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Abstract—In this paper, we consider the joint optimization of
the source power allocation and relay beamforming weights in dis-
tributed multiuser peer-to-peer (MUP2P) relay networks applying
the amplify-and-forward (AF) protocol. We adopt a quality-of-ser-
vice (QoS) based approach, in which the total power transmitted
from all sources and relays is minimized while guaranteeing the
prescribed QoS requirement of each source-destination pair. The
QoS is modeled as a function of the receive signal-to-interference-
plus-noise ratio (SINR) at the destinations. Unlike the existing con-
tributions, the transmitted powers of the sources and the beam-
forming weights of the relays are optimized jointly in this paper.
Introducing an appropriate transformation of variables, the QoS
based source power allocation and distributed relay beamforming
(PADB) problem can be equivalently transformed into a differ-
ence of convex (DC) program, which can be efficiently solved with
local optimality using the constrained concave convex procedure
(CCCP). Based on this procedure, we also propose an iterative fea-
sibility search algorithm (IFSA) to find an initial feasible point of
the DC program. The analytic study of the proposed solution con-
firms that it converges to a local optimum of the PADB problem.
Numerical results show that our solution outperforms (in terms
of the total transmitted power) the alternating optimization pro-
cedure and the exact penalty based DC algorithm. In addition,
the proposed IFSA outperforms the alternating optimization algo-
rithm in finding feasible points of the DC program (i.e., the equiv-
alence of the PADB problem).

Index Terms—Constrained concave–conves procedure (CCCP),
difference of convex (DC) program, distributed relay beam-
forming, iterative feasibility search algorithm, joint optimization,
multiuser peer-to-peer relay networks, source power allocation.

I. INTRODUCTION

M ULTIUSER peer-to-peer (MUP2P) relay networks,
where source-destination pairs communicate in

a pairwise manner with the help of relays, have recently
received increasing attention in the wireless community [1],
[3]–[17]. In MUP2P relay networks, when all network nodes
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operate in half-duplex mode, the concurrent information
transfer between the source-destination pairs over the
relays take place in two phases, carried out, e.g., in two consec-
utive time-slots. In the first time-slot, all sources simultaneously
transmit to the relay nodes on the same frequency band, and in
the second time-slot, all relays simultaneously transmit to the
destinations, also on the same frequency band. In such MUP2P
relay networks, the concurrent transmissions of the data
streams between the source-destination pairs (i.e., peers)
are facilitated by the use of distributed relay beamforming (also
referred to as network beamforming [14]) techniques1 applied
at the relays [1], [3]–[14].
Early works on MUP2P relay networks have focused on

the optimization of the distributed relay beamforming weights
with fixed source transmit power allocations [4]–[10], but not
the joint optimization of both, source transmit powers and
relay beamforming weights. Apparently, a joint approach,
though more challenging due to the nonconvex nature of the
problem, can provide a significant performance improvement
over the existing approaches [4]–[10], due to the increased
number of degrees of freedom in the joint design. The authors
of [15]–[17] have considered the optimization of the source
and relay transmit powers. In these works [15]–[17], the relay
scaling factors are confined to be real and nonnegative, which
induces a performance loss compared with distributed relay
beamforming with complex relay weighting coefficients [1],
[4]–[14].
More recently, the authors of [1], [11], and [13] have studied

the joint optimization of the source power allocation and relay
beamforming weights in distributed MUP2P relay networks.
However, rather than a truly joint optimization, in these works
[1], [11], [13], the alternating optimization approach has been
taken, in which the source transmit powers are optimized while
the relay beamforming weights are fixed, and vice versa. This
procedure is carried out iteratively until the convergence of the
objective function value [1], [11], [13]. Although superior per-
formance of the alternating optimization approach over the ex-
isting relay beamforming designs [5], [8] which do not involve
source power allocation has been confirmed through simula-
tions in [1], [11], and [13], its computational complexity is very
high and an analytic characterization of the alternating opti-
mization framework [1], [11], [13] seems intractable.

1In this work, the term ”distributed relay beamforming” refers to the sce-
nario where the relays collaboratively form beams towards the destinations
by means of coherent data processing. However, the payload data are not ex-
changed between the relays. The relay beamforming weights are, e.g., computed
at a central unit and then fed, e.g., to the relays [1], [3]–[14].
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In this paper, unlike the alternating optimization framework
[1], [11], [13], we take a truly joint optimization approach to
address the source power allocation and distributed relay beam-
forming (PADB) problem in MUP2P relay networks under
amplify-and-forward (AF) relaying, which is based on the
difference of convex (DC) programming2 technique [2], [18],
[19]. Specifically, we model the QoS of each source-destination
pair by means of its receive signal-to-interference-plus-noise
ratio (SINR) at the destination node, and the design objective is
to minimize the overall power transmitted from the source and
relay nodes, while guaranteeing that the receive SINR of each
destination node is above a predefined threshold. In summary,
the main contributions of this paper are as follows:
• We propose a QoS based approach for the PADB problem
in AF MUP2P relay networks, in which the source trans-
mitted powers and the relay beamforming weights are op-
timized jointly (and simultaneously), rather than in an al-
ternating procedure [1], [11], [13].

