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Abstract—The tire-road friction coefficient is critical informa- 1566
tion for conventional vehicle safety control systems. Most previous
studies in tire-road friction estimation have only considered
either longitudinal or lateral vehicle dynamics which tends to
cause significant underestimation of the actual tire-road friction
coefficient. In this paper, the parameters, including the tire-
road friction coefficient, of the combined longitudinal and lateral
brushed tire model are identified by linearized recursive least
square (LRLS) methods which efficiently utilize measurements
related to both vehicle lateral and longitudinal dynamics in real
time. Simulation study indicates that using the estimated vehicle
states and the tire forces of the four wheels, the suggested algo- Siip Ratio
rithm not only quickly identifies the tire-road friction coefficient
with a great accuracy and a robustness before tires reach their Fig. 1. Generic combined lateral and longitudinal tire force curves
frictional limits but also successfully estimates the two different
tire-road friction coefficients of the two sides of a vehicle on a

split-p surface. The developed algorithm was verified through . . .
vehicle dynamics software Carsim and Matlab/Simulink. However, since these methods only consider either lon-

gitudinal or lateral vehicle dynamics, the usage of these
conventional tire-road friction coefficient identifiers is quite
limited to certain conditions. Algorithms for the identification
of the tire-road friction coefficient based only on longitudinal
l. INTRODUCTION or lateral dynamics have to be carefully implemented for ESC
HE IDENTIFICATION of peak tire-road friction coeffi- or ABS, which are often activated in the situations that involve
cient is a critical task for guaranteeing the performancésth longitudinal and lateral vehicle dynamics. By simply
of many vehicle safety control systems such as anti-lo@stimating longitudinal or lateral tire forces while braking in
brake systems (ABS'’s), electronic stability programs (ESP’$),turn, the vehicle stability control systems will significantly
and roll stability controls (RSC'’s) [1]-[8]. Several differentunderestimate the actual tire-road friction coefficient because
approaches have been developed to identify the tire-rohgitudinal tire force will decrease at a given slip ratio as
friction coefficient in real time. The methods presented in [9]the slip angle increases or lateral tire force decreases with a
[12] are developed based on vehicle lateral dynamics. In [gjiven slip angle as the slip ratio increases. Fig. 1 shows the
the tire-road friction coefficient and the cornering stiffnesghenomenon that lateral and longitudinal tire forces interact
parameters are identified without requiring large slip angWith each other. The underestimation of the actual tire-road
with measurements from a differential GPS system and a diction coefficient can be followed by the deterioration of
roscope. In [10], the value of steering torque, which providgerformance of the vehicle safety control systems.
an earlier knowledge of the tire-road friction coefficient before Though the majority of tire-road friction coefficient algo-
tire forces saturate, is measured to identify the tire parametaitims is designed based on either vehicle lateral or lon-
The algorithms in [13]-[18] use information related to vehiclgitudinal dynamics, only a small number of exceptions in-
longitudinal dynamics to design an identifier of the tire-roatkégrating both longitudinal and lateral vehicle dynamics for
friction coefficient. In [17], each tire of a vehicle is takerthe tire-road friction identification are presented in [19]-
into account individually for real-time estimation of the tire{21]. In [19], longitudinal and lateral tire forces, and vehicle
road friction coefficient with various combinations of availablstates are estimated by the extended Kalman filter. Then,
sensor sets. Bayesian selection is applied for the identification of the tire-
road friction coefficient using the estimated tire forces and
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of the actual tire and the preconstructed tire models with — Eft'mat°rs

fixed tire paramerters can cause huge errors in identifying the Singals Téfi“ffftcers _F>

tire-road friction coefficient, the conventional usage of this :Dmug » stimato F .

method is quite difficult. In [20], a nonlinear observer that inee Vehicle Speeds | ™ ,\,,T:dee, C.C.u
simultaneously estimates slip angles, tire forces, and tire-road |- wwa | L estimator 15 | parameter [
friction coefficient is developed and evaluated. Though the | 7 V. Identifier
performance of the suggested nonlinear observer in [20] is rosse |1 0 O Siip Angles | o, 1

