
To appear in EC-Web 2005. Copenhagen (Denmark), August 2005

Improving Reuse of Web Service Compositions

Carlos Granell1, Michael Gould1, Roy Grønmo2, David Skogan2

1 Department of Information Systems (LSI)
Universitat Jaume I, E-12071 Castellón, Spain
{carlos.granell,gould}@uji.es
http://www.geoinfo.uji.es

2 SINTEF Information and Communication Technology
N-0314, Oslo, Norway

{roy.gronmo,david.skogan}@sintef.no
http://www.sintef.no

Abstract. We describe a methodology for assembling composite services based
on three basic processes which are independent of the concrete implementation:
Service Abstraction Process, Service Composition Process, and Translation
Process. These processes share the concept of integrated component composed
of two key aspects: a specific set of the Aalst’s workflow patterns together with
a component-style composition of complex services. We propose a novel ap-
proach that implements the steps of such methodology, providing an efficient
manner for developing service compositions and enhancing the expressiveness
of target composition languages like BPEL4WS. Here we focus on the descrip-
tion of the Service Abstraction Process, a critical step in order to enhance the
service composition by facilitating the reuse of existing services.

1 Introduction

In the service oriented architecture field, several different approaches and platforms
are being developed to address the common goal of web service composition [8].
Each provides unique perspectives to facilitate service integration, from static and
dynamic approaches to manual or automated ones, and each approach defines its own
manner for composing services, provides its specifications and languages, and intro-
duces new specifications to the web service protocol stack1. In fact each of the possi-
ble service facets (addressing, discovery, context, etc.) normally carries a specifica-
tion or even two or more potential specifications with no single consensus standard
defined to date, leading to overlapping features [13]. This may lead to inter-
compatibility issues among different approaches, complicating even further the ser-
vice composition problem. In this work, rather than provide a new specification from
the ground up, we prefer to build our approach, where possible, upon existing well-
known web services specifications or de facto standards (like for example HTTP,
WSDL, and BPEL).

1 http://roadmap.cbdiforum.com/reports/protocols/

Most similar approaches attempt to address service composition by composing sin-
gle web services from scratch, ignoring reuse of existing compositions or parts of
compositions. In this sense, from a developer’s perspective it is interesting to explore
the reuse of existing services. It is expected that this higher level of service reusability
will lead to more efficient, more structured composition process that will accelerate
rapid application development.

In this paper we concentrate on how the service reuse can be exploited in the ser-
vice composition process for developing more rapid and efficient web applications.
First we describe a service composition methodology for developing applications
composed of three steps, namely Service Abstraction Process (SAP), Service Compo-
sition Process (SCP), and Translation Process (TP). The SAP is charged with distin-
guishing abstract services from concrete services, ready for composition. The SCP
provides the needed means for creating service composition reusing existing ones. At
run-time, the TP translates the service composition description into a target composi-
tion language like BPEL4WS to be executed by a workflow engine. Secondly, we
propose a service composition model using specific workflow patterns and a compo-
nent-style composition of complex services. The set of workflow patterns is based on
[1], adapted to the service composition context. The integrated component notion
incorporates component aspects into web service concept. Integrated components
together with workflow patterns become the fundamental blocks for application de-
velopment by reusing and combining simpler components into more complex ones. In
this paper we focus on the description of the SAP process within our model, the pro-
posed workflow patterns set and its relationship to the integrated components.

The remainder of the paper is organized as follows. The proposed methodology is
described in section 2. Section 3 presents the SAP process in detail, describes the
integrated component concept, workflow patterns used, and how to design these inte-
grated components on our model. Finally, section 4 concludes the paper.

2 A Service Composition Methodology

Our objective is to introduce a conceptual methodology supporting service reuse and
composition. It consists of applying the following basic processes: the SAP for creat-
ing abstracts services or integrated components, the SCP for constructing complex
applications (composite services) reusing abstract services, and the TP for converting
complex services into a target composition language for deployment and invocation.
The rest of this section describes each process presenting its purpose, the modules
implicated, and their relationships.

2.1 Service Abstraction Process

The core of service-oriented architectures (SOA) is essentially collections of services
(operations) described by an interface and provided to a user or client. Composing
web services by means of concrete service interfaces leads to tightly-coupled compo-
sitions in which each service involved in the chain is tied to a web service instance. If

current services are replaced by new or updated ones, changes in the underlying
workflow may become necessary from, for example, slight modifications of bindings
to wholesale redesign of part of the workflow description. Because of that, services
should be interpreted as abstract notions facilitating their independent composition.
Figure 1 depicts a UML class diagram illustrating the elements and their relationships
contained in the SAP.