• We transform the PADB problem into a DC program [2],
[18], [19], by applying an appropriate transformation of
variables.

• We propose a low-complexity iterative algorithm to solve
the DC program, which is based on the constrained con-
cave-convex procedure (CCCP) [20]–[22]. We further in-
troduce a novel initialization procedure that is based on
a feasible point of the PADB problem obtained from a
novel iterative feasibility search procedure, rather than an
arbitrary (infeasible) point as in the conventional CCCP
[20]–[22]. This initialization procedure can also be applied
to improve the CCCP in other DC programming problems
[19].

• We prove analytically that the proposed solution converges
to a local optimum of the DC program, and thus also a local
optimum of the PADB problem.

Numerical results show that the proposed low-complexity so-
lution outperforms (in terms of the total transmitted power) the
alternating optimization method proposed in [1] and the exact
penalty based DC algorithm (EP-DCA), which is widely used
for solving DC constrained DC programs [2]. In addition, the
proposed iterative feasibility search algorithm (IFSA) performs
better than the alternating optimization algorithm [1] in finding
feasible points of the DC program, while the performance of the
proposed IFSA and the EP-DCA of [2] is comparable.
The rest of this paper is organized as follows. The MUP2P

relay network model and the two-hop data transmission
schemes are introduced in Section II. In Section III, the
QoS based PADB problem is formulated and the problem
is then transformed into a DC program using an appropriate
transformation of variables. In Section IV, we propose a
low-complexity solution of the DC program and the IFSA,
together with the analytical studies of the proposed algorithms.
Numerical results and discussions are presented in Section V.
Finally, Section VI concludes the paper with a summary of the
main results.

2DC programs are optimization problems whose objective and/or constraint
functions are functions that can be written as DC functions [2], [18], [19].

Fig. 1. A multiuser peer-to-peer (MUP2P) relay network, with single-an-
tenna sources , single-antenna relays , and single-an-
tenna destinations , sharing the same time and frequency radio re-
sources. The source intends to convey information to its corresponding des-
tination with the help of the relay nodes.

Notations: Throughout this paper, vectors and matrices are
denoted with boldface lowercase and uppercase letters, respec-
tively. , , and denote the set of positive real numbers, the
set of real numbers, and the set of complex numbers, respec-
tively. The operator constructs a diagonal matrix from
the elements of the vector . denotes the statistical expec-
tation. and denote transpose and conju-
gate transpose of vector , (matrix ), respectively. de-
notes the real part of a variable. The vector denotes a column
vector whose elements are all ones. The symbol denotes the
element-wise (Hadamard) product of two matrices. Finally, the
symbol denotes the Cartesian product of two sets.

II. SYSTEM MODEL

In this section, we introduce the MUP2P relay network
model, as well as the two-hop data transmission schemes under
AF relaying.

A. Multiuser Peer-to-Peer Relay Network Model

Consider a MUP2P relay network with sources ,
destinations , and relays , as shown in

Fig. 1, with all nodes equipped with a single antenna each.
The source conveys independent information to its in-

tended destination , with the help of the relays. When
all the nodes operate in half-duplex mode, the two-hop data
transmission takes place in two phases, e.g., in two consecutive
time-slots. Specifically, in Phase I, all sources simultaneously
transmit to the relays over a common frequency band, and in
Phase II, all relays simultaneously transmit to the destinations,
also sharing the same frequency band. In this paper, we con-
sider the case where there is no direct link between sources and
destinations and there is no message passing between any of the
relays. Moreover, it is assumed that the source transmit powers
and the relay beamforming weights are computed at a central
node and then fed back to the sources and relays, respectively.

B. Two-Hop Data Transmission Under AF Relaying

Suppose that the AF relaying protocol is adopted at the relays.
Then the relays simply amplify and forward their received sig-
nals to the destinations without decoding the information bits.
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Let denote the received signal at the relay in Phase I,
under a frequency-flat channel model, the vector of
received signals at the relays is given by

(1)

where
— the vector , with

denoting the frequency-flat channel coefficient
from the source to the relay, , with

and ;
— the vector , with

denoting the transmitted power of the source,
;

— the variable denotes the transmitted symbol of
the source, which is assumed to have unit power, i.e.,

, ;

— the vector , with
denotes the additive white Gaussian noise (AWGN) at the
relay, with mean zero and variance3 .

In Phase II, the relays amplify and forward their received sig-
nals to the destinations. The received signal at the desti-
nation is given by

(2)

where
— the vector , with

denoting the frequency-flat channel coefficient
from the relay to the destination, ;

— the matrix , with the beamformer
and denoting the beam-

forming weight used by the relay, ;
— the variable denotes the AWGN at the desti-
nation, with mean zero and variance .

Substitute (1) into (2), we obtain the end-to-end input-output
relationship of the source-destination pair as

(3)

where the diagonal matrix is defined as:
.

