x̂ each time new data are received,
and it requires time for the computation of each
parameter. For time-varying systems, good tracking
capability can be ensured by introducing a forgetting
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factor λ � 1 [24]. It can easily be shown that the RLS
update is

Ki = Pi−1hi

hT
i Pi−1hi + λ

(12a)

Pi = (I − Kih
T
i )Pi−1

λ
(12b)

x̂i = x̂i−1 + Kiei (12c)

ei = yi − hT
i x̂i−1 (12d)

where ei is the one-step prediction error and hi the new
measurement for all regressors. The RLS algorithm has
two sets of variables that must be initialized and then
updated at each step: the process parameters x̂i and
the covariance matrix Pi. It can be shown that the
Kalman filter reduces to the weighted least squares fit
for the static problem [25] and provides an optimal
recursive alternative.

4.2 NRLS approach using linearizing
transformation

In this section, the proposed NRLS algorithm is formu-
lated. The structure of this new formulation is similar
to that of the RLS, but the error equation of the pro-
posed algorithm ei = yi − hT

i x̂i−1 is corrected, and the
error of the transformed measurement φ( yi) and the
transformed model ϕ[f (x̂i−1)] is used as follows

Ki = Pi−1hi

hT
i Pi−1hi + λ

(13a)

Pi = (I − Kih
T
i )Pi−1

λ
(13b)

x̂i = x̂i−1 + Kiei (13c)

ei = ϕ( yi) − ϕ[ f (x̂i−1)] (13d)

Notice that in this algorithm, although the states and
covariance matrix are updated for the transformed lin-
ear equations, there is no approximation as in the case
of EKF. This important feature improves the robust-
ness of the proposed approach in the presence of noise
and uncertainties as well as large deviations in initial
conditions of the estimated unknown parameters.

The motivation for the proposed NRLS is to devise
a robust recursive estimator for non-linear measure-
ment of the accelerometer that provides a better
performance than the EKF. It can be shown that the
EKF is biased and suboptimal [15] because it approx-
imates the original cost function by linearizing about
the previous estimate, whereas the NRLS algorithm,
proposed in this article, minimizes the desired cost
function at each measurement update by transform-
ing the non-linear measurement function (moving any
approximation), resulting in a more robust algorithm.Q3

4.3 Thrust acceleration parameter estimation
using the NRLS algorithm

The measurement model of the proposed estimator
can be written as

y = f (x) = 1
x∗

0 + x∗
1t

+ n(t) (14)

in which x = [x∗
0, x∗

1]T is the vector of the nominal
model parameters obtained from the nominal val-
ues of the thrust and mass flowrate and n(t) is the
measurement noise. This model generates data for
the various test conditions described in section 6. To
implement equations (13), we have

ϕ[ f (x̂)] = hTx̂ (15)

in which x̂ = [x̂0, x̂1]T, h = [1, t]T and also

ϕ[ y] = 1
1 + 1/(x∗

0 + x∗
1t) + n(t)

(16)

The proposed equations (13) to (16) describe the
NRLS algorithm to estimate the thrust acceleration at
current discrete time

â(ti) = 1
x̂0(ti) + x̂1(ti)ti

Figure 1 shows the block diagram of the on-line NRLS
algorithm for estimating the thrust acceleration model
parameters.

5 COVARIANCE ANALYSIS

One of the simple properties of the linear-Gaussian
estimation problem is that there is an explicit formula
for the estimation error covariance. This is unfortu-
nately not the case for general non-linear problems.
There are, however, a number of approximations and
bounds that have been developed for error covari-
ance for such problems, and one of the most basic
and useful approaches is the CRB. It can be used to
give us a lower bound on the expected errors between
the estimated quantities and the true values from
the known statistical properties of the measurements
errors. This lower bound indicates the theoretically
maximum achievable accuracy of the estimate.