satisfactory, the logic requires a steering torque measurement | Toa i Rty g

which is not available for some commercial vehicles. Also,
the nonlinear observer identifies only the tire-road frictioRig. 2. Block diagram of tire-road friction estimation algorithm
coefficient among the several parameters of the combined S”BM
brush model on which the nonlinear observer is based wh | ¢ ™, i,
the other parameters such as tread stiffness, which vary w:
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tire age or pressure, are set to be known constants. Adoptz
the algorithm to a vehicle with tires that have different tirr:% -
parameters can result in poor identification performance. Tz
method presented in [21] also relies on a tire model with pr — !
identified tire parameters. T e sip ange ()
Unlike the works presented in [19]-[21], this paper fo
cuses on the development of a tire-road friction coefficiel
identification algorithm that considers both vehicle Iateraz s
and longitudinal dynamics of individual wheels without pre=
identified parameters for the tire model. The flow structurz &
of the suggested algorithm is shown in Fig. 2. The tirs ol 4
forces estimator calculates lateral, longitudinal, and vertic - = e it = - )
tire forces using the readily available sensor signals on col.. sioande (@) o sipands () '
mercial vehicles including the steering wheel angle,’ the mertllé}l . 3. Lateral and longitudinal forces versus slip angles with fixed slip
measurements, the wheel speeds, and the engine and brggkg [0 0.01 0.05 0.1] on different surfaces
torques. The vehicle speeds estimator estimates the vehicle
lateral and longitudinal speeds using the wheel speeds, the
steering wheel angle, and the inertial measurements. Tire force saturation. Taking these aspects into consideration,
parameters of the combined longitudinal and lateral brushéw longitudinal and lateral combined brushed tire model [10]
tire model, including the tire-road friction coefficient, areand [23] was chosen for the tire-road friction identifier and is
identified in real time based on linearized recursive leaptesented as follows:
square (LRLS) method utilizing the calculated slip angles,
slip ratios, and corresponding lateral, longitudinal and vertical Cx( Ki )

tire forces before the tire forces reach their frictional limits. Ttk
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After justifying the linearization of the nonlinear tire model Fri = fi A @)
by showing that the error due to the linear approximation is
insignificant, the suggested algorithm based on LRLS was Ca (tanai>
evaluated by two different simulations conducted orua Fi = _ ki) | (2)
transient surface and a spjit-surface. ’ fi
An important point that distinguishes the work of this papeghere,
from other methods in the literature is that the method to f< 1 g2 1 ¢3 it f < 3UF..
be introduced optimally utilizes the measurements related to g _ { T 27u2F3 i i = oUFzi
longitudinal and lateral vehicle dynamics to identify the tire- UF; else
road friction coefficient using four individual wheels in real
time without pre-identified paramerters for the tire model. . \/ 5 (Ki>2+C2 (tanai )2
b 1+ K T\ 14k
[I. TIREMODEL AND VEHICLE STATES OBSERVER p Rejw — Vit 3
The identifier of tire-road friction coefficient is developed I Vi

based on an integrated longitudinal and lateral tire models.
Several integrated longitudinal and lateral tire models are a 5 Vy\ji'fr
introduced in [22]. The structure of the tire model has to be al 5 WA
simple enough to run it on an electronic control unit (ECU) a2 = 5 —tan! vy!’irr 4)
of commercial vehicles in real time while reflecting tires’ 03 5 Tﬁ
nonlinear characteristics including friction ellipse effect and 4 4 Vy\,;er
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In (1) and (2),C, Cq, and u are the tire longitudinal, lat-
eral stiffness parameters, and the tire-road friction coefficient
respectivelyk; and a; are the slip ratio and the slip angle of
ith wheel as defined in (3) and (4),the steering angl&/ the
vehicle longitudinal speed/, the vehicle lateral speed,the
yaw rate,Req; the tire effective radiusy the wheel speed, and
Viti the speed of a vehicle at the tire position along the steer
angle wherd = 1,2, 3,4 which correspond to left front, right
front, left rear and right rear wheel respectively. The reason for !
the longitudinal and lateral combined brushed tire model to be _I - N
selected for the tire-road friction coefficient identifier is that it ’ . 2.1 N
has just three parameters to be identified and fairly accurately
describes the tire nonlinear characteristics such as frictibld %
ellipse effect and tire force saturation. Fig. 3 shows lateral