Similar to [1], [4]–[11], [13], and [15]–[17], we further as-
sume that all the channel coefficients, data symbols, and the
noises at the relays and destinations are statistically indepen-
dent, and the co-channel interference (CCI) at the destinations
is treated as noise, i.e., the destinations are assumed to perform
single user detection. The receive SINR at the destination,

3For notational simplicity, we assume that the noises at the
relays are independent and identically distributed (i.i.d.), and the noises

at the destinations are also i.i.d. The results of this paper
hold, however, also for nonidentically distributed noises at the relays (destina-
tions).

denoted as , can then be written as [1], [5], [8], [10],
[11], and [13]:

(4)

where the Hermitian positive-semidefinite matrices
and are defined as

, and
(which is diagonal), respectively,

.
To compute the optimal source power allocation and

relay beamforming weight vector , the central processing
node requires the knowledge of the second order statistics
of all the channel coefficients. To be specific, the central
processing node generally requires the knowledge of the
co-variance matrices and , .
However, in practice channel models as introduced in [4]–[6]
can be applied, in which the central processing node only
requires the knowledge of the channel means, i.e., and

, as detailed in Section V.
After computing the optimal source power allocation and
relay beamforming weight vector , the central processing
node feeds the transmit power and beamforming weight
forward to the source and relay, respectively [5],

[7]–[10].

III. QOS BASED PADB PROBLEM FORMULATION

In this section, we first formulate the QoS based PADB
problem for MUP2P relay networks and then transform the
problem into a DC program through the use of an appropriate
transformation of variables.

A. PADB Problem Formulation

In the QoS based PADB problem, the objective is to jointly
minimize the total transmitted power of all sources and relays,
while maintaining a minimum QoS level for each source–des-
tination pair [1], [5], [7]–[11], [13], [15]–[17]. Similar to [1],
[5], [7]–[11], [13], and [15]–[17], for the source-destination
pairs, we define the following QoS constraints:

(5)

where is the predefined receive SINR threshold at
the destination node . Then, the QoS based PADB
problem in the MUP2P relay network can be formulated as the
following optimization problem:

(6a)

(6b)

(6c)

where the term and the term
denote the total power transmitted from the sources
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and the relays, respectively, with the diagonal Hermi-
tian positive semidefinite matrix defined as

. In this paper, it is assumed that
the matrices , i.e., the second-order
statistics of the channel coefficients, are known perfectly at the
central node, which is a common assumption widely used in
the existing literature [4]–[6], [14].
The PADB problem in (6) is computationally difficult4 to

solve because the objective function (6a) and the constraint set
(6b) are nonconvex, and the problem cannot be easily converted
into a convex problem [1], [11], [13]. As a result, finding a
global optimum of problem (6) is computationally expensive or
even intractable. In this case, designing low-complexity algo-
rithms to compute local minima of problem (6) is more mean-
ingful in practice. In the following, we shall transform the PADB
problem (6) into an equivalent DC program using an appropriate
transformation of variables. Then a low-complexity algorithm
is proposed to solve the DC program, which yields a local min-
imum of the DC program, and thus also a local minimum of the
PADB problem (6).
It is worth mentioning that our approach naturally extends

to the cases where additional total and/or individual source
transmit power constraints, as well as the total and/or individual
relay transmit power constraints are included in the problem
formulation (6). This is because such transmit power con-
straints are generally convex [10], [14] and are therefore easy
to incorporate in the framework considered in this paper. For
simplicity of presentation, we omit these additional constraints
here.

B. DC Program Re-formulation of the PADB Problem

We assume without loss of generality that the minimum re-
quirement of the receive SINR at the destination is strictly
larger than zero, i.e., . Otherwise, when ,
the source-destination pair is actually not scheduled to be
served and the variable can be ignored. Therefore, we can
focus on the case that all elements of the vector are positive.
Hence, we can introduce the following variable transformations:

(7)

and we further define the vector

(8)

With the notation introduced in (7), we can transform the ob-
jective function in (6a) into a strictly convex function and the
SINR constraints in (6b) into inequality constraints of DC form
[2], [18], [19]. This leads to a DC program reformulation of the
PADB problem (6). To be specific, with the vector defined in
(8), the objective function (6a) can be transformed into

(9)

4Even with fixed source power allocation , problem (6) is still a nonconvex
quadratically constrained quadratic program (QCQP) in the beamformer ,
which is very difficult to solve, see, e.g., [5], [8]–[10], and [23] for details.

which represents the sum of the convex functions
and , and the quadratic-over-linear

functions of type , where the latter
functions have the following nice properties.
Lemma 1 (Convex Functions): Given the Hermitian positive

semidefinite matrix , the quadratic-over-linear func-
tion of type is jointly convex5 in the variables

.
Proof: Please refer to [24, Sec. 3.2.6] for the proof.

From the definitions of the matrices , and we
know that the matrices , , and are Hermitian positive
semidefinite, . Therefore, as a direct application of
Lemma 1, we have the following corollary.
Corollary 1 (strictly Convex Objective Function): The objec-

tive function given in (9) is strictly jointly convex in the vari-
ables .