Fig. 1 On-line NRLS algorithm for estimating the thrust
acceleration model parameters
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5.1 Cramer–Rao inequality

The Cramer–Rao inequality for an unbiased estimator
x̂ is given by [17]

P = E[(x̂ − x)(x̂ − x)T] � J−1 (17)

where the Fisher information matrix J is given by

J = E
{[

∂

∂x
C(x)

] [
∂

∂x
C(x)T

]}
= −E

[
∂2

∂x∂xT
C(x)

]
(18)

When the inequality in (17) is satisfied, the estimator x̂
is said to be efficient. This is useful for the investigation
of the quality of a particular estimator.

5.2 Covariance analysis of the transformed
non-linear model

To analyse the estimation error covariance of the
approach, the following model is considered

yi = 1
x0 + x1ti

+ vi, i = 1, 2, . . . , N (19)

where N is the number of measurements and vi

is a zero-mean Gaussian white noise process with
variance given by σ 2. In this non-linear estima-
tion problem, the parameter vector x = [x0, x1]T has
to be estimated from the measurement vectory =
[ y1, y2, . . . , yN ]T. Therefore, the covariance of the esti-
mated error is given by [26]

P = σ 2(HTH)−1 (20)

where

H � ∂y
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
(x0 + x1t1)2

−t1

(x0 + x1t1)2

−1
(x0 + x1t2)2

−t2

(x0 + x1t2)2

...
...

−1
(x0 + x1tN )2

−tN

(x0 + x1tN )2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

Matrix P is also equivalent to the CRLB. Now, the trans-
formation z = ϕ( y) is considered to imply linear least
squares to determine the parameters x0 and x1. How-
ever, by this transformation the measurement noise
will certainly not be Gaussian anymore. Therefore, the
main question is: how optimal is this solution? This
question is answered by studying the effects of apply-
ing this approach. Expanding z in a first-order series

gives (see Appendix 2 for details)

zi
∼= hT

i xi + εi (22)

where hi = [1, ti]T, xi = [x0, x1]T and

εi = −(x0 + x1ti)
2vi (23)

εi is the first-order expansion of the new measurement
noise. The linear least squares “H matrix”, denoted by
H̄ is given by

H̄ =

⎡
⎢⎢⎢⎣

1 t1

1 t2

...
...

1 tN

⎤
⎥⎥⎥⎦ (24)

and the estimated error covariance of the linear
approach is given by

P̄ = (
H̄T diag

[
ξ−1

1 , ξ−1
2 , . . . , ξ−1

N

]
H̄

)−1
(25)

where

ξi = (x0 + x1ti)
4σ 2 (26)

Comparing equations (20) and (25) shows that P is
equivalent to P̄ and, therefore, the CRLB is achieved
and the linear approach leads to an efficient estimator.
This shows how the Cramer–Rao inequality can be use-
ful to help quantify the errors introduced by using an
approximate solution instead of the optimal approach.

6 SIMULATION STUDY AND DISSCUSION

In this section, the simulation results of the EKF and
the proposed NRLS algorithms are compared and dis-
cussed. This study focuses on the robustness of both
algorithms to prove the effectiveness of the proposed
NRLS algorithm. Since there is no approximation in
the NRLS method, it will be shown that the method
has better robustness than the EKF.

6.1 Parameters of the model and the filters

A typical solid neutral burning motor was consid-
ered to study the performances of the estimation
algorithms. Many motors in aerospace industry are
neutral burning, and their thrust, pressure, and burn-
ing surface remain approximately constant during
burn time [1]. The thrust can be modelled as simpli-
fied rectangular. In this section, both rectangular and
realistic time-varying models of thrust are considered,
to compare the estimators.