Fig. 1. Elements within the Service Abstraction Process

The SAP is a process (abstraction process) which allows us to move service opera-

tions from terms of particular functions to shared and agreed domain concepts. In
particular, ontologies and semantic properties are a basic ingredient in the abstraction
process because these introduce meaning to services (for example semantic proper-
ties) and thus enable the reuse of these services and their independent composition. A
minimum required attribute for describing the service functionality is its signature,
composed of its operation name and its input and output parameters. The developer
(or software module) should be able to represent different operation signatures as a
(new or existing) single abstract signature, specified as the minimal signature required
for a given functionality [6]. In this way, the resulting abstract operation associated
with each domain forms the basis for the future composition process, which is carried
out in terms of common abstract signatures instead of concrete signatures. From Fig-
ure 1, the SAP may be composed of the following modules:
- Abstraction module. This module is charged with abstracting operations: to map

operation and parameter names to comprehensible names defined by means of
common vocabularies or taxonomies. The resulting abstract operation is made
available in service registries. In fact, every abstract operation is actually a set of
candidates operations with a given functionality, of which the execution results
of just one will be considered at run-time by a workflow engine. We will ignore
aspects concerned with the quality of service [7] although we realize all these
properties – security, availability, efficiency, response time, etc. – play an impor-
tant role for selecting the most appropriate operation for execution among the
candidates.

- Binding module. The abstraction process itself includes a gap between the ab-
stract specification of an operation and how to access to an operation on a techni-
cal level. The binding description specifies how to map from abstract operations
to concrete operations. The established bindings are meant for service invocation
and should be kept separate from the description of the abstract and concrete op-
erations, the three logical views of an operation - abstract, concrete and binding -
remaining physically separate.

2.2 Service Composition Process

A composite service incorporates the business logic and functionality of several sim-
pler services contained within [2]. The problem addressed is how to build and inte-
grate such a composite service by reusing other simpler services.

A natural way of conceptualizing service composition is by means of composing
single and composite services recursively [2, 8]. In this way, a composite service is
defined as an aggregation of other single and composite services. The SCP suggests
an extension of this idea by adding two new aspects. First, component technology
[12] allows modular composition of software systems from reusable and independent
code described by explicit interfaces. In essence, this approach is identical to others
carried out within different contexts like for example component-based software
development [11], in which the application logic is constructed by composing smaller
software components. Therefore, the composition process constructs complex appli-
cations as integrated components by incrementally aggregating and reusing existing
ones. Second, a specific set of workflow patterns defines the orchestration among the
integrated components. This provides an added level of simplicity, independence, and
reusability in the composition process.

Fig. 2. Elements within the Service Composition Process

As depicted in Figure 2, the relationships among the tasks in a composition process
starts from the level of abstraction defined by abstract single operations, which are
previously created by the SAP. An abstract single operation is considered a basic
element. An abstract composite operation is in turn an aggregation of other abstract
(single or composite) operations, which are referred to as service component. The
service component may comprise single or composite operations and specify the
orchestration among the contained operations (service components), that is, the con-
trol and data flow description. The control flow establishes the partial order in which
the service components should be invoked. The data flow captures the data depend-
ences among such service components. Based on these relationships, the SCP may be
composed of the following modules:
- Composer module. It handles the composition process by combining service

components from single or composite ones. The resulting service component is
also considered as an integrated component. Orchestration features among con-
tained service components are also specified by this module. Therefore, the com-
position process consists of discovering existing abstract operations, designing
the resulting composition, and registering it for future use.

- Discovery module. This module is concerned with selecting the required service
components for composition.

2.3 Translation Process

Once a composition is created following the two processes mentioned, we use the TP
to transform the composition into a target web service-oriented workflow language to
permit users and external programs to execute it. The TP converts the integrated com-
ponent(s) description to a workflow language (for example BPEL4WS) while also
enhancing the expressiveness of these languages since the target process description
is reached by following a component-style composition.

All these combined processes provide a methodological, an efficient way for de-
veloping applications by service composition and reuse. Users may create customized
applications following the service composition methodology in three steps, using the
underlying concept of integrated component with regard to its creation, composition,
and translation: they first create abstract services as integrated components. Then,
application development is performed by incrementally aggregating existing inte-
grated components. Finally, these complex applications created are translated into
executable descriptions for invocation.