Planar vehicle model

and longitudinal forces versus slip angles at different fixed slip \Ts -1
ratios and tire-road friction coefficients with constant vertical

forces. It is noted that at the given slip ratios, the longitudinal @ -
forces decrease as the lateral forces increase along the value of

slip angle. The longitudinal and lateral combined brushed tire F +F.
model properly reflects tires nonlinear characteristics as shown ) T

in Fig. 3. The parameter identifier using LRLS is designed to
find Cx, Cq, andu with the estimated values of vertical forcesig. 5. wheel dynamic model
F.i, the longitudinal tire forcesy;, the front lateral axle force
Fy.f, the rear lateral axle forch,, a; andk;. To calculateq;
and k;, the vehicle states such as vehicle longitudinal speed,The equation of motion for the planar vehicle shown in Fig.
lateral speed and yaw rate are required. 4 is:

The yaw rate can be measured using a gyro sensor which (51+52> e (53+54>

— I Fyrcos

is readily available on commercial vehicles. However, sensor&l = |Fy tCos (5)
that measure vehicle lateral or longitudinal speeds are not very

common for commercial vehicles due to their high costs. These L (—Fx%costil + vachosaz - vasc(_)% + FXACO?&‘)
values have to be estimated using other available signals. +HtF1sindy + 11 Fx 28ind, — Iy Ry 3sindz — I Fy 4Sinda

The vehicle state observer presented in [24] is integrated |t yicates the moment of inertia of the vehide.andl, are

estimatea; and; . The vehicle state observer with 6D"'W‘étfhe distances from the center of mass of the vehicle to the

signals in [24] which can hand_le '.[he gravity corruption ront axle and rear axle respectively. The equation of motion
accelerometers on banked or inclined roads shows a gquthe wheel shown in Fig. 5 is as follow:

performance both in severe and mild driving situatioRs.
are calculated using the method presented in [25]. Tire force
estimators for finding values &;, F,+ andF, are illustrated lwaa = Tsj — ReFxi — Toji — ReFir,j (6)

In Section . Ts andTy are the shaft torque and the brake torque respectively.

I1l. TIRE FORCEESTIMATION lw is the moment of inertia of a wheek;; is the rolling
A. Tire Force Estimator with Full Measurements resistance force [26] can be obtained as follow:

The estimated values of four longitudinal forces, and front Frri = Uz (10)
and rear lateral axle forces are needed to identify the tire- ) ] o
road friction coefficient. Several methods which can estimats iS the rolling resistance coefficient.
longitudinal and lateral tire forces simultaneously have been'N€ state for the Kalman filter is defined as follows:
introduced in the literature. In [25], combined tire force xt)=[F Q 1T (11)
estimation using the random-walk Kalman filter is introduced.
However, this algorithm requires a derivative of sensor signéhere
which needs a highly precise sensor. Though the tire force
estimator in [19] shows satisfactory performance, the method
causes a significant computational burden because the algo-
rithm has to process the 21 by 21 matrices which corresporglsy
to the state vector of the extended Kalman filter used in the
tire force estimator. The tire force estimator developed in this Ri=Ri1it+k2 HRr=KRs+FKa
paper Whic_h d_oes not cause a huge_ computational burde_nTﬂre measurements are:
require derivations of sensor signals is based on Kalman filter
using planar vehicle dynamics shown in Fig. 4. Z(t) = [ax ay I W W 3 w4]T (12)

[Fx,l Fx,2 Fx,3 Fx74 Fy,f I:y,r]
(W w W wl
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= Opx11
Att) = — 7, laxa|Oaxz @)
+ 5319,
I¢sin(8y)—tcos(8) I¢sin(&)+tcosBy) I sin(ds)—tcogds) Iy sin(8y)+tcogd,) 1cof A52) I cog B5%) Ores
Iz I, Iz z Iz Iz X
To1+Te1—RetrFo1  Too+Teo—ReliFro  Toa+Tea—RetrFra  Tpa+Tea—RekirFs T
B(t) = {lee‘ b1t slleeH 1 Thot s,zleeU 22 Toat ssleeIl 3 Toat aztIWReu 4 0} 8)
cog(8) cog&) cogd) cogd) —sin(5%) —sin(%%) |
H(t) = | sin(&) sin(&) sin(&) sin(d) cog %) cog&5%) |~ ©)
Os6 | Isxs
where B. Simplified Tire Force Estimator
For most driving situations when ABS or ESC are not acti-
1 vated, the following simplified estimator that does not require
&= m (FXFH:XR Fdrag) (13) sensor signals of brake pressures or engine torque shows a
a — E(Fy FRR) sufficiently good performance. While accelerating, for most
y m*F R commercial vehicles, differential gear evenly distributes torque

from engine into driving wheels on the left and right hand

— F.co E. 0D — . 1Sind: — E.osin sides [26]. While braking, unless wheels are locked or ABS

