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Abstract

In this paper, we present a generative sketch model for human hair analysis and synthesis. We treat hair
images as 2D piecewisely smooth vector (flow) fields, and thus our representation is view-based in contrast
to the physically based 3D hair models in graphics. The generative model has three levels. The bottom
level is the high frequency band of the hair image. The middle level is a piecewisely smooth vector field
for the hair orientation, gradient strength, and growth directions. The top level is an attribute sketch graph
for representing the discontinuities in the vector field. A sketch graph typically has a number of sketch
curves which are divided into 11 types of directed primitives. Each primitive is a small windov (say

pixels) where the orientations and growth directions are defined in parametric forms. For example, hair
boundaries, occluding lines between hair strands, dividing lines on top of the hair etc. Besides the three
level representation, we model the shading effects, i.e. the low-frequency band of the hair image, by a
linear superposition of some Gaussian image bases, and we encode the hair color by a color map. The
inference algorithm is divided into two stages. (i) We compute the undirected orientation field and sketch
graph from an input image, and (ii)) we compute the hair grow direction for the sketch curves and the
orientation field using a Swendsen-Wang cut algorithm. Both steps maximize a joint Bayesian posterior
probability. The generative model provides a straightforward way for synthesizing realistic hair images
and stylistic drawings (rendering) from a sketch graph and a few Gaussian bases. The latter can be either
inferred from a real hair image or input (edited) manually using a simple sketching interface. We test our
algorithm on a large data set of hair images with diverse hair styles. Both analysis, synthesis, and rendering
results are reported in the experiments.

Keywords: Hair Modeling, Hair Analysis and Synthesis, Flow Patterns, Generative Models, Orientation Field,

Texture, Non-Photorealistic Rendering.
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. INTRODUCTION

Human hair is a very complex visual pattern where hundreds of thousands of hairs are
grouped into strands and wisps in diverse hair styles. Modeling hair appearance is an important
and challenging problem in graphics, digital human animation, non-photorealistic rendering. It
is evident that hair style also plays a rather significant role in human recognition. For example,
it often takes longer time to recognize a friend in a meeting if that person has changed to a very
different hair style. In other case, if we keep somebody’s hair image and replace his/her face,
there is a good chance that the image is identified as the original subject by familiar people,
especially when the image is small.

In computer graphics, hair acquisition, modeling, and animation have attracted growing
interest in recent years [13], [14], [5], [7], [11], [22]. Hair models in graphics are three-
dimensional and have typicall9(10* — 10°) hair strands and)(10°) line segments connected
to a scalp surface. These models often include hair dynamics, friction, lighting effects, and
occlusion relations, which are either input through user interfaces [7], [5], [14], [13] or acquired
from multiple (say30 to 40) views using advanced computer vision techniques [17], [22]. Editing
and rendering such a complex 3D model typically take many hours in a computer.

In computer vision, hair is studied as an oriented (flow) field [12], [26] among other texture
patterns, such as, wood grain, flows, and fingerprints. To our knowledge, there has been no
explicit model dedicated to human hair in the vision literature. As each element in the orientation
field is a periodic angle ifD, 7| (a Riemannian space), in contrast to image intensities (Euclidian
space) in conventional Markov random field, special metrics are needed in designing filters and
computing the diffusion equations [18], [4]. Some other vision work [20] have studied the
structure characteristics in the orientation (flow) field analysis, such as node, saddle, star-node,

etc.



In this paper, we present a generative sketch model for human hair analysis and synthesis.
Our sketch model is a view-based, two-dimensional, symbolic representation which can be
encoded totally in the order @?(100) bytes. It is extremely parsimonious in comparison with
the physically based 3D hair models in graphics. This sketch representation can be inferred from
real hair images rapidly (in a few minutes in a PC), and realistic hair images can be synthesized
or reconstructed from the sketch representation in a few seconds (see Fig. 9 and Fig. 15). We

also provide a user interface to edit the sketch and to generate different hair styles (see Fig.16).

Fig. 1. Three examples of hair sketches drawn by artists.

Our representation is motivated by the following observations and applications.

1) Although the number of hairs is hug®(10°¢)), many hairs are occluded and the visible
hairs are often thinner than a pixel. It is neither practical nor necessary to infer the
position of each individual hair for general vision purposes. As it was argued in texture
modeling [2] and the information scaling theory [23], human vision perhaps only perceives
a general impression of the whole hair style without paying attention to the exact shape
of an individual hair. In other words, two hair images are perceptually equivalent if they
share some common structural and statistical properties.

2) Artists/painters can capture the essential characteristics of a hair style by a sketch with
only a small numberl1( to 20) of strokes (See Fig. 1). In this paper, we demonstrate that
realistic hair images can be rendered from simple sketches. The reconstructed images (see

Fig. 8.(g) and Fig. 15) are different from the original image, but bear similar perceivable



structures.

3) Our compact representation is aimed at a number of vision applications: (i) extremely
low bit image/video compression for telecommunication and video phones, (ii) hair style
recognition and understanding in human-computer interface, (iii) non-photorealistic ren-

dering or cartoon animation from video images, and (iv) human portrait [6].

Fig. 2 shows our generative model for both hair analysis and synthesis with an optional
user interface for hair input and editing. The generative model has three levels. The bottom
level is the high frequency band of the hair image. The middle level is a piecewise smooth
vector field for the hair orientation, gradient strength, and growth directions. The top level is
an attribute sketch graph for the discontinuities and features in the vector field. Both the vector
field and the sketch graph are directed in the hair growth directions. The curves in the sketch
graph are divided into five categories of flow primitives in parametric form. Fig. 4 shows some
examples for hair boundaries, occluding lines between hair strands, dividing lines on top of
the hair etc. These parametric primitives are essential for generating clear sharp discontinuities
for the orientation field (See Fig.8.(d) for example). The shading effects are represented in the
low-frequency band of the hair image which is modeled as a linear superposition of Gaussian
image bases. The color is represented by a color map after a Luv transform. The color map is
a mapping from the grey intensify), 255] to a color.