3 Abstraction Process for Designing Integrated Components

Now that the service composition methodology has been introduced, we describe
the abstraction process according to the SAP. The key elements are integrated com-
ponents and workflows patterns. In section 3.1 we propose the integrated component
concept for expressing services. Section 3.2 presents appropriate workflow patterns
for selection of services within an integrated component. Finally, section 3.3 discuses
the modeling of services based on such integrated components and workflow pat-
terns.

3.1 The Role of Integrated Components

Expressing services as blocks of components is especially attractive within service
composition contexts for different reasons. First, by definition, components are the
sole ingredients of the composition process [12], which is a critical aspect to simplify
the composition model as a useful and practical process. If we treat both single and
composite services as components, recursive composition becomes an implicit and
natural means for building complex services (compositions). Next, components must
be units of replacement [12] avoiding external data dependencies. This means that a
component is not dependent on the composition in which it is involved. It can be
reused in others when the functionality that it exposes is required. Furthermore, it is
clearly relevant for improving service reuse that components incorporate no imple-
mentation details, only metadata describing all service aspects involved in the compo-
sition process.

We adopt a component-based approach to model web services (earlier versions of
this concept are found in [3, 4]). We define an integrated component as a service
adopting the component technology’s aspects explained above. It comprises either

abstract single operations (SAP’s outcome) or abstract composite operations (SCP’s
outcome). We consider either abstract (single or composite) operation is an integrated
component. To accomplish that, all service aspects relevant for service composition
need to be captured in abstract descriptions. From the set of layers for designing a
service [10], we take into consideration the following service aspects for enabling
integrated components: (i) descriptive aspects are metadata concerned with the con-
text in which the service operation is performed; (ii) functional aspects detail the
service capabilities in terms of operations, parameters, etc., that is, its functionality;
(iii) structural aspects show how a service is internally structured as a combination of
simpler services; (iv) finally, binding aspects establish relationships between abstract
and concrete specifications required for service invocation.

An integrated component combines the component and services aspects into the
single notion, maintaining the benefits of both, by two functional interfaces: public
and private. The public interface expresses publicly the service’s descriptive and
functional aspects. The private interface represents an internal view of the integrated
components encapsulating the structural features like control and data flow as well as
the necessary transformations for binding.

3.2 Workflow Patterns

Workflow patterns also play a key role in our model because they describe the struc-
tural features of an integrated component. Firstly, this section selects a relevant set of
workflow patterns for service composition. Then, it discusses which of those selected
workflow pattern sets are applied in the abstraction process and their relationship
with the integrated components.

The original 20 workflow patterns [1] provide a framework for comparing differ-
ent workflow management systems according to their functionality (see Table 1).
However, not all workflow patterns are relevant to the service composition context.
Our choice is based on simplicity criterion where sequence (1), parallel split (2),
choice (4, 6), and replication (9) constructs offer enough means to model complex
patterns in any composition [9]. Counterpart patterns regarding synchronization (3, 5,
7, 8) are also significant in our model since the split and join combination aligns
perfectly to the integrated components’ hierarchical structure for building composi-
tion as stated in the previous subsection.
The remainders of the workflow patterns (10-20) are not considered for service com-
position. Some irrelevant workflow patterns (10, 12, 13, 17) can be modeled with
basic ones (Table 1, left column). For instance multi-merge (10) defines several paral-
lel executions with a specific joining point can be represented by using and-split (2)
and and-join (3) together. Others are not suitable for service composition as deferred
choice pattern (16) since it assumes an external input in the workflow. As described
in section 3.1, we prefer integrated components with lower levels of external data
dependencies. The rest of workflow patterns (11, 14, 15, 18, 19, 20) have a great
importance on the execution of the workflow, however they have no relevant mean-
ing during the abstraction process described in this section.

Table 1. Relevant and non-relevant workflow patterns (synomymous term in parenthesis)

No Relevant Workflow Patterns No Non-Relevant Workflow Patterns
1 Sequence (seq) 10 Multi-merge
2 Parallel split (and-split) 11 Implicit Termination
3 Synchronization (and-join) 12-13 Patterns involving Multiples Instances (design time)
4 Exclusive choice (xor-split) 14-15 Patterns involving Multiples Instances (run time)
5 Simple merge (xor-join) 16 Deferred Choice
6 Multi-choice (or-split) 17 Interleaved Parallel Routing
7 Synchronizing merge (or-join) 18 Milestone
8 Discriminator (disc-join) 19 Cancel activity
9 Arbitrary circles (loop) 20 Cancel Case

Understanding how integrated components are related to workflow patterns is criti-

cally important since the composition process is generally considered to be the appli-
cation of a composition operator [12]. In our model, workflow patterns play the role
of selection operators in the SAP and of composition operators in the SCP. Here we
focus on the selector role during the abstraction process.