P %1609 + F2C0D, — Ry _ O - Rz . % is activated, braking forces of front wheels and rear wheels
Fxr = Fx3C0805 + Fx4C084 — Fy38inds — Fy 45inds have a certain ratio depending on disk size, proportioning

Frr = Fx18ind; + Fy2sind, + Fy 109 + Fy2cos), valve and so on. Therefore, considering the characteristics of
Frr = Fx3Sinds + Fx4Sinds + Fy3c08% + Fy4c09y longitudinal tire forces mentioned above, four longitudinal tire
Farag = CaV2 ' forces can be expressed using the one varidglas follows:
rag — “avVy

Farag is the aerodynamics drag force with the areodynamics ) o
coefficient,Coy [26]. Equations (6)-(13) are integrated to build ~ Puring acceleration:  Fx1 = Fc2 = Fx (16)
the following state space system with the process noigé¢
and the measurement noigg):

x(t) = A(t)x(t)+B(t) +w(t) o o
2= HOX() V(D) (14) In (16), a front wheel driving vehicle is assumed. For a rear
wheel driving vehicle, (16) can be replaced Wi{g = F4 =
A(t), B(t) andH(t) are defined in (7)-(9) whose.x and0;.x  Fx. The gainKs in the range 0f0.5,1) in (17) can be expressed
denotei by k identity matrix and zero matrix respectiviey.as a function offy since the proportioning valve that varies
Equation (14) is discretized using Zero-order hold for beindpe brake pressure distribution between front wheels and rear
applicable to the discrete-time Kalman filter [27] as follow: wheels is depending on the master cylinder pressure which is
proportional toF, during mild driving.Ks can be set to be a
X1 = A+ Bt W (15) constant for vehicles that are not equipped with proportioning
Ze = Hixk+ W valves. Therefore, the Kalman filter can be reconstructed with

the following simplified states and measurements.

Fx,l = Fx72 = Kst

During deceleration:
g Fra = Fra = (1 - Ko) Fi

7

The algorithm of the discrete-time Kalman filter is:

Xer1 = ArXe +TB|< xt) = [Fe Fyr B 1"
M1 = ARAL +W 20 = fa "
Re = Rt BRHIV (2 Ho) -

Ao = Mi— McHT [HkMkaT VA -1 HMie A(t), B(t) and_H (t)in (lA_f) are newly defined for the simplified

tire force estimator as in (18)-(20).

whereW, andVk indicate the covariance matrices w§ and Equations (5) and (13) are still integrated to build the
V. The estimator includes the equation of motion for thstate space system for the Kalman filter. However, since the
planar vehicle but tire forces are considered to be unknowrheel dynamics (6) are omitted in the simplified tire force
parameters to be estimated. These values are updated byetémator, four states related to wheel angular velocities and
process noisei. The two front steer angles are basically fronthe measurements of shaft torques, brake torques, and four
Ackerman steering geometry using the hand wheel steeriwpeel angular velocities can be removed. As a result, overall
input. The steer angles of the rear wheels are assumed tocbmputation for the tire force estimation greatly reduced and
zeros. For more details about Kalman filter, refer to [27]. the tire force estimator became applicable to vehicles without
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O3x4
AL) = | 1 sin(8y) toos8y) 1y sin(E) +1008 5,) +Ks(l Sin(8;) tcos(Bs)lr sin(dy) +cosd) 1rcog 32) I, cog Bp%) 0 (18)
[P Iz Iz
B(t) = [Oaxi (19)
cog&1) +cog(&) + Ks(cog &) +cog(&y)) —sin(35%) —sin(%&5%) 0
H(t) = | sin(&)+sin(&,) +Ks(sin(d3) +sin(ds)) cog 3+%)  cog Z3%) 0 (20)
0 0 0 1

the shaft torque or brake pressure signals. However, tH¥. LINEARIZED RECURSIVELEAST SQUARESMETHODS
simplified tire force estimator is only valid when differential  wWITH ADAPTIVE MULTIPLE FORGETTING FACTORS
brake forces are not exerted by ABS or ESC and vehicle
longitudinal dynamics is slow enough to neglect the wheel
dynamics. The basic idea of least square methods is fitting a mathe-
matical model to a sequence of observed data minimizing the
sum of the squares of the difference between observed and
C. Simulation Results of Tire Force Estimators computed data. By doing so, any noise or inaccuracies in the