The vector field and sketch graph are computed in a Bayesian framework which maximizes a
posterior probability in two steps. The first step includes a greedy sketch pursuit algorithm for
constructing the undirected sketch and a diffusion algorithm for computing the orientation field
conditional on the sketch graph. The second step infers the growth directions of the sketches
and augments the orientation field to a vector field. The hair directions cannot be decided locally

and often need global information. We adopt a Swendson-Wang cut algorithm [1] to compute



the directions of the sketch graph. We test our algorithm on a large data set of hair images with
diverse hair styles. Both analysis, synthesis, editing, and rendering results are reported in the
experiments.

Our representation is inspired by the primal sketch model in [10] and the human portrait
application in [6]. The latter [6] computes a stylistic cartoon sketch of human face and hair
using an example-based learning method similar to the image analogy work in graphics.

The paper is organized as follows. Section Il presents the three-level hair model. Section Il
demonstrates that hair images can be synthesized using this generative model. Section IV dis-
cusses the inference algorithm. Section V shows some experimental results in both hair analysis,
synthesis, editing and cartoon rendering. Section VI concludes the work with a discussion of

limitations and future work.

[I. A GENERATIVE SKETCH MODEL OF HAIR

The generative model for both analysis and synthesis is illustrated in Fig. 2. There are three
factors contributing to the appearance of hair: (i) hair color, (ii) shading effects, and (iii) texture.
Therefore a hair image is first decomposed into these three components.

Let I°** denote an observed color hair image. By a Luv transform, we obtain an intensity
imageI$™ and a color channel imagiRs. The color channel?; is discretized into a small
number of colors and represented by a color map from the intejisi25] of IS to a color.

The intensity imagd$> is further decomposed into a low frequency bdgld for illumination
and shading with a low-pass Gaussian filter, and the remaining high frequency band is the
texture for the hair patterd®™. The low frequency band is simply represented by a linear

superposition of Gaussian image bases plus a mean intensity

Ky,
Iibs(% y) =pt Z OéiG(x — Ty Y — Yi; 0iy i Uyz') -+ noise. (1)
i=1
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Fig. 2. Overview of our model and algorithm which consists of three modules: (i) analysis, (ii) synthesis, reconstruction or
rendering, and (iii) an optional editing interface. For an input imE&, we decouple it into a gray imag&” and a color
channellRs represented by a color map. The gray image is decomposed into a textufg’pamd shadind?™ by a low-pass
Gaussian filter. FronI3®* we compute the vector fiel¥ and the sketct8 with directionds. The synthesis goes from the
sketchS to the vector fieldV*"" and to the hair imag&;". The latter is combined with the shadidyf™ and colorI3;; to
produce the final resul¥®. We can render the cartoon sketch in some artistic sE#&. The sketch can be input or edited

through an interface before entering the synthesis process.

Usually K, = O(10) and each Gaussian base is represented symbolically by an ellipses for
editing (see Fig.9) and it has five parameters for the center, orientation, and standard deviation
along the two axes. The coefficierts;} can be positive or negative for highlights and shadows
respectively. The Matching Pursuit algorithm is used to automatically extract the coefficients
from the input image. In the editing interface, a user can change the shading by editing the
number of ellipses and changing their parameters.

Our study is focused on the texture appearafffewith a three level generative model. A

hair texturely on a latticeA is generated by a hidden lay®r — the vector field for hair growth



flow, andV is in turn generated by an attribute hair skethwhich is a number of sketch

curves representing the boundaries of hair strands and wisps with direlgtion
Sketch (S, dg) 2% Vector field V — hair image Iy

Ag Is a dictionary of sketch primitives shown in Fig. 3. Each primitive is a rectangular window
(say5 x 7 pixels) and some examples are shown in Fig. 4 and Fig. 5.
In the following, we present the three level model in the top-down order as it is shown in

the right panel of Fig.2.
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Fig. 3. Five primitives for the orientation fiel®, and eleven primitives for the directed vector fi@lin a dictionary Agg.
(a) Side boundary. (b) Source (origin) or sink (end) of hair strands. (c) Occluding boundary. (d) Dividing line. (e) Stream
line. The line segments and arrows in the primitive windows show the canonical orientations, and the angles may change in

[-7/6,7/6]. See Fig.5.

A. Top level representation: the hair sketSh

The hair sketcl consists of a number of curves denoted@®@y and each curve represents

a long stroke with certain width,
S=(Ng,{C;:1=1,2,...., N¢}).

These curves are undirected and represent the noticeable structures such as the discontinuities

in the hair flow. They consist of a consecutive aligned windows called sketch "primitives”.



(b)

Fig. 4. (a) Windows A-F are 6 primitive examples. (b) Zoomed-in views of the six windows.

We define5 categories of undirected primitives which make types of directed primitives
for the vector fieldV, and they are shown in Fig. 3. Each primitive specifies the orientations
6,,0, € [0,7) and directionsd;,d, € {—1,+1} of the hair flow on the left and right sides
of the primitive window. Six examples of the primitives are shown in Fig.4. These primitives
are represented in parametric form for the flow directions and angles on both sides and they
are important for generating sharp discontinuities in the vector fields. The five categories of
primitives are the following.
1) Side boundarythe hair flows along one side and the other side is non-hair. See window
E in Fig. 4. Thus it has only one directief. Fig. 5(a) shows an example with a window
of 5 x 7 pixels.
2) Source and sinkthe origin or ending of hair flow. See windows B and F in Fig. 4.
3) Occluding boundarythe boundary of two hair strands of different orientations. It often
occurs at the places where one hair cluster covers the other. See window A in Fig. 4.
Fig. 5.(b) shows its window in the vector field.
4) Dividing line: hair grows in the same orientation but opposite directions, it often occurs
at the top the head. See window D in Fig. 4 and Fig. 5.(c) . Note that the dirediiafs

are decided in a dividing line and it has a middle section for the white scalp.