Proof: Please refer to Appendix A for the proof.
Similar to the transformation of the objective function in (9),
substituting the vector in (8) into (6b), the minimum SINR
constraints in (6b) can be rewritten as

(11)

where the functions and are defined as

(12)

(13)

We remark that the functions and in (12)
and (13), respectively, are both convex functions jointly in the
variables , as can be observed from
Lemma 1 and the fact that the summation of convex functions
is also a convex function [24, Sec. 3.2]. Hence, the function

defined in (11) represents the difference of two
convex functions, i.e., a DC decomposition [2], [18], [19].
As a summary, with the DC decomposition given in (11), the

PADB problem (6) can be equivalently transformed into the fol-
lowing DC program:

(14a)

(14b)

(14c)

where the constraints given in (14b) represent inequality con-
straints of DC type [2], [18], [19]. For ease of elaboration, we

5A function is jointly convex in the vari-
ables , if

(10)

for all , . Further-
more, the function is strictly jointly convex if strict inequality holds in (10) for

and [24, Sec.
3.1], [25].
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further introduce the compact notation
that will be used in the sequel.

Remark 1 (Equivalent Transformation): The PADB problem
in (6) and the DC program in (14) are equivalent in the sense that
all solutions of problem (14) can be transferred directly into the
corresponding solutions of problem (6), and vice versa.

IV. THE PROPOSED ITERATIVE ALGORITHMS AND
CONVERGENCE ANALYSIS

In this section, we propose a low-complexity algorithmic so-
lution for the DC program (14), which is based on the CCCP
[21], [22]. In contrast to the conventional CCCP as proposed
in [21], here we introduce a novel initialization with a feasible
point of the DC program that is obtained from the proposed
IFSA (see Section IV-B for details). Through analytic studies,
we show that the proposed solution always yields a local min-
imum of the DC program (14), and thus a local minimum of the
PADB problem (6).

A. The Proposed Low-Complexity Solution

The CCCP, first proposed in [21], describes an sequential
convex programming method that is widely adopted for solving
DC programs [21], [22]. The main idea of the CCCP based al-
gorithm is to iteratively approximate the originally nonconvex
feasible set in (14b) around the current point by a convex subset
and then solve the resulting convex approximation in each itera-
tion using, e.g., the standard primal-dual interior point methods
[24, Sec. 11.7]. As the nonconvex part in problem (14) stems
from the fact that the function is convex but not concave,
we approximate this function in the iteration by its first-
order Taylor expansion around the current point

. According to [26], [27], the first-order Taylor expansion
of the real-valued function of the complex-

valued vector is given by (see, e.g., [26, Theorems 3 and 4]),

(15)

which is an affine function in . Here, denotes
the conjugate derivative of the function with re-
spect to (w.r.t.) the complex vector , evaluated at the point

. With the variable being

real and positive, the conjugate derivative is given
by [26], [27], [28, Appendix B]:

(16)

Inserting (16) into (15), the affine approximation
of the function can be written as, with

,

(17)

Then, in the iteration of the proposed CCCP based itera-
tive algorithm, the following convex optimization problem:

(18a)

(18b)

(18c)

is solved and the solution is denoted by . This procedure
is carried out iteratively until convergence or until the maximum
number of allowable iterations is reached.
We remark that, since the function is convex in the

variable , it is minorized by its first-order
Taylor expansion [24, Sec. 3.1], i.e.,

(19)

which suggests that

(20)

From (20) above, we know that the convex constraints in (18b)
can be considered as a strengthening of the original nonconvex
constraints in (14b). In other words, the feasible set defined in
(18b) is a subset of the true feasible set defined in (14b). As a
result, provided that the initial point is feasible for the DC
program (14), then all the iterates, generated by itera-
tively solving the convex optimization problem (18) with the
affine approximation in (17), always belong to the true feasible
set defined in (14b).
We summarize the proposed low-complexity solution as Al-

gorithm 1 given in the table below, where we assume that an
initial feasible point of the DC program (14) is available
(see Section IV-B for details on how to obtain an initial feasible
point).
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Algorithm 1: The Proposed Low-Complexity Solution

Initialization: Define the tolerance of accuracy and the
maximum number of iterations ; Initialize the algorithm
with a feasible point ; Set the iteration number .

Repeat:
1: Compute the affine approximation according
to (17).

2: Solve problem (18), and assign the solution to .
3: Update the iteration number: .

Until: The sequence converges, i.e.,
; or the maximum number of

iterations is reached, i.e., .

Remark 2 (Low-Complexity Solution): Algorithm 1 provides
a low-complexity solution, in the sense that in each step a
simple convex optimization problem is solved. The proposed
Algorithm 1 converges to a local optimum after a few itera-
tions as can be observed from the numerical experiments (see
Section V-C).