] . observed data are expected to have less effect on the accuracy
The performances of the two tire force estimators were V&t the mathematical model.

ified in the Carsim simulation whose result is presented in Fig.
6. Gaussian noises were added to the simulated measurements y(k) = @' (KO+v (21)

of ay, ay, w andr to realistically recreate real application 1 k - T A2
YA (y() - ()6 (22)
221 ( )

Linearized Recursive Least Square Method

scenarios. The variances for the gaussian noisesyoay, \% (é,k)
w, andr are 000In?/s*, 0.001n?/s*, 0.00028ad?/s> and

0.000001ad?/s?. The values for the variances of the gaussian The cost functionV (8,k) in (22) can be minimized by
noises were detgrmmed based on the expeflme_ntal dgta. EQF‘écting proper parameters [28]. The minimizing parameters
covariance matrix for the measurement noise is defined RSve the following closed form solution:

follow: '

Vk = diag[0.001 Q001 Q00028 ... 0.00028 0000001 k

K -1
é(k)=< e(i)A*"o" (i) ) @ (i) A* (i) (i)
The covariance matrix for the process noise is designed as ';( ) ';( )

follow: However, solving the closed form solution every time

whenever newly measured data is available is inefficient. To

W = diag100 ... 100 1000 1000 overcome this shortcoming, the recursive form is given as
0.00028 ... 0.00028 0000001 follows [28]:

There are no huge differences between the estimation perfor-

mances of the simplified and the full measurement tire force 8 (k) = 6 (k— 1) +L (k) (y(k) — @' ()6 (k— 1) (23)
estimators without activations of ESC or ABS. However, as the

ABS was initiated at arountl= 43 s, the simplified tire force Where

estimator was not able to track the actual tire forces properly — P ok

due to the neglected wheel dynamics. The primary purpose (k) = Pk

of the tire-road friction coefficient identifier to be suggested = P(k=1)p(k) (A +¢" (KP(k—1)p(k)
is to figure out the tire-road friction coefficient in relatively — p (k) = (I-L(k) o' (k)),\—lp(k, 1) (24)

mild driving situations when tires do not reach their frictional

limits. Therefore, estimated tire forces by the simplified tirP(k) is referred to as the error covariance matrix.is a
force estimator are expected to be reasonably correct for fbegetting factor which will be explained in Section IV-B.
use of the tire-road friction coefficient identifier in most case¥his algorithm is valid only for linear systems. However, the
However, for a vehicle on a spljt-surface or when differential brushed tire model is not only nonlinear but also impossible
brakes forces are exerted, the use of the tire force estimaimiump the nonlinear terms that consist of parameters to be
with full measurements is mandatory for guaranteeing tlestimated and convert (1) and (2) into the linear form (21).
performance of the tire-road friction coefficient identifier. Th&herefore, the following derivation is performed to extend the
simulation scenario involved both accelerating and braking irsage of the recursive least square (RLS) method to nonlinear
a turn on different road surfaces. systems [29].

-1
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Fig. 6. Estimated tire forces. (a) Longitudinal speed profile. (b) steer angle profile (c) tire-road friction coefficient. (d) Front-left longitudinal tire force. (e)
Front-right longitudinal tire force. (f) Rear-left longitudinal tire force. (g) Rear-right longitudinal tire force. (f) Front axle lateral tire force. (i) Rear axle lateral
tire force.

by differentiating the tire model (1) and (2) with respect to

0(k— 1) using the estimated values Bf;, a; and k; which

(k) f(t’ 0)+v (25) are obtained through the state estimator in [24]. At each time

vV (évk) _ ;ZAk—i (y(i) _ (i,é))z (26) step,F (k) is built with the newly estimated values. Though
i=

<

the tire-road friction coefficients for wheels on the left and
right hand sides separately identified in V-B, at this state,
with the assumption of equipping with the same tires for four
y(k) ~ F(K)(8(k)—8(k—1))+f(6(k-1),k) (27) wheels, the four tires share the same stiffiness param@gers
Cx and tire-road friction coefficients because simultaneous

y(k) can be approximated as follows:

where identification of many parameters requires the excitation signal
F (k) = 0f(0.K) (28) to be richer as the number of parameters to be identified
00 8=B(k-1) increases. The comparison of identifying the three parameters