5) Stream line hair strands with the same orientation and direction but strong contrast in

appearance, for example, different dye. See window C in Fig. 4.
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Fig. 5. The windows of three directed primitives. (a) A window5ok 7 pixels for a side boundary primitive. (b) A window
of 5 x 7 pixels for an occluding boundary primitive. (c) A window 6fx 7 pixels for an dividing line primitive. Each window
has a centefz,y) and a main axis with orientatiof. The left and right side vector fields are specified by the parameters
7 = (01,d;) and . = (-, d,) respectively. The dividing line primitive is special because its left and right vector fields must

grow in opposite directions and there is a middle vector field for the scalp.

Each primitive is represented by a number of variables (or parameters) denoted by

B = (&%%&Pa (QlueT))7 (2)

wherel € {a,b, c,d, e} indexes the five primitive typdz, y) is the center positiorg is the axis
orientation in|0, 27), p is the strength of the intensity gradient perpendicular to the axis, and
(6,,0,) are the relative orientation angles at the left and right side vector fields. We discretize
the angles so th#& has12— 16 orientations and;, 0, € {%, 7, %”} if the orientation is supposed

to be perpendicular to the axis. We sgtand 6, to 0 if the orientation should be along the

primitive axis. Thus we obtain a dictionary for the undirected primitives.
11
Ap = {(t,2,4.0,p,(0,0,) : £ € {a,b,c,d, e}, (x,y) € A, 0 € {0, .., T;},vel,er}}. 3)

The hair growth directions are important for hair understanding and stylistic rendering. It

is studied separately from the orientation because the directions have to be inferred from the
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Fig. 6. Pixels along a curv€. C consists ofNg primitives whose windows overlap with neighbors so that the pixels along

the curve are covered seamlessly.

global image and cannot be decided within local windows. We augment the primitiweh
a direction (d;, d,) specifying the flow directions on the two sides. Thus we have a sketch

primitive dictionary
Ask = {(B,dl,dr) :B e AB,dl,dT € {—1, 1}} (4)

As Fig. 3 shows, the primitive types (a), (b) and (e) have only one direction variable, the
primitive type (d) (the dividing line) is deterministic and thus it no direction variables, and only
primitive type (c) has two direction variables. For clarity of discussion, we use the uniform
notation above.

We denote the direction of the sketch by
dS = {(dliadr‘i> A 17 "'7NC}'

We request that all primitives in a sketch cur@ehave the same typé and same directions

d = (d;,d,). Therefore we denote a directed curved§ primitives by,
(C,d) = ({,Ng,{B;: j=1,2,..,Ng},d = (dd,)).

Fig. 6 shows a curve with a sequence of primitive windows overlapping each other so that the
pixels along the curve are covered seamlessly by the primitives.
Suppose the sketch lev8l has a total of ' primitives By, ..., B and each primitiveB,,

covers a window\,. The image lattice\ is divided into two disjoint areas.

A= Ask U Anska Ask N Ansk - @
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Pixels in Ag are said to be sketchable or on the sketch, and the remaining pixalg,irare
non-sketchable or off the sketch, according to the terminology used in [10]. The sketchable part

is divided as

012 psk
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Fig. 7. (a) The empirical point-wise prior probability in the image figld: (z,y, 8, d) for the flow vector (orientation and
direction) (9, d) at each pixelz,y). Longer arrows mean higher probabilities. (b) The empirical prior probabhilityp) and
pnsk(p) for the intensity gradient perpendicular to the orientatiofor pixels on and off the sketch respectively. The pixels on

the sketch have generally higher intensity gradients and thus the histogram has much heavier tail on the right side.

To learn a prior probability model for the sketch level, we collect a set of hair images which
are centered in position and normalized in size with manual sketches and vector fields. Then
we compute two types of empirical probabilities (histograms) shown in Fig. 7.

Fig. 7.(a) is a point-wise probability(z,y, 0, d). At each point(z,y), we divide the vector
(0,d) (wheref € [0,7) andd € {—1,+1}) to 8 bins (i.e. 8 directions ifD, 27)), and construct
the histogranpg;:(x, y, 0, d). The length of the arrows shows how likely a vector flow will point

in a certain direction at a given point.
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Fig. 7.(b) shows two empirical probabilities for the intensity gradieerpendicular to the
sketch curvespy(p) andp,s(p) are the histograms for pixels on and off the sketch respectively.
Clearly, the gradients are generally larger on the sketch due to high intensity contrast, and
thereforepg (p) has a much heavier tail thang.(p) on the right side. We fit both histograms

by a mixture of two Gaussian distributions. For example,

psk(p) = WskN(p; Hsk1, Uskl) + (1 - Wsk)N<p; Hsk2, Usk2) (5)

We have the following prior probability for the sketch level representation.

(S dS H{ H Pdir x]7yj79l]7dl])pdlr(xj7y]707“j7d7“j H G(€<9ja79jb))}Hpsk<p(U))'

=1 B;eC; <Bja,Bjp> veAgk
(6)

In the above equatiorp(N¢) o« e *¥c penalizes the number of curves. For each primitive
B; € C;, the intensity gradienp(v) on the sketch follows the priopg, the flow directions
(015, d;;) and (6,;,d,;) on both sides follow the priops;,, and G() is a Gaussian probability
on the angle difference(6;,,0;,) (see definition in egqn.(11)) so that the any two consecutive

primitives have similar orientation;, andf;,.

B. The middle level representation: the vector fi®d

The middle level vector field represents the directed flow of the hair, it includes three

componentsvV = (O, p,dy) on a latticeA.