B. The Proposed Iterative Feasibility Search Algorithm

As a novel modification of the CCCP [21], the proposed Al-
gorithm 1 presented in the previous subsection is initialized with
a feasible point of the DC program (14), rather than an arbi-
trary point as in the conventional CCCP [21]. The main advan-
tage of the proposed new initialization method stems from the
fact that, once the proposed algorithm starts with a point in the
feasible set of the DC program (14), all the iterates gen-
erated by the algorithm (i.e., the algorithm trajectory) remain
within the original feasible set of the DC program (14). In addi-
tion, if the CCCP is initialized with a random (infeasible) point,
the CCCP may fail at the first iteration due to the infeasibility of
problem (18). However, the task of computing a feasible point
of a nonconvex optimization problem, e.g., the PADB problem
(14), is NP-hard in general [29]. This observation motivates
the development of suboptimal, however, low-complexity fea-
sibility search procedures.
Inspired by the phase I method [24, Sec. 11.4] and the IFSA

of [10], we propose an IFSA to find an initial feasible point of
the DC program (14). We remark that the proposed initialization
method and the IFSA can straightforwardly be applied to solve
other problems that can be formulated as DC programs [19].
The proposed IFSA is based on similar iterative affine ap-

proximations of the originally nonconvex constraints as used in
Algorithm 1, but with the following two modifications: i) the
proposed IFSA starts with an arbitrary (e.g., a random) point

, and ii) in the iteration, instead of minimizing the total
transmitted power as in problem (18), we minimize the slack
parameter , which can be regarded as an abstract measure
of the constraint violations. The feasibility problem can then be
expressed as the following convex program:

(21a)

(21b)

(21c)

with defined according to (17). If the current ob-
jective value is zero, then the algorithm stops; other-
wise, the algorithm continues until convergence or until the
maximum number of allowable iterations is reached6. If no fea-
sible point could be found with the proposed method, some
admission control mechanisms can be adopted to reduce the
number of source-destination pairs, which, however, is out of
the scope of this paper. The proposed CCCP based IFSA is sum-
marized as Algorithm 2 given in the table below.

Algorithm 2: Iterative Feasibility Search Algorith (IFSA)

Initialization: Define the tolerance of accuracy and the
maximum number of iterations ; Initialize the algorithm
with an arbitrary random point ; Set the iteration
number .

Repeat:
1: Compute the affine approximation according
to (17).

2: Solve problem (21), and assign the solution to and
, respectively.

3: Check whether the current objective value is zero
or not. If it is indeed zero, then the algorithm stops.

4: Update the iteration number:

Until: The sequence converges, i.e.,
; or the maximum number of iterations is reached, i.e.,

.

We remark that a solution of problem (21) with ob-
tained, e.g., from Algorithm 2, is always feasible for the DC
program (14). Conversely, however, if the proposed Algorithm
2 fails to provide a feasible point of problem (14), then this does
not imply that this problem is infeasible as Algorithm 2 operates
only on a subset of the original feasible set of the DC program
in (14).
Remark 3 (Two-Stage Algorithm): The proposed IFSA in Al-

gorithm 2 together with the low-complexity solution in Algo-
rithm 1 (which is in fact a novel modification of the conven-
tional CCCP [20]–[22]) forms a two-stage algorithm for solving
the DC program in (14). In the first stage, the IFSA is applied
to find a feasible point of the DC program (14), staring with an
arbitrary (e.g., random) infeasible point. If the proposed IFSA
fails to obtain a feasible point, the algorithm declares failure and
stops. In the second stage, the proposed low-complexity solu-
tion in Algorithm 1 is applied, starting with the feasible point
found in the first stage.

C. Convergence Analysis of the Proposed Algorithms

In general, the CCCP based iterative algorithms converge to
stationary points of DC programs [20]–[22], which are not nec-
essarily local optima of DC programs. However, we prove in

6As one final step, after convergence or the maximum number of allowable
iterations is reached, the point will be substituted back into (14b) to
check whether it is feasible or not.
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this section that, for the DC program (14), the proposed Algo-
rithm 1 indeed converges to one of its local minima. The con-
vergence proof is carried out in three steps, namely, i) proof of
convergence of Algorithm 1, ii) proof of convergence of Algo-
rithm 1 to a stationary point, and iii) proof that stationary points
are local minima. We start the convergence analysis with sev-
eral important observations.
1) Observations (Partial-Monotonicity): The following im-

portant properties of the objective function and the constraint
functions regarding the DC program (14) and the convex ap-
proximation (18) can be formulated:
O1) We observe from (9) that the objective function

is strictly decreasing7 in variable .
O2) From (11)–(13), we observe that the constraint function

is strictly increasing in the variable , and
strictly decreasing in the variable
.

O3) From (13), (17), and (20), we observe that, the ap-
proximated constraint function is strictly
increasing in the variable , and strictly decreasing in
the variable .

We now analyze the convergence of the proposed Algorithm
1. The convergence behavior of Algorithm 2 can be inferred
accordingly. From (15), we know that the point is a fea-
sible point of the convex optimization problem in (18), provided
that the initial point is feasible for the DC program (14).
As a consequence, the sequence monotonically de-
creases as the iteration number increases. Since the sequence

is lower-bounded by zero, the convergence of the
sequence , and thus the convergence of Algorithm 1
is guaranteed8 for any initial feasible point .
Moreover, since the objective function of problem

(18) is strictly convex in (see Lemma 1),
the point , i.e., the solution of problem (18), is unique
[24, Sec. 4.2]. Hence, for any given initial feasible point ,
the entries of the two sequences, and , have
a one-to-one correspondence. As a result, the monotone con-
vergence of the sequence implies the convergence
of the sequence , for any initial feasible point . Let

denote the limit point of the sequence with a
feasible initialization when the iteration number goes to
infinity, i.e., given the initial feasible point , we have

(22)

In general, the limit point depends on the choice of
the initial feasible point . Here, for notational simplicity, we
write the limit point as , hence dropping the argument
that expresses this dependency. Regarding the limit point ,
we can make the following statement.