Defi K follow: and the four parameter§,, C,, andu’s for the left and right
efinez(k) as follow R R hand sides of a vehicle are presented in V-B.
z(k)=y(k)+F (k) (8(k—1)) - f(6(k—1),k)  (29)

Substituting (27) into (29), the following linearized form isB. Adaptive multiple forgetting factors
obtained. The single forgetting factod in the range(0,1] in (24)
2(k) ~ F (k)é(k) (30) which gives more weight on lately measured data i_s usually
set to be a constant. The procedure how the forgetting works
Since (30) has the exactly same form as (21), by replacifigRLS is to multiply whole set of the previous (25) by the
@(k) and y(k) in (23) with F(k) and z(k) respectively, the forgetting factor. For example, the previous steps of (25)
introduced RLS algorithm becomes applicable for nonlinegill be multiplied by thenth power of the forgetting factor
systems including the tire model (1) and (2). Equation (2®) finding 8 which minimizes (26). However, updating the
can also be modified: parameters that vary at different rates with a single forget-
AN A A ting factor can cause the wind-up problem [30]. Among the
0k =0k-1)+LK (y(k) f (9<k 1)’k)) (31) parameters to be identifieg, can vary abruptly as the road
The parameters to be identified are defined as follow: surface changes while the values@fandC, which depend
- T on tire properties such as tire size, tread width, tread stiffness,
00 =1C Ca 1 (32) inflation pressure, load, and so on tend to be static for a short
y(k) is updated whenever newly observéd;, F, ¢ or F, period time. Thereforey has to be assigned with a small
from the tire force estimator are available(k) is obtained value of forgetting factor to allow the sudden variation of the
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TABLE | H4=08
FORGETTING FACTOR DESIGN PARAMETERS )

o
©
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[ Parameter] Value [[ Parameter| Value |

Tire-Road Friction Coefficients

Y 0.01 Aa 0.9999 06 sip ange=0.01

¥ 0.01 Au 0.9997 PN 14NN N W SO O N 1 s slip angle=0.02

Vi 001 || A andA, | 0.999999 , e eote

Ak 0.99997 { 0.7 04 2 3 4 5 6 7 8 9 10
Time [sec]

H=03
0.5 T T

slip angle=0.01
[1IF 73 8-+ WU ISUUNCNOUNIN JSUUUNRUUI YUUNNRUUISE SUNSNRRUN Usnnr seua——" L) slip angle=0.02
------- slip angle=0.03

parameter whereas forgetting factors close to unit values need
to be allocated fo€, andC, to prevent drastic changes of the
estimated values of these parameters in the LRLS. To assign

the parameters to be identified with different forgetting factors, oot E e O
vector-type forgetting is introduced [31] and [32]:

Tire-Road Friction Coefficients
o
IS

Fig. 7. Accuracy of friction coefficient identification at various slip angles
P(k) = AL (| —K(Kk) (pT(k)) P(k— :]_)/\*1 on different surfaces

where
tiny slip angle or ratio, the tire-road friction coefficient does

A =diag[A1, A2, An] (33) not have much effect on tire forces. The gradients of curves

Instead of having the single forgetting factor in (24), thef the tire force versus the slip ratio or the slip angle at this
vector-type forgetting has a diagonal forgetting matrix region remain the same regardless of the value of the tire-road
whose diagonal elementy reflect the rate of the change offriction coefficient. However, at the relatively large slip angle
jth parameter by scaling the error covariance mafix or ratio, tires start to show nonlinear characteristics which are
While the forgetting factors folC, and C,, A1 and A, €arly signs of tire force saturation which are directly related
respectively, are kept as constants, the forgetting factor f& the tire-road friction coefficient. Therefore, it is justifiable

U, As is set to vary depending on the side slip angle or tHe weigh more on the data at the larger slip ratio or angle.
longitudinal slip ratio as follows: Another reason of using the adaptive forgetting factor is that
" most vehicle state observers including the state observer used
Longitudinal forces available: Az =p- ()\K)'T in this algorithm show a better accuracy when the vehicle slip
k) (34) or slip ratio is relatively large. This is because the persistent
Lateral forces available: A3=p-(Aa) ¥ excitation condition [28] which most observers require is
met with the large values of slip or ratio when the vehicle
maneuver is comparably dynamic. Finally, signal to noise ratio
(u%k()'o_z) (u%k()lo‘l) (SNR) from the measurements such as accelerometers and
Au W if Ay w <1 (35) gyro sensors is deteriorated at a very small slip angle or ratio.
Therefore, it is reasonable to weigh more on data from more
1 else accurate vehicle states information by varying the forgetting