The constant parameters of the acceleration model
were considered: T̄ = 10 000 × 9.8 N, ¯̇m = −80 kg/s,
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tb = 20 s, and m0 = 3000 kg. T̄ and ¯̇m are the aver-
age values of thrust and mass flowrate, respectively.
Time step 	t and the initial values of the covariance
matrix of both filters were set as 	t = 0.02 s, P0 = 2.0 I
m/s2. For the proposed NRLS, the forgetting factor was
set as λ = 0.98. For the EKF the linearized dynamics
matrix F and the linearized measurement vector hi

were obtained

F =
[

1 0
0 1

]
, hi =

[ −1
(x0 + x1ti)2

−ti

(x0 + x1ti)2

]T

(27)

The measurement noise r and the process noise matrix
Q were set as

r = 0.25, Q = β

[
10−9 0

0 10−11

]
(28)

β is a scalar, and for the nominal condition β = 1. We
will use it for the sensitivity analysis. These conditions
were used as the baseline for the entire study.

6.2 CRLB of the simulation results

The CRLB plays an important role in the evaluation
of estimation. The effects of the parameter-estimate
error and other error sources such as non-linearities
and sensor accuracies increase the covariance error.
Therefore, the CRLB is a conservative bound. Here, for
the acceleration model given in section 6.1, the perfor-
mance of the EKF and NRLS methods achieved by the
simulation is compared with the theoretical CRLB. It
is defined as the trace of the covariance matrix shown
in equation (20).

Figure 2 compares the root of CRB,
√

CRB(solid
line), the root mean square (r.m.s.) of the estimated

acceleration model parameters using the EKF (dashed
line), and the NRLS (dotted line) algorithms. A very
close agreement is observed between the theoreti-
cal and simulation results for the proposed NRLS
algorithm, and the r.m.s. of estimation error (or the
root of covariance matrix trace) of the NRLS is greater
than

√
CRB. This is due to the linearization of the

measurement model and the applied noise level. This
figure also shows that the r.m.s. of estimation error of
NRLS is less than that of the EKF method.

6.3 Comparison of robustness of the EKF and
NRLS methods

The methods were compared with respect to uncertain
initial values of the estimated parameters, the process
noise, and thrust deviations.

6.3.1 Robustness with respect to the deviations of the
initial values

In this problem, the sensitivity of both filters with
respect to the initial values of x1 is less than that of
x0. Thus, only the sensitivity of the estimators for a
set of the initial values of parameter x0 was given.
Figure 3 illustrates the sensitivity of the EKF for the
initial condition set x0 (0) = [0.01,0.03,0.05,0.06]T. The
initial value x0 = 0.03 (solid line) is nearest to the nom-
inal value. In this case, parameters x0, x1, and thrust
acceleration tend to their nominal values, and there-
fore, the tracking performance of the EKF is achieved.
Increasing the distance of x0 from the nominal value
(x0 = 0.01 (dashed line) and x0 = 0.05 (dotted-dashed
line)) results in increase of the estimation tracking
error for x0. Finally, in the case of x0 = 0.06 (dotted line)
the EKF diverges. As a result, it is a sensitive estimator

Fig. 2 The root of CRB (solid line), the r.m.s. of the estimated acceleration model parameters using
the EKF (dashed line), and the NRLS (dotted line) algorithms
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Fig. 3 The sensitivity of the EKF for the initial condition set x0(0) = [0.01, 0.03, 0.05, 0.06]T

Fig. 4 Time history of x0 for a large value of the initial condition set x0(0) = [0.0, 0.03, 0.10, 0.20,
0.40]T to demonstrate the high robustness of the proposed NRLS

with respect to the parameters’ initial conditions, and
they must be tuned accurately.

Figure 4 demonstrates the high robustness of the
proposed NRLS for the initial condition set x0(0) =
[0.0, 0.03, 0.10, 0.20, 0.40]T. The set has larger values
than the previous one. For the values less than 0.10, the
proposed filter has the desired tracking performance.
The rise time of the filter increases to between 0.10 and
0.20, but the tracking error tends to zero. In this case,
the filter has acceptable performance.