7Here, when we say a multivariate function is (strictly) monotone in one par-
ticular variable, we mean that, the function is (strictly) monotone in that partic-
ular variable, while all other variables are fixed.
8Following a similar argument, the convergence of Algorithm 2 is also guar-

anteed for any initial (infeasible) point.

Lemma 2 (properties of Limit Points): The limit point of
the sequence generated by Algorithm 1, is the solution
of the following convex optimization problem:

(23a)

(23b)

(23c)

where the affine function is obtained by replacing
with in (17). Moreover, the limit point satisfies all

the constraints in (23b) with equalities, i.e.,

(24)

Proof: Please refer to Appendix A for the proof.
Since the convex optimization problem in (23) is strictly

feasible,9 i.e., the Slater’s condition for constraint qualifi-
cations is satisfied [24, Sec. 5.2], we know from Lemma
2 that there exist Lagrange multipliers , to-
gether with the limit point , that satisfy the following
Karush–Kuhn–Tucker (KKT) necessary and sufficient condi-
tions for optimality[24, Sec. 5.5] of the convex optimization
problem (23):

(25)

(26)

(27)

We next prove that the limit point is a stationary point of
the DC program (14), which is then proved to be a local min-
imum. First of all, from observation O2) we know that, all the
SINR constraints (14b) in the DC program (14) are active10 at
the (local) optimum of the DC program (14). Hence, the nec-
essary KKT optimality conditions of the DC program (14) are
given by the following system of equations [30, Lecture 26]:

(28)

(29)

(30)

where the variables denote the Lagrange multi-
pliers associated with the SINR constraints in (14b).
Comparing the KKT system (25)–(27), with the corre-

sponding KKT system (28)–(30), we conclude that the limit
point , together with the Lagrange multipliers ,

9By construction is a feasible point of problem
(23). Thus, we know from (13), (17), and Lemma 2 that any point defined as

, with , is a strictly feasible point of problem
(23). Therefore, problem (23) is strictly feasible.
10This can be easily proved by contradiction. Specifically, suppose that the
constraint is not active, i.e., , then we can scale up the variable
to make the constraint active, without violating the other SINR constraints.

However, when the variable increases, the objective function de-
creases, which contradicts the optimality of the point .
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also satisfy the KKT conditions of the DC program (14), i.e.,
we can choose . Hence, the limit point is
a stationary point of the DC program (14) [30, Lecture 26].
With the results above, we can formulate the following the-

orem regarding the convergence behavior of the proposed Al-
gorithm 1.
Theorem 1 (Local Optimality): The limit point of

the sequence , generated by the proposed Algorithm 1
with an arbitrary feasible initialization , is a local minimum
of the DC program in (14), since every stationary point is a local
minimum for the DC program in (14).

Proof: Please refer to Appendix C for the proof.
Remark 4 (Local Optimality): From Theorem 1 we know

that, from the proposed low-complexity solution in Algorithm 1,
we can obtain a local minimum of the DC program (14), and thus
a local minimum of the PADB problem in (6).

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present simulation results and discussions.
We compare three schemes: i) the proposed low-complexity so-
lution in Algorithm 1; ii) the alternating optimization frame-
work of [1] for solving the PADB problem (6); and iii) the
EP-DCA, which has been proposed for solving DC constrained
DC programs [2] and which here has been adopted for solving
the DC program (14). Both the alternating optimization method
of [1] and the EP-DCA of [2] yield generally suboptimal solu-
tions, which are not guaranteed to be KKT points of the PADB
problem (6). The performance of the proposed ISFA in Algo-
rithm 2 in finding feasible points of the DC program (14) is also
compared with that of the alternating optimization method [1]
and the EP-DCA [2]. We also demonstrate the convergence be-
havior of the proposed algorithms.

A. Simulation Settings

As in [4]–[6], it is assumed that the second-order statistics
of the channel coefficients, i.e., the matrices , , and

, are known at the central processing node.
Furthermore, we choose the same channel models used in
[4]–[6] in our simulations. Specifically, channel coefficients

and , which are normalized by the noise power,
can be modeled as [4]–[6]

(31)

(32)

where and are the channel mean and
and are zero-mean random variables,

. According to [4]–[6], the channel mean and
can be modeled, respectively, as

(33)

(34)

where the random angles and are chosen to be uni-
formly distributed on the interval
, and and are positive constants, which indicate the un-
certainty in the channel coefficients [4]–[6]. Furthermore, the
variances of the random variables and are given by

(35)

(36)

Similar to [4]–[6], it is assumed that the channel coefficients
are mutually independent. Based on the above channel model,
we write the entries of the diagonal matrices and

, as well as the entries of the matrix ,
respectively, as [4]–[6]

(37)

(38)

(39)

with the Delta function:
if
otherwise.