. : o factors.
In (34), as the slip angle or the slip ratio increases, the

value of Az will decrease which is followed by giving more

weight to the data at bigger slip angle or slip ratio. The values
of % and y are determined to scale the slip angle and the The properties and performances of the proposed tire-road

slip ratio as exponents @, andA, , respectively, depending friction identification algorithm were investigated by simula-
on the sampling time. In (35)p is designed to weigh the tions.
measurements agk) approaches tF;(k) which means the
measurement has a rich information to identify The valué 5~ General Characteristics of Linearized RLS for Tire-Road
of ¢ is set to be 0.7 so that the value pfdecreases as theFriction Estimation

yk) ) it i
exponent Of/\“:) <IJFz(k> ¢ ), becomes positive whey(k) is First, to check the converging speed and the accuracy of the
larger than 70% ofuF;(k). The value ofA, to the power of | g 5 for tire-road friction coefficient identification at various

=

Q

where

p:

V. SIMULATION STUDY

ﬁ{:(;?() —52 scaled byy, which also depends on the samplingnagnitudes of slip angles, a simulation in an ideal situation
time has the upper limit of a unit. The constant values of theas performed. In this simulation, tire forces are generated

design parametersgy, %, u, Ak, Aa, Ay @and at the sampling by the tire model (1) and (2) using sinusoidscoft) = Asind

time of 001 s are presented in Table I. with A= 0.01, 002, 004, 008 for the highu surface with
There are three reasons why the forgetting factors are choges 0.8 andA = 0.01, 002, Q03 for the lowu surface with

to vary depending on the value of slip angle or slip ratio. Firsti = 0.3. Gaussian noises were added to theses slip angles

at a very low slip angle or slip ratio, it is extremely difficultfor the tire-road friction coefficient identifier with LRLS's

to identify the tire-road friction coefficient as mentioned irare set to be constants. As mentioned in the previous section,

[9]. This phenomenon can also be seen in Fig. 3. At the vetlye estimated value of tire-road friction coefficient took longer
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Fig. 9. Approximation errors.

.E T e e C,. e Gt 27107
L contl I N AN R et forces for front and rear tires. When tires generate the lateral
NS S S S b oo | forces, the four paramete®, Cy, L, and i, can be updated
Tme e in the LRLS since the lumped lateral force is affected by the
@ both left and right hand side tires. However, the longitudinal

tire forces on the left hand side are irrelevant to the tire-road

friction coefficient on the right sidey, and vice versa. Since

there are the four parameters to be identified in (Bgl) and

F (k) in (23) and (28) become 4 by 4 and 4 by 1 respectively.

However, the elements &f(k) andF (k) which correspond to

W or e can be set to be zeros in the LRLS algorithm when

the longitudinal tire forces of the opposite side update in

5 Time [sec] (29)‘

2 e The simulation result in Fig. 8. compares the converging

speeds of identifying the three parameters and the four param-

eters using the same simulation environments used in the pre-

vious subsection V-A with the input signats(t) = 0.03sin2

and k(t) = 0.07sin3. Fig. 8(a) shows the identification of

the four parameters took longer time to converge to their
Tme el actual values due to the bigger number of parameters to be
(b) identified which eventually needs the excitation signals to be

Fig. 8.  Simulation results: Accuracy of friction coefficient identificationricher comparing to the signals required for the identification

denedni ' ; e

e e ey T v o . 1 v s f he three parameters. However, a5 shown in Fig. §(0). on a

split-u surface, the proposed method having three parameters
to be identified could not properly distinguish the two different

time to converge to its actual value at the small slip angles afigg-friction coefficients of the left and right hand sides. The

the slip ratios as seen in Fig. 7. This is the natural characteris{@iué of the tire-road friction coefficient identified using only
of the tire-road friction coefficient identification using any tirdh€ three parameters is somewhere between 0.3 and 0.9 which

models. Also, as shown in Fig. 7, the small slip angles &€ true values of the tire-road friction coefficients of the left
ratios are sufficient for identifying the low tire-road friction@"d right hand sides of the vehicle. Whereas, by assigning
coefficient since tires show the nonlinear characteristic ev&M0 different parametersy and i for teh two sides of the
with the small values of slip angles or ratios. The nonlineyehicle on a splig: surface, the proposed method success-
characteristic is an early sign of tire saturation which depenﬁgly identifies the different tire-road friction coefficients. The

on tire-road friction coefficient. For more details about theg¥oPosed tire-road friction coefficient identifier in this paper
phenomena, [9] can be referred. uses three-parameter identification method for most driving

situations. The four-parameter method is applied only when
split-u surface is detected by comparing the slip ratios of the
feft and right hand side wheels.