To illustrate higher robustness of the NRLS, an inter-
val of 0.20 until 0.40 for x0 was considered. Although
the rise time of the NRLS has increased sharply in this
interval, the filter parameters still tend to their nom-
inal values. Figures 5 and 6 show further information
such as the thrust, mass flowrate, and the acceleration

for two initial conditions 0.2 and 0.4 of x0, and these
figures confirm that the NRLS has a higher robustness
compared with the EKF. This is theoretically referred
to the transformation of the non-linear measurement
function instead of its linearization.

6.3.2 Sensitivity of the EKF to the variations of the
process noise level

In the EKF algorithm, a process noise matrix is gen-
erally included to compensate for non-linear effects,
however, because of the initializing of the states and
covariance matrix, the tuning procedure of the pro-
cess noise matrix can be cumbersome. In contrast, the Q4
NRLS algorithm does not need to use the process noise
matrix in the algorithm. To study the sensitivity of the

JAERO371 © IMechE 2008 Proc. IMechE Vol. 222 Part G: J. Aerospace Engineering
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Fig. 5 Time history of the thrust and mass flowrate obtained from estimated parameters for a large
value of the initial condition set x0(0) = [0.20, 0.40]T – NRLS

Fig. 6 Comparison of the true acceleration and the acceleration obtained from estimated
parameters for a large value of the initial condition set x0(0) = [0.20, 0.40]T – NRLS

EKF algorithm due to the deviation of the process noise
level, the values of parameter β of the process noise
matrix Q in equation (28) were considered to be 100
and 1.

The mean and the r.m.s. of the estimated acceler-
ation model parameters (x0, x1) along the nominal
deterministic parameters were computed. The EKF
algorithm was used and the deviation of the process
noise level was considered. Figures 7(a) and (b) show
the mean and r.m.s. of the estimated parameters x0 and
x1, respectively. Solid line indicates the true determin-
istic parameters. Dashed and dotted lines indicate the
parameters for the nominal case (β = 1) and the devi-
ated case (β = 100), respectively. Although the mean

of parameter x1 in both cases converges to its nomi-
nal value and its r.m.s. tends to zero, in the deviated
case the mean and r.m.s. of parameter x0 diverge.
In other words, the EKF for non-linear problem is a
biased filter again, due to the deviations of the process
noise matrix.

6.3.3 Performance of the estimators for a
time-varying model of thrust

Based on the parameters of the acceleration model
described in section 6.1, a realistic time-varying thrust
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Fig. 7 (a) The sensitivity of the mean and r.m.s. of the estimated acceleration parameter x0 using
the EKF algorithm due to the deviation of the process noise matrix Q (b) The sensitivity of
the mean and r.m.s. of the estimated acceleration parameter x1 using the EKF algorithm
due to the deviation of the process noise matrix Q

was modelled as follows

T (t) =
{

(1 − 0.01t)T̄ 0 � t < 5

(0.95 + 0.01(t − 5))T̄ 5 � t < 20
(29)

A similar function was also written for ṁ. The bias
of the accelerometer was considered to be 10 mg
(0.1 m/s2) and the standard deviation of the measure-
ment Gaussian noise σ was assumed to be 15 mg.
Figure 8 illustrates the measured acceleration (dot-
ted line) and the estimated acceleration (solid line)
using the proposed NRLS method. This experiment
demonstrates that the method can also accurately
estimate the thrust acceleration when the motor has
time-varying thrust.

Figure 9 compares the estimated acceleration error
for the NRLS (solid line) and EKF (dotted line) meth-
ods. As it can be seen, before 5 s (when the sign of thrust
rate is changed) the estimation errors of both methods
are close to each other, but after this time the estima-
tion error of the NRLS converges to the accelerometer
bias faster than that of the EKF. Moreover, after 5 s the
maximum deviation value of the NRLS (i.e. 0.2 m/s2)
is much less than that of the EKF (i.e. 0.5 m/s2). In
other words, the NRLS method produces a faster as
well as more accurate output result than the EKF. The
figure also shows the effect of the accelerometer bias
on the estimation accuracy. Recall that the accelerom-
eter bias can be removed by a posterior calibration
procedure.