1) An orientation fieldfor the local hair orientation (undirected) jf, ),
O ={0(v): 6(v) €[0,m), ve A}l
2) A gradient strength fieldor the intensity gradient perpendicular to the orientation),

p=1{p():p(v)=Vigwl, veA}
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3) A direction fieldd for the growth direction of the hair at each pixel.
dy = {d(v) : d(v) € {—1,+1}, v € A}.

At each pointv, the orientation plus direction decides the flow vectdr) € [0,27) by
7(v) = f(v) + L,
The vector field is divided by the sketch graph into two disjoint pafts- (V, Vi) for

Ag and A, respectively. The generative model frai®, ds) to V s,
p(V’S7 dS) = p(Vnsk’Vsk)p(Vsk|S7 dS’) (7)

p(V!S,ds) is a Dirac delta function, aS, ds specifiesV, deterministically. Each window
A, has a left and a right sub-window with, = A, U A, where the vector field is decided by
the parameters of the primitivB, and the directiord, = (dy,d,;). Examples are shown in

Fig. 5.

V(l’,y) = (Hlk,pk,dlk), (l‘,y) € Alk7 V(Q?,y) = (erk,pk,dy-k>7 (.CE,y) I~ Ark; k = 1, e K.
8)
The remaining latticé\ . corresponds to smooth flow areas where the vector field is "filled-in”

from Vg in the following probability.

p(Vnsk|Vsk) = p(®nsk7 ansk|®ska stk) : H pnsk(p(v))a (9)

UEAnsk

where p,.() is the prior probability shown in Fig. 7.(b) for the gradient strength on pixels

off the sketch, anth(®,q, dyv. , |®«,dy, ) is @ smoothness model of the flow field with the

sketchable part as its boundary condition.

e(7(v), 7(u))*

p<@nsk7 ansk 2A2
0

Oy, dy, ) x exp{— Z Z

vEA Lk UEOV

2 (10)
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wheredv is the 4-nearest-neighbor of ande(7(v), 7(u)) is the distance of adjacent flow vector

7(v) and7(u) defined on[0, 27) x [0,27). We adopt the following distance in [18], [4].

e(r(v), T(u)) = /2(1 — cos(r(v) — 7(u)). (11)
Fig. 8 shows an example of the vector field. Fig. 8.(b) is a directed sketch level representation
(S,ds). Fig. 8.(c) shows the vector fielWy, generated by the parameters of the sketch level
within the primitive windows. The overall vector fieN is shown in Fig. 8.(d) after filling-in

V.sk conditioning onVy,.

C. The bottom-level representation: the hair texture imége

The hair texture imagéy is generated by the vector fieM in the following probability,

o)In)® | ([IViowInl| — p(v))?
2 + 2
205 20p

p(Iu|©, p) o exp{— > _ v } (12)

vEA

Note that the image does not depend on the flow direclipnintuitively, a hair texture image
should have low intensity gradients along the flow orientation), v € A, while the gradients
in the perpendicular directionf(v) should be close to the gradieptv) in V.

The probability above is an inhomogeneous Markov random field on the image intégsity
modulated by a hidden vector fieM. This inhomogeneous MRF model has a similar effect to
the line integral convolution (LLC) method in flow visualization [3].

Fig. 8.(e) shows an example of the synthesized texture image sampled from the above
probability using the vector field in Fig. 8.(d). With the shading image and color map, it produces
a hair imagel®™ in Fig. 8.(g).

To summarize the three-level model, we have the following joint probability for the overall
representation,

p(IH7V7 S7d5) = p(IH|®7p)p(@7pa dV|SvdS)p(S7dS) (13)

The three probabilities represent the three level models in eqns.(12), (7), and (6) respectively.
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Fig. 8. Example of hair model and inference. (a) is an input color inf4kje (b) is the computed sketch with directionsds.
(c) is the sketchable vector fieM_, generated fron{S, ds). (d) is the overall vector fieldV after filling-in non-sketchable
part. (e) is the high frequency hair texture imalj&" generated from the vector field. (f) is the shading and lighting image.

(9) is the synthesized color imad&™ after adding the shading and color. We render an artistic skEtthin (h).

[11. SYNTHESIZING HAIR IMAGES FROM THE GENERATIVE SKETCH MODEL

Following the spirit of analysis-by-synthesis in the texture modeling literature [2], [25], we
verify the probability models in the previous section by synthesizing hair images.

Our prior model on the sketch leve(S, dg) is not strong enough for generating hair styles
through random sampling, therefore we assume {Satls) is either inferred from a hair
image in the next section or edited manually through a simple user interface.(Brelyn), we
synthesize a hair imagE}" in three steps according to the generative model.

1. Synthesizing the vector field from the skef€l¥™ ~ p(V|S,d).
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2. Synthesizing the hair texture from the vector fijf' ~ p(I|V=™).

3. Synthesizing color imagEY" by adding a shading imade™ to I}j" and then transfer the
grey image to color by the color map. The shading image is either edited through the interface
or inferred from images. One can uses various color maps stored for different hairs.

In this section, we briefly mention the sampling processes for steps 1 and 2.

A. Synthesis of the vector field

Given the directed sketctS, dgs), the vector fieldVy, on Ay, is generated deterministically
from the parameters of the sketch primitives according to egn.(8)VEgron the non-sketchable

part A, the gradient strengths are sampled iid from the prior model

p(0) ~ Pusk(p(v)), v € Ansic (14)

The orientation and direction fields for non-sketch pixels are filled-in by a diffusion equation
derived from minimizing the energy of the smoothness prior in egn.(10). For computational
efficiency, we run the diffusion equation at faster rate near the sketches and thus we assign a
confidence weightv(v) for each pixelv € A to control the diffusion speed. At the beginning,

w(v) = 1 for v € Ay andw(v) = 0 for v € Ang. Thus we modify the energy function in
egn.(10) to

E(©,dv|S,ds) = > > w(u)(l—cos(t(u) —7(v))). (15)

VEA sk UEDV
Minimizing the above energy leads to the following diffusion equations for the non-sketchable
part,

ot (v)
dt

= > w(u)sin(r(u) = 7(v)), forv € Ana. (16)

u€V

We compute the diffusion equations by nonlinear Gaussian-Seidel method as in [4] and raise

w(v) in the non-sketch part gradually at each iteration by a heat diffusion equation with fixed
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step size.