(40)

Throughout our simulations, identical minimum SINR
requirements are chosen for all peers, i.e.,

. The noise variances at the relays
and the destinations are normalized to unity, i.e., .
Similar to [4]–[6], we choose the constants and as:

10 dB and 10 dB, respectively. All the sim-
ulation results are averaged over a certain number of channel
realizations according to (33) and (34), as detailed in the
following.

B. Performance Comparison With Existing Schemes

In Figs. 2 and 3, the total transmitted power is depicted
versus the minimum SINR requirements for
the MUP2P relay networks consisting of and
source-destination pairs, and and relays, respec-
tively. For both Figs. 2 and 3, the maximum number of iter-
ations is chosen as: . Note that, for
each channel realization, both the convex problems (18) and
(21) need to be solved at most times. All simulation
results are averaged over 300 channel realizations for which fea-
sible points of the DC program (14) were obtained by each of
the three algorithms under consideration that were all initialized
with the same random points.
From Figs. 2 and 3, we observe that the proposed CCCP based

solution on average performs better in terms of total transmitted
power than the alternating optimization method of [1], which
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Fig. 2. Total transmitted power (the -axis) versus the minimum SINR
requirements (the -axis), with .

Fig. 3. Total transmitted power (the -axis) versus the minimum SINR
requirements (the -axis), with .

is because the source power allocations and the relay beam-
forming weights are not optimized simultaneously in the al-
ternating optimization algorithm of [1], and the method of [1]
yields solutions which are not KKT points or local minimum,
while the proposed algorithm yields strictly local minima. On
the other hand, the proposed CCCP based algorithm also per-
forms better than the EP-DCA of [2], even though the penalty
factor in the EP-DCA has been adjusted dynamically and grad-
ually in all the simulations, i.e., the penalty factor is chose as:

, with and being the iterations number.
The EP-DCA does not perform as well as the proposed Al-
gorithm 1 due to the inherent difficulties in choosing the right
penalty factor for which the best performance of the EP-DCA
can be obtained [2]. In addition, we can observe from the fig-
ures that, when the number of relays increases, the reduction of
the total power required to guarantee the predefined SINR re-
quirement of each source-destination pair is significant. This is
because as the number of relays increases, the system enjoys an
increase in the number of relay antennas, as well as an increase
in the degrees of freedom for optimizing the relay beamformer

, and for distributing the power between the sources
and the relays.

Fig. 4. Total transmitted power (the -axis) versus the number of iter-
ations (the -axis) in the proposed Algorithm 1, with , and

1 dB, .

C. Convergence Illustration of the Proposed Solution

In Fig. 4, the convergence behavior of the proposed Algo-
rithm 1, as well as the two reference algorithms, i.e., the alter-
nating optimization scheme of [1] and the EP-DCA of [2], is
illustrated for the MUP2P relay networks consisting of
source-destination pairs, and relays. The minimum SINR
requirements are set as: 1 dB, . The results are
averaged over 300 channel realizations, which are obtained in
the same way as in the previous subsection. Note that the main
computational complexity of the proposed Algorithms 1 and 2
consists in solving the convex optimization problems (18) and
(21), respectively.
As can be seen from Fig. 4, the proposed Algorithm 1 con-

verges after approximately 16 iterations for any considered ini-
tial feasible point . In addition, it can be observed from the
figure that as the maximum number of iterations increases, the
performance of the algorithms under consideration does not fur-
ther improve significantly and convergence is obtained after ap-
proximately 12 iterations.

D. Performance of the Proposed IFSA

In Figs. 5 and 6, the performance of the proposed IFSA in Al-
gorithm 2 is illustrated for theMUP2P relay networks consisting
of and source-destination pairs, and and

relays, respectively. The maximum number of iterations
is chosen as: . The figure is generated in the fol-
lowing way. For any given value of SINR requirement ,
the percentage of the successful cases is computed. Here and
hereafter, by ”successful case” we mean that, a feasible point
of the DC program (14) can be found by a scheme (e.g., the
EP-DCA of [2]) for a given channel realization, starting with a
random infeasible point of the DC program (14). The results are
averaged over 300 channel realizations.
As can be observed from Figs. 5 and 6, the proposed Algo-

rithm 2 outperforms the alternating optimization method of [1]
in terms of successful cases. This is because in the latter algo-
rithm either the source power allocation or the relay beam-
former is fixed, which results in smaller feasible sets than that
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Fig. 5. Percentage of successful cases (the y-axis) versus minimum SINR re-
quirements (the -axis), with .

Fig. 6. Percentage of successful cases (the -axis) versus minimum SINR re-
quirements (the -axis), with .

in the proposed Algorithm 2. Furthermore, the proposed Algo-
rithm 2 also outperforms the EP-DCA of [2], which is because
it is impossible to choose the right penalty factor that gives the
best performance of the EP-DCA of [2].