Each and every resulting abstract operation, the abstraction process’ outcome, is
considered an integrated component. An integrated component comprises a set of
candidate operations with similar functionality. An appropriate workflow pattern is
needed to execute one operation from a potential operation set. The idea is to extend
the functionality of the alternative services pattern proposed in [5]. Suppose that one
service is selected for execution but that such a service becomes unavailable due to
server or network troubles, failing the workflow execution. To prevent this, the alter-
native services pattern allows us to model alternative services in the workflow that
perform the same task as the most appropriate service selected by quality, data or
simply user preferences.

Figure 3 illustrates the service selection situation. Both the split and join condi-
tions are needed for modeling the service selection into a target composition lan-
guage. The split condition is concerned with the candidate operation set (inputs)
whereas the join condition refers to the selected operation (output). From the relevant
workflow patterns in Table 1, the inputs or-split and and-split are suitable
whereas for the output we are interested in disc-join pattern because only one of
them will be finally considered by the workflow engine. Therefore, the or-split
with disc-join and and-split with disc-join pairs are appropriate in the
abstraction process. The former is suitable when the user selection explicitly includes
some conditions (for example, quality or pre-conditions) over the candidate opera-
tions taking them into account a priori. This selected set is modeled for execution [5]
and only the first one to terminate successfully is considered and the others are ig-
nored at run-time. We can say that two filters are applied: the first one concerned
with criteria at design-time and the second one concerned with service availability at
run-time. For the latter all candidate operations are considered for execution. In this
case, only the service availability filter runs. Therefore, these selection workflow
pattern pairs are reflected in the resulting workflow description to help assure that the
composition is somewhat fault-tolerant due to multiple service availability.

Fig. 3. Workflow pattern for service selection in the SAP

3.3 Modelling Integrated Components

Building on the concept of integrated components in section 3.1 and the analysis of
workflow patterns in section 3.2, here we detail the abstraction process for modelling
integrated components.

The objective of this abstraction process is to build integrated components which
will then be used for the composition process within the SCP. From the user perspec-
tive the public interface, the integrated component’s functionality and descriptive
aspects, is interesting and not how such a component is internally constructed. From
the programmer or designer perspective, the private interface is also interesting be-
cause it shows how the component is internally structured. Therefore, modelling
integrated components consists of specifying all service aspects stated earlier.

Figure 4 summarizes the major steps in the abstraction process in which a bottom-
up design is necessary to reach the abstraction operation level of available concrete
operations: (i) the definition of the required abstract operation in terms of is domain;
(ii) the functionality associated with the abstract operation; (iii) the internal structure
definition; (iv) the definition of the appropriate transformation between the abstract
and concrete operations; and finally (v) the abstract operation registration. An inte-
grated component is generated by steps (i) and (ii) which represent the public inter-
face and by (iii) and (iv) which correspond to the private interface.

The first step (i) consists of finding an appropriate abstract operation that corre-
sponds conceptually to a given concrete operation. At this moment two possibilities
are possible: either an abstract operation already exists or does not. For the former,
we specify the descriptive aspects of this new abstract operation which can be, for
example, commerce classification, service category, or domain, such as are repre-
sented in an OWL-S service profile. For the latter, such a concrete operation is actu-
ally being assigned to an existing abstract operation then specifying the descriptive
and functionality aspects are not necessary. Indeed, it is likely that several operations
within a similar domain will belong to the same integrated component. For example,
let us consider a couple of operations concerned with weather information (Get
Wind and Get Weather Report), where the Get Wind operation returns

Fig. 4. UML activity diagram for the abstraction process in the SAP (numbers in parenthesis

correspond to service aspects described in section 3.1)

only certain wind-related variables a complete weather report, including in addition to
wind information, weather forecast features such as pressure, humidity, or tempera-
ture. In this case, the integrated component (Wind Info) should be formed by the
minimal common information among them, hiding both operations under the same
domain (the Wind concept). Similarly, in a complex operation like Get Weather
Report, some parts of the same function may belong to several integrated compo-
nents with different concepts (Wind, Pressure, Humidity, and Tempera-
ture concepts). Both service availability and reuse are improved by decomposing a
given complex operation into its finer functionalities, leading to multiple logical
views of the same operation. In step (ii), we specify the functionality aspects if neces-
sary. In particular, service capabilities like inputs or outputs are described in terms of
concepts in a certain domain. Both sorts of attributes form the public interface.