(17)

w(v) — w(v) + 0'2(711 S w) —wlv)), for vE A

1, Yv € A.

The weights converge to(v)
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Fig. 9. Three examples of hair drawing and synthesis. (a) Manually input hair sRetdth directionsds. (b) Synthesized

vector fieldV=¥* given (S, ds). (c) Edited shading maps with a small number of ellipses. (d) Synthesized color if&ges
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B. Synthesis of hair image

The probabilityp(Iy|©, p) in the egn. (12) has two energy terms. The first is a diffusion
term which reduces the gradients along the orientatigr), while the second is "reaction”
term which forces the intensity gradient in the direction perpendiculéfitpto be close to the
expected gradieni(v). p(v) is provided by the vector field. We can sampfg’ ~ p(Iy|©, p)
by the Gibbs sampler, as in texture synthesis [25]. This is quite slow in practice, we therefore
adopt a much faster method which can genelgtein seconds.

To start with, we define the neighborhood of the inhomogeneous MRF m@dgb, p). For
each pixelv € A, we trace a 1D curve neighborhood »f 5 pixels along the orientatiofi(v)
in both ways. The first energy term ji{Iyz|®, p) enforces smoothness on the pixel intensities
along the 1D curve neighborhood. This is very similar to the flow visualization algorithm LLC
[3]. We initialize the image with white noise, and then iterate two steps. The first step is to
average the pixel intensities along its 1D curve neighborhood like in the LLC algorithm. And
the second step is to match the expected gradient strength along the perpendicular direction. We
calculate current gradient strength along the perpendicular direction for the synthesized result
of the first step. Then for each pixel, we scale the local contrast by the rate of the expected
gradient strength over current gradient strength.

Fig. 9 shows three examples of hair synthesis to verify the generative model. Fig. 9.(a)
displays the manually input and edited sketches with directions which produce the vector fields
in Fig. 9.(b). Fig. 9.(c) shows the shading image with the ellipses for highlight or dark regions
masked by the hair boundary in the sketch. Fig. 9.(d) is the final synthesized images after a

color map transform. Editing and rendering such hair images takes only a few minutes.
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IV. COMPUTATION AND INFERENCE

Given an input imagd°®, our goal is to compute the vector fieM = (©, p,dy/) and the

directed sketchS,ds) by maximizing the Bayesian posterior defined in Section Il.
(S,ds, V)" = argmax p(I*|©, p)p(©, p, dv|S, ds)p(S, ds). (18)
We choose a two-step greedy algorithm for maximizing the above probability where the two

steps minimize different energy terms respectively.

1) Step I. Computing the orientation fiel® and the undirected sketch This step can be
accomplished by local computation.

2) Step Il. Inferring the growth directionds and dy, for the sketch and orientation field
respectively. The directions have to be inferred with global information on the sketch
and it is important for hair understanding and cartoon rendering.

The gradient strength fielg is computed from the orientation fiel® andI°®> determinis-

tically with p(v) = V g Ig5(v), Yo € A.

A. Step I. Computing the orientation fiet®d and undirected sketcH

We transfer the probabilities in eqn.(18) into energy functions on the orientation field and

undirected sketch,
(©,8)" = argmin £(0©,S) = argmin £, (I*|©) + E»(©, p|S) + E3(S). (29)

The three energy functions;, F», and F5 are derived from the egns.(12), (10), and (6) respec-

tively by omitting the terms involving the direction,, ds.

] \V/ v Iobs 2
o) - o Yelit) o ) (20)
vEA T
e(0(v),0(u))?
EQ(@,p‘S) = Z Z ((;>\2<>>_ Z 1ngnsk Z 1ngsk (21)
VEA sk UEDV 0 VEA sk vEAgK
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e(0;q, 0ip)?

E3<S) = )\NCNC+ Z Z 2)\5

C,€S <B;g,Bip>

(22)

In energy E»(®, p, |S), as the orientations are {0, 7), we need to renormalize the metric in

egn.(11) [18], [4].

e(0(v),0(u)) = \/;(1 — cos(20(v) — 26(u)). (23)

The second and third terms i, (O, p, |S) are responsible for pursuing the streamlines. The
streamline primitives are distinguished from the non-sketchable part not by their orientations
but for their relatively high gradients(v). Drawing a sketch curve on the high gradient areas
will reduce Es.

We initialize S = (), then we add one sketch primitii, at each iteratiors, = SU{B,},
and re-calculate the orientation field by updat@go © .. The primitive B either starts a new
curve(C', or extends an existing curvg; in S. B, € Ag is selected from a set of primitives in
the dictionaryAg (see eqn. (3)) with various locations, orientation and types so that it achieves

a maximum reduction of the enerdy(®, S), until the reduction amount is zero.

B’ =arg max E(®©,S)—- E(©,,S,), (24)

B.cAg
For the current sketc® and updated sketcB, we need to compute the optimal orienta-

tion fields ® and ©, respectively by diffusion equations in order to evalu&t@®, S) and

E(©4,S,). In the following, firstly we present the computation @f given S. This is similar

to the diffusion of the vector field in the synthesis step, except that the orientation field is

influenced by both the sketch and the observed image. Secondly we present the algorithm for

adding the primitives in spirit similar to matching pursuit [15].