E. Sensitivity of the Proposed IFSA w.r.t. Initial Points

In Fig. 7 the sensitivity of the proposed IFSA w.r.t. initial
points is demonstrated for theMUP2P relay networks consisting
of source-destination pairs, and , , and

relays, respectively. The maximum number of iterations
is chosen as . The figure was generated as fol-
lowing. A number of 1000 channel realizations were drawn and
10 channel realizations (out of the 1000 channel realizations)
have been selected in an arbitrary manner for which feasible
points of the DC program (14) could be found by the proposed
Algorithm 2. The selected channel realizations were then used
to test the sensitivity of the proposed IFSA. That is, for each
of the 10 selected channel realizations, the proposed IFSA in
Algorithm 2 has been initialized with 300 random infeasible
initial points, and the percentage of the feasible initializations
(i.e., for which the proposed IFSA yields feasible points of the

Fig. 7. Percentage of successful cases (the -axis) versus minimum SINR re-
quirements (the -axis). The results are averaged over 300
random infeasible initial points for an arbitrarily chosen channel realization.

DC program (14)) out of the 300 infeasible initializations has
been computed. This procedure has been carried out with each
of the 10 selected channel realizations and for each SINR re-
quirement . The results have been averaged over the 10
selected channel realizations.
It can be seen from Fig. 7 that, the proposed IFSA in Algo-

rithm 2 is not sensitive w.r.t. the random infeasible initial points.
In other words, as long as at least one feasible point of the DC
program (14) is obtained from the proposed IFSA for a given
channel realization, starting with any arbitrary infeasible ini-
tial points, the proposed IFSA can successfully obtain a feasible
point of the DC program (14) in most of the times (e.g., in more
than of the cases for relays) for that channel real-
ization.

VI. CONCLUSION

We have investigated the QoS based PADB problem in
MUP2P relay networks. By utilizing an appropriate transfor-
mation of variables, the formulated PADB problem has been
converted into a DC program, and a CCCP based low-com-
plexity solution has been proposed to solve the DC program.
The proposed solution represents a novel modification of the
conventional CCCP [21]. In addition, we have proposed an
IFSA to find a feasible point of the DC program (14) that is
used to initialize the CCCP. The proposed two-stage algorithm,
Algorithm 2 and Algorithm 1, can also be applied to efficiently
solve other DC programming problems. Analytic studies show
that the proposed solution converges to a local minimum of the
DC program (14), and thus also a local minimum of the PADB
problem (6). Numerical results confirm that the proposed
solution outperforms (in terms of total transmitted power) the
alternating optimization method of [1] and the conventional
EP-DCA [2]. Numerical results also show that the proposed
IFSA outperforms the alternating optimization algorithm of
[1] in finding feasible points of the DC program (14), and
the proposed IFSA performs similarly to the EP-DCA of [2]
regarding feasibility search.
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APPENDIX A
PROOF OF LEMMA 1

The proof is carried out by examining the function
term by term.
1) The term is a strictly convex function in

[24, Sec. 3.1]. Hence, the term
is a strictly convex function in

[24, Sec. 3.2].
2) As a direct application of Lemma 1, the term is
a convex function in .
Hence, the term is a convex function in

[24, Sec. 3.2].
3) The term is a strictly convex function in

[24, Sec. 4.2].
As a result, the function

is a strictly convex function in

the variables [24, Sec. 4.2].

APPENDIX B
PROOF OF LEMMA 2

Since the point is the limit point

of the sequence , by definition, the point is a fea-
sible point for the convex optimization problem (23), and no
strictly better solution exists. On the other hand, since the ob-
jective function of problem (23) is strictly convex in the
variable , the solution of problem (23) is
unique [24, Sec. 4.2]. Therefore, the limit point is the solu-
tion of problem (23).
The second part of the Lemma is proved by contradiction.

Suppose that the constraint is not active, i.e., ,
then from observation O3) we know that we can scale up the
variable to make the constraint active, without violating the
other SINR constraints in (23b) and therefore reduce the objec-
tive function (see observation O1)), which contradicts
the optimality of the point . Hence, we conclude that all con-
straints in (23b) are active at the point .

APPENDIX C
PROOF OF THEOREM 1

In this proof, we simply write as for brevity. It
has already been shown in Section IV-C that the limit point is
a stationary point (also known asKKT point) of the DC program
(14). In general, a stationary point could be a saddle point, a
local maximum, or a local minimum of a nonlinear program [30,
Lecture 26], [31, Sec. 18.2]. In the following, we prove that all
stationary points are local minima for the DC program (14).
First, by the definition of saddle points,11 all stationary points

of the DC program (14) cannot be saddle points, since the ob-
jective function of the DC program (14) is twice-continu-
ously differentiable and is a strictly convex function in the vari-
able [24, Sec. 3.1].

11A saddle point of a smooth function is a stationary point such that the surface
of the function in the neighborhood of that point is not entirely on any side of
the tangent space at that point [32, Sec. 5.2].

Second, all stationary points of the DC program (14) cannot
be local maxima, which is proved by contradiction. Assume
that the limit point is a local maximum, by definition [24,
Sec. 4.1], there exists a constant , such that for any fea-
sible point of the DC program (14), which in addition satisfies

, we have .

Recall that , and from Lemma 2 we
know that . Define

and (41)

Then, from (11)–(13), we can see that the point

is also a feasible point of the DC pro-

gram (14), and . Therefore, we have

(42)

On the other hand, from (9) we know that ,
which contradicts with (42). Hence, the point cannot be a
local maximum.
As a result, all stationary points must be local minima for the

DC program (14). Hence, the limit point is a local minimum.
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