The next step (iii), structural aspects are introduced by specifying one of the selec-
tion workflow patterns described previously, ensuring that only one concrete service
is successfully executed. For example, the invocation of Wind Info contains two
concrete operations, Get Weather Report and Get Wind. One incoming op-
eration must be completed before executing the following service in the chain. Both
concrete operations are executed but only one is considered by the workflow engine.
Suppose that an and-split with disc-join selection pattern is chosen and Get
Wind would terminate before Get Weather Report. In this case the latter is
ignored in the workflow execution. Binding aspects are specified in (iv) where the
appropriate transformation between different levels of abstraction are described. In
this case, the binding concept establishes relationships between the inputs and outputs
concepts of the integrated component with the service description specification (typi-
cally WSDL). For example, it is necessary to declaratively specify a mapping from an
integrated component (Wind Info) to its concrete operations (Get Wind and
Get Weather Report) by specifying network protocol, message format and,
optionally, more elaborated transformations such as filters or logical views. Structural
and binding attributes form the private interface. Finally, step (v) consists simply of
registering (updating) the abstract operation as an available integrated component for
future reuse.

4 Conclusion and Future Work

In this paper we have presented a methodology for developing web applications using
three basic processes for service composition, namely Service Abstraction Process,
Service Composition Process, and Translation Process. In order to better support
service reuse, we introduced a model for service composition that implements such a
methodology. We described the core elements in our model: workflow patterns and
integrated components as building blocks for incrementally composing complex ser-
vice compositions. Our ongoing work includes a toolset to support the integrated
components definition and to explore service reuse during the composition process.

Acknowledgements

This work has been partially supported by the EU project IST-2001-37724, by the
Spanish Ministry of Science and Technology project TIC-2003-09365-C02, and by
Fundación Bancaixa-Castelló.

References

1. Aalst, W.M.P., Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns.
Distributed and Parallel Databases 14 (1), (2003) 5-51

2. Alonso, G. Casati, F., Harumi, K., Machiraju, V.: Web Services: Concepts, Architectures
and Applications. Springer-Verlag, Berlin Heidelberg (2004)

3. Granell, C., Poveda, J., Gould, M.: Incremental Composition of Geographic Web Services:
an Emergency Management Context. In: Proc. of the 7th AGILE Conference on Geographic
Information Science, University of Crete Press, Crete, Greece, pages 343-348 (2004)

4. Granell, C., Ramos, J.F.: An Object-oriented Approach to GI Web Service Composition. In:
Proc. of the First DEXA Workshop on GIM 2004, Zaragoza, Spain, pages 835-839 (2004)

5. Grønmo, R., Solheim, I.: Towards Modeling Web Service Composition in UML. In: Proc. of
The 2nd Intl. Workshop on Web Services: Modeling, Architecture and Infrastructure
(WSMAI), Porto, Portugal, pages 72-86 (2004)

6. Melloul, L., Fox, A.: Reusable Functional Composition Patterns for Web Services. In: Proc.
of the IEEE ICWS 2004, San Diego, California (2004)

7. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6 (6), (2004) 72-75
8. Milanovic, N., Malek, M.; Current Solutions for Web Service Composition. IEEE Internet

Computing 8 (6), (2004) 51-59
9. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus. CUP (1999)
10. Sollazo, T. Handschuh, S., Staab, S., Frank, M.: Semantic Web Services Architecture –

Evolving Web Service Standards towards the Semantic Web. In: Proc. of 15th International
FLAIRS Conference. AAAI Press, pages 425-430 (2002)

11. Szyperski, C.: Component Software. Beyond Object-Oriented Programming. Addison-
Wesley, New York (1998)

12. Szyperski, C.: Component Technology – What, Where, and How?. In: Proc. 25th Interna-
tional Conference on Software Engineering ICSE’03, pages 683-693 (2003)

13. Vinoski, S.: WS-Nonexistent Standards. IEEE Internet Computing 8 (6), (2004) 94-96.