A.1. Computing the orientation field by diffusion

As the sketchS determines the orientation fiel®,, in the sketch area. (eqn.(8)), we

only need to comput® .. by minimizing £, (I¢*|0©) + E»(0|S) (we omit p for clarity in this
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subsection). Therefore the orientation fié,. should achieve small image gradiefﬂs(v)lf{bs
and align smoothly witl®, in the undirected primitives.

From the imagd?>, we calculate its intensity gradient

s(v) = \/]VmI%bSP + |V, I 12 6,(v) = arctan(vy OHS), Yu € A.

We rewrite the gradient at directighin the following form.
(Vo In)® = (ViIgcos(v) + V,Iysinf(v))?
= 5(v)*(cos 0,(v) cos O(v) + sin 0, (v) sin H(v))?
= s%(v)sin®(0(v) — 0,(v))
s2(v)

= = (1 — cos(26(v) — 20,(v)).

Therefore the energy functiof, (Ig*|®©) + F,(©|S) becomes,

2.

UeAnsk

84(()%) (1 . COS(QQO(U) _ 29(0)) + 1 Z Z ;(1 — Cos(2(9(u) — 2(9(1)))-

2

vEA sk UEDV

It can be minimized by the following diffusion equations,

do(v)  s*(v) 1 .
T sin(20,(v) — 20(v)) — 3 u%;v sin(20(u) — 20(v)), v € Apgk- (25)

We use the nonlinear Gauss-Seidel method [4] to solveefoOnce the diffusion equations
converge, the energf(®, S) measures the goodness of the orientation f@®lénd sketchS

and is used in the primitive pursuit algorithm below.

A.2. Pursuing the primitives

In the initial stageS = (), the orientation field® computed by the diffusion equation has
blurry hair boundaries. The sket&plays an important role in computing the orientation field.
Fig. 10.(b-c) shows a contrast example of the orientation field computed with and without the

primitives.
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Fig. 10. Comparison of the orientation field computed by diffusion with or without the sketch. (a) The input image. (b)
Orientation field® computed withS = (. We visualize the angl® € [0,7) by color. (c) The zoomed-in view of the
orientation field within the dashed window in (b). The orientation field has blurred boundary. (d) Orientatio® foglchputed
together with the sketcB. (e) The zoomed-in view of the orientation field within the dashed window in (d). The orientation

field has sharp discontinuities along the occluding hair boundary.

SupposeB, € Ag is a candidate primitive with windowk, andS the current sketch. The
fitness of B, is evaluated by three energy termsik®, S).

Firstly, B, should fit well with the current sketch according to enefgy(S). If it starts a
new curve, the energy will be increased AR, otherwise it extends a current curve with a
smoothness energy(6;., 0;)*.

Secondly, addingB, will affect the overall orientation field in the non-sketch p@t..
through the diffusion equation (25), which minimiz&s (10 ) + Es (O, py[Sy) on Ag.
This is too expensive to compute it by running the diffusion equations for each new primitive.
So we simply copy the orientation fields of the primitive to current orientation fi@dss the
approximation of@, .

Thirdly, B, should fit well with the image appearance in the local windowBAsdetermines
the orientation field®_ within its window A, it should be aligned well with the minimum

image gradient directions, in terms of the energy tefm W@i

U€A+

E1(IgP%|©) (see eqn. (20)) over window, . In the following, we shall focus on the computation

This energy is part of
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(VG(U)IOHbs)2
202

of ¥

’UEA+

As the dictionary Ag includes five types of primitives at all locations, orientation and

, as other energy terms have been discussed before.

angle variations, directly computing the summation (Vo ,,Ig*)? for all possible windows

’UEA+
is quite expensive. We compute the following quantity once at the beginning and then use them
repeatedly in later computation.

At each point(z,y) € A, we compute a matrix (tensor),

vxlobsvonbs Vonbsv Iobs
T(v) = H H H Vy'H (26)
V, IV IS VIV, I
Due to the properties of the tensor, for the winddywhich has any constant orientatién

we can compute the summation @7,I¢*)? by the summation of the tensor,

> (VoIg®)? = (cosf,sin)( Y T(v))(cosd,sind)". (27)

vEAQ vEAQ

From the definition of the primitives, each primitive is composed by few (less than 3)
sub-windows with constant orientations. Therefore, we compute and store the summation of
the tensor for all kinds of sub-windows. Then the fithess of each primitive can be computed
efficiently by combining the fitness energy in the sub-windows.

To summarize step |, we have the following algorithm for computing the undirected sketch

S and the orientation fiel@® from the hair texture imag#’s.

Step I: Algorithm for the undirected sketch S and orientation field ©
0. Given hair texture imag&P* and primitive dictionaryAg.
1. Initialize S = 0, Ay < 0, No < 0, Apa — A.
2. Compute the orientation fiel®,. by diffusion eqn.(25).
3. Compute the current total energy functiéit®, S) in eqn. (19).

3. lterate the following steps.
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4. Birth of a new sketch

5. For anyB, € Ag, compute(B,) = F(©,S) - E(©,,SU{B.,})
6. ChooseB* = arg ghax d(By).

7. If 6(B%) <0, exit. OutputS* and ©*.

8. UpdateC’Z = B*, NC — NC +1, Ansk — Ansk \ Aj_, Ask — Ask U Aj_

9. Trace the sketch cun@y,:

10. ForB. at the two ends oy, compute§(B,) = E(0,S) — E(©,,SU{B.}),
11. ChooseB*, = argmax6(B,).

12. If 5(B%) <0, go to step 4.

13. UpdateCy,, « Cn, U {B% }, Anskc < Ansk \ A%, Agc — Agc U A% Goto step 9.

The sketch pursuit algorithm above resembles the matching pursuit algorithm [15] in signal
decomposition with wavelets. The matching pursuit algorithm adds one wavelet base at a time
to achieve maximum reduction of reconstruction error. Our primitives are disjoint rather than
linear additive. Furthermore, the orientation field is a layer of hidden variables that have to be
computed iteratively. All these factors make the computation more complicated than matching

pursuit.