JAERO371 © IMechE 2008 Proc. IMechE Vol. 222 Part G: J. Aerospace Engineering
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Fig. 8 The measured acceleration (dotted line) and the estimated acceleration (solid line) using
the proposed NRLS method for time-varying thrust

Fig. 9 The error of estimated acceleration and true acceleration for the NRLS (solid line) and EKF
(dotted line) methods for time-varying thrust

According to the results presented in this section,
the EKF differs significantly from the optimal estimate
and is highly dependent on the initial guess and the
process noise matrix. In contrast, the proposed NRLS
algorithm is a more robust and accurate estimator due
to the initial conditions and thrust deviations.

7 CONCLUSIONS

In this article, an on-line NRLS algorithm is proposed
to estimate the thrust acceleration of a typical flight
vehicle. A linearizing transformation is suggested to

transform the non-linear measurement model to a
linear one and then, the RLS algorithm is applied
to the problem. In the error equation of the pro-
posed algorithm, there is no approximation as in
the case of EKF. For this reason, the proposed NRLS
algorithm improves the robustness and accuracy of
the estimation. The CRB is obtained for the non-linear
problem to quantify the errors introduced using an
approximate solution instead of the optimal approach.
Covariance analysis and simulation results show that
the proposed non-linear estimator is an efficient
estimator.
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To demonstrate the effectiveness of the NRLS
method, it is examined in the presence of uncertain-
ties in the initial conditions of the parameters and
variations of thrust profile. Comparison with the EKF
shows that the EKF is a biased estimator and dif-
fers significantly from the optimal estimate. It is also
highly dependent on the initial guess and the pro-
cess noise matrix. In contrast, the proposed NRLS
algorithm is nearly independent of the initial guess,
and it is a more accurate estimator for the thrust
acceleration because of moving any approximation.Q4
Moreover, this algorithm is easy to implement with
less computational effort and design parameters.
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APPENDIX 1

Notation

a(t) axial acceleration
Ae nozzle exit area
C(x) cost function
e prediction error
F linearized dynamics matrix
h observation vector
J Fisher information matrix
K Kalman filter gain
m0 initial mass of the vehicle
ṁ mass flowrate of the propellant
P covariance matrix
Pe nozzle exit pressure
Pa ambient pressure
Q process noise matrix
r measurement noise variance
T thrust
Ve exhaust velocity of the propellant
x̂ estimated parameters
x parameters of estimation
y measurement

ϕ(·) linearizing transformation
λ forgetting factor
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APPENDIX 2

Expanding zi in a first-order series

In equation (19) zi is a non-linear function of the
measurement noise vi as follows

zi = 1
yi

= 1
1/(x0 + x1ti) + vi

(30)

A first-order expansion of this equation with respect to
vi is given by

zi = (x0 + x1 ti)
1

1 + (x0 + x1 ti)vi

∼= (x0 + x1 ti)(1 − (x0 + x1 ti)vi)

= (x0 + x1 ti) − (x0 + x1 ti)
2vi

(31)

The variance of εi � −(x0 + x1 ti)
2vi, denoted by ξ 2

i , is
derived from

E[εi] = −(x0 + x1ti)
2E[vi] = 0 (32)

ξ 2
i � Var(εi) = E[ε2

i ] − E2[εi] = (x0 + x1 ti)
4σ 2 (33)

It is seen that ε(k) is a zero-mean Gaussian white noise
process with variance ξ 2

i ; in other words, the noise
characteristic is not changed.
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Q1 The abbreviation of Cramer-Rao lower bound CRB is changed to CRLB to distinguish it from Cramer-Rao
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