B. Step Il: computing the hair growth directions

In the second step, we compute the hair growth directidpsand dy for the sketchS
and orientation field® respectively. Suppos8 = {C; : i = 1,..., N¢} has a set ofNg
undirected sketch curves, and the primitives on each curve share the same direction labels. The
five primitives (a)-(e) have 1, 1, 2, 2, 1 direction variables respectively. For notation clarity, we

pool all the direction variables together and denote,

ds = (di,d, ..., dp) € {—1,1}™ (28)
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Fig. 11.(a) shows an example with a number of curves. We represent each variable by a node
and form an adjacency graph in Fig. 11.(b). Two nodgsl; are said to be adjacent if they
belong to two different curves and there is a straight line connecting the two curves without

intersecting other curves.

Fig. 11. (a) A portion of a sketch with a number of curves, and each curve has 1-2 direction variables. (b) Each direction
variable in (a) is represented by a node/vertex in the adjacency graph. Two adjacent nodes (curves) have a weighted edge for

their direction compatibility constraints. The compatibility probabilityl;, d;) is abbreviated byy;;.

Therefore, the problem of inferring the direction becomes a binary Graph labeling/coloring

problem.

B.1. The energy terms related to directions

In the maximum posterior probability formulation in egn. (18), the direction is not involved in
the image modeb(IP5|©, p). Only two energy terms contribute to the hair directions. The first
term is included inp(V|S,ds) and it is the smoothness of vector flow fietdv), v € Ay for
the non-sketch part conditioning on the sketch pdtt), v € A, (See eqgn. (10)). The second
term is included in the prior probability(S,ds) where the directions within the primitive
windows follow a prior probabilityp,;, (v, 6(v),d(v)). An additional source of information for

determining the directions comes from the dividing line primitives whose directions are known.
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Given ® andS, we transfer eqn. (18) to the following energy minimization problem,
(ds,dy)* = argmin F(dg,dy|©,S) (29)

= argmin Z Z (1 —cos(t(u) —71(v))) — Z log pair(v, 0(v), d(v)).(30)

VEA Lk UEDV vEAgK

d(v),v € Ay is determined bydg, and the non-sketch pari(v),v € A,g IS computed
through the diffusion equation (25) which minimizes the first energy term above. Therefore
the computation oflg is the key anddg is evaluated by the smoothness of the vector figld

in the above equation.

There are several possible algorithms for solving the graph labeling problem. For example,
Belief propagation and graph cut are fast solutions and the Gibbs sampler [8] is a general
algorithm. However, in this problem, Belief propagation and Graph cut are not applicable to
the general energy functions above and the Gibbs sampler is inefficient because of the strong
coupling in the labels. In the following we adopt a Swendsen-Wang cut algorithm [1] which

can simultaneously flip the lables of several nodes.

B.2. The Swendsen-Wang cut algorithm for labeling the adjacent graph

For each linke =< d,, d; > in the adjacency graph, we define a local compatibility probability
¢;; Which represents how strongty andd; are correlated based on some local measurements.
Fig. 12 shows some examples for two streamline directions. These probalbijljtiase used
for proposing clusters (connected components) in the Swendsen-Wang cut method [1]. As a
bottom-up proposal probability, the exact formula gy does not matter too much, though a
good probability will lead to fast convergence.

Without loss of generality, supposg and d; are the direction variables on the right and
left sides of two curves”,, and C,, respectively. We denote bx(d;,d;) the neighborhood

between the two curves. One may use heuristic method for comptifigd; ), and we define
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(a) (b) (c) (d)

Fig. 12. Direction compatibility between two adjacent streamline curves. Row 1 shows the vector fields in color and row two

shows the energy tension in the vector fields with darker spots for high energy. Intuitively, the two curves in (a) and (b) have

compatible directions and thus lower energies. (b) and (d) are not compatible and have high energies.

the energy of directional compatibility as

E(d;, d;) = > > (1= cos(t(u) — 7(v))).
vEALkNA(d;,d;) u€d
As the probability is the same if we flip both, d; simultaneously, we normalize the proba-
bility,

exp(—E(d; =1,d; = 1))
exp(—E(d; = —1,d; =1)) +exp(—E(d; = 1,d; = 1))

qij = p(d; = d;) =

d; andd; are highly correlated if;; is close tol or 0, and they are less correlated whgnis

close t00.5.

In [1], the Swendsen-Wang cut algorithm generalizes the original Swendson-Wang algorithm

so that it can be applied for general probability models in vision task. It samples the posterior

probability p(dg, dy|®©, S) o« e F(ds:dvI®S) where £(dg, dy|®, S) is defined in egn.(29) In

our experiment, we do not use the simulated annealing schedule which is often needed in

optimization. The reason, in our opinion, is that the energy has already rather low temperature

and the Swendsen-Wang method is known to mix rapidly in low temperature.
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Step IIl: The Swendsen-Wang cut method for direction inference
0. Initialize a labelingds = (d;, ds, ..., d,,) randomly or uniformly.
1. Iterate the following steps for curredi.
2. For each adjacency link=< d;,d; >,
Turn e off deterministically ifd; # d;
Turn e off with probability 1 — ¢;; if d; = d
3 Collect a set of connected compone6ts.
4. Select a connected componéfpte C' P with probability ¢(V |C' P) (say uniformly).
5. Flip the direction labels in the connected comporignfrom ¢ to ¢, ¢,¢' € {—1,1}
6. Compute the new labelind; and the correspondingy,.

7. Accept the proposed flip with probability((ds,dy) — (d,d},)) as

[ecewy vy (1-9i0) p(d’s,d’v\@,S))

a((dg,dy) — (d§,dy)) = min(1, p(ds.dy]©.8)

HeEC(VO,VZ\VO) (1=gi5)
In the above acceptance probability, and V,, are the subgraphs with direction labéland
¢ respectivelyC(Vp, V; \ V) is the cut betweerv, andV; \ 1y, andC(Vp, Vi \ V) is the cut

betweenV, andV,, \ V. We refer to [1] for more details of the Swendsen-Wang cut algorithm.

V. EXPERIMENTS

We collected a hair dataset containing 300 realistic human hair images extracted from a
cosmetic makeup software. The hairs are segmented from human images and pasted on a
background of constant color.

We manually labeled the sketches of 20 hair images with distinct styles as the training
examples. From these sketches we learn the primitives and compute the vector field through
diffusion. We learn the two prior probabilities shown in Fig.7. We also learned a number of

parameters such as the standard deviations used in the representation.
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(a)

(b)

(C) f iy g f Rl o " \ f Rl

Fig. 13. Sketch pursuit procedure. (a) Inferred sketch. It is null sketch at the first step; (b) The orientation field; (c) The

energy functionE; (IgP5|@©) + E2 (@, p|S) at each pixel.

Experiment 1: Hair sketching and synthesis Fig. 8 illustrates the steps in inferring the
sketch and synthesis, and more results are shown in Fig. 15. A detailed sketch pursuit example
is shown in Fig. 13. From the figure, we can see that the engiglps|©) + E5 (O, p|S) is
reduced while the new curves are added into the sketch graph.

Our experiments reveal that the sketch level representation plays two important roles in
computing the vector field.

1. As Fig. 10 shows, the primitives correct the errors in the initial orientation field) ,
especially around the discontinuities of flows. It is a well-known problem in filtering or feature
extraction in any random fields. On one hand, we need a large window to pool information

locally, but on the other hand large windows lose spatial resolution. This problem is resolved
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by fitting a number of parametric primitives in generative windows.

@ ; ©

Fig. 14. Inference of hair growth directions. (a) The input image; (b) Sk8tetith directionds computed with the point
wise prior pqi;. Some hairs on the top run in opposite directions. (¢) The vector Meldenerated by the directed sketch
(S,ds) in (b). The directions are wrong at some pixels and therefore the energy in the vector field is high. (d) Sketch with

directions inferred with curve compatibility constraints. (j) The vector field generated by the directed &kedgh) in (d).

2. The sketch helps to determine the directions which cannot be determined locally. With
the sketch, we have the high level information of hair structure, such as the dividing line, the
source and sink boundary. Fig. 14 shows a comparison experiment where the compatibility
among curves plays an important role in computing the correct directions.

Experiment 2: Hair editing . Fig. 16 shows two examples of hair editing. For a given image
in Fig. 16.(a), we compute the sketch graph shown in Fig. 16.(b). Then we provide a user
interface to edit the sketches. The interface provides a number of operators such as adding/
moving/ deleting a curve, changing its directions, editing the shading effects, setting parameters
for the intensity contrast etc. Fig. 16.(c) shows examples of the edited sketch and Fig. 16.(d)
displays the novel hair style. These editing steps are more convenient and much faster than the
3D graphics interfaces.

Experiment 3: Hair rendering . Rendering cartoon hair is an application of the hair analysis
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(b) Sketch (c) Vector Field (d) Synthesis (e) Rendering

(a) Image

(b) are the computed

Experiments of hair sketching and synthesis on seven hair styles. (a) are the input images,

Fig. 15.

sketches with growth directions, (c) are the vector fields, (d) are the synthesized images, and (e) are the cartoon rendering in

different stroke styles.
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(@) | (b) S ) S (d) 19"

Fig. 16. Examples of hair editing for hair images. (a) Original hair image; (b) Original hair sket@t) Edited hair sketch;

(d) Novel hair styles after editing.

and it becomes extremely convenient for the generative models. All we need to do is to replace
the sketch curves by stylistic brush drawings.

In non-photorealistic animation and rendering (NPAR) [9], different drawing styles can be
achieved by different types of strokes. In our experiments, we use a simple brush shown in
Fig 17. We sample a number of key points on each sketch cGfyeand draw a smooth
Catmull-Rom spline passing these points as the skeleton of the brush. For each key point on
the skeleton, we define a width and get two points along its normal direction. These points
determine two Catmull-Rom splines which are the boundaries of the brush stroke. We assume
the brush has two narrowed ends. Some examples of hair rendering are shdWwfiasFig. 8

and Fig. 15. Other styles can be generated with more fancy brushes.
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Fig. 17. A brush example for the non-photorealistic hair rendering.

VI. LIMITATIONS AND FUTURE WORK

The three level generative hair model is extremely compéki{0) bytes) and yet it is
shown to be effective in synthesizing realistic hair images with diverse hair styles. It also
supports convenient hair editing and rendering. The representation is aimed at applications such
as extremely low bit image compression in video phones, human hair recognition, and cartoon
animation etc.

The current model is still limited in the following aspects. (i) The model is 2D dimensional and
therefore its vector field does not work well for very curly hairs in Fig. 18.(a). This needs short
sketch curves with occluding relations in the sketch representation. Similar work was studied in
a curve process in [21]. (ii) It cannot work well for very short hairs growing forwards (see in
Fig. 18.(b)) or black hairs (see in Fig. 18.(c)). The latter have very weak textures for computing
the vector field reliably. (iii) We work on segmented hair images, and we shall integrate the hair
sketch with our face sketch work [24] and use the face as context to detect hair. (iv) We cannot
model more structured hair styles, such as, pigtail and braid which will need more sophisticated

primitives and sketch graphs.
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@ (b) (©

Fig. 18. Some difficult cases for the current model and inference algorithm. (a) Curly hairs with heavy occlusions of hair

strands. (b) Short hairs growing forwards. (c) Black hair with weak flow texture.
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