Prameter Values

Prameter Values

== Cx, true C,=1.2°10°

] <SuofUU SRR NSO N SR s C,, true Ca=10
105 -
105, true g =0.9

%105 —
byt 10°, trUe i =03

B. Comparison of identifying four parameters and three p
rameters

To successfully identify the two different tire-road friction ] ) ) . .

coefficients of a vehicle on a split-surface, parameters to peC. Analysis of adaptive multiple and single forgetting methods
identified are set to be as follows: To analyze the effectiveness of using the adaptive multiple
. T forgetting factors over using a single forgetting factor, a sim-

0(k)=[Cc Ca t p] (36) " Liation with slalom maneuvering with the steer angle profile

L and i, represent tire-road friction coefficients for the lefin Fig. 6. at a constant speed, 85 km/h was performed. The
and right hand side tires of a vehicle on a splisurface. The simulation results of both using the single and the adaptive
tire force estimator provides the values of four longitudinal tirmultiple forgetting methods are presented in Fig. 10. In this
forces corresponding to each wheel and the two lumped latesahulation, the lateral excitations were not large enough, in
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other words, the tire forces are not fully saturated, to identify S
the unique tire parameters. As indicated in the plots of tire
forces in Fig. 10, either using the single forgetting or the
adaptive multiple forgetting, the errors between the observed _
tire forces and tire forces from the tire model (1) and (2) with -
the estimated parameters are insignificant while the values of A A
the estimated parameters in case of using the single forgetting . Lateral Forces

method converge to the wrong values. When tire forces do AN A AN
not reach their frictional limits, two different combinations of
Cqy and u can generate almost the same lateral tire forces as
seen in Fig. 10. However, one of the two combinations of the
parameters is unrealistic since the valuguofonverges to 1.3 VWV VV V VYV A
while the values ofz for commercial vehicles do not exceed a R
unit. Therefore, by assigning different forgetting factors using oo taelroues
the adaptive multiple forgetting method, the change rates for

the values of2; andC, are kept to be relatively small because
the values ofCy, and C, depend on intrinsic tire properties
which do not vary abruptly so that the estimated parameters 2000
converge to their actual values.

e
5
0
¥
¢
¢
&

- = r10° e

=
S

Prameter Values
®
T
1
\

Fy (from observer

- Fy ¢from tire model

F N
o

Fy ,from observer

- .= F, from tire model
2000 Y

F,N
o

-4000 I L I I I I I I I
0 5 10 15 20 30 35 40 45 50

25
Time [sec]

D. Justification of the linearization of the nonlinear tire model @)

The nonlinear tire model (1) and (2) is linearized about )10’
the previously estimatefi(k— 1) with the currently estimated Tt
values off’s, a’s andk’s to build F (k) in (28) for running the ;
LRLS algorithm (31). The linear approximation error has to
be tolerable within the expected accuracy boundary to justify
the linearization for the LRLS. The identification of the tire-
road friction coefficient using the LRLS is supposed to be S s
successful if the variation caused by the linearization of the o Lateral Forces
nonlinear tire model (1) and (2) is within the expected ranges A AN N
of uncertainty. The approximation error is defined as follows:

(k) =f (8(k) —F (k) (6 (k) — 6 (k—1))

—f (9(k—1),k)
Using the same simulation environment introduced in Section B T
[lI-B, the approximation errors were calculated as shown in

Fig. 9. The approximation error withy ; had a stiff peak at
aroundt = 20 s when theu transition from 09 to 0.3 occurred.

- = w10°

Prameter Values

— Fy ¢from observer

- .= .F,from tire model
v

£ N

(37)

Lateral Forces
4000 T T T
— Fy ,from observer

- .= F, from tire model
2000 ¥

However, the value of the peak itself has an order 8f Then, =0 \
after several iterations, the order of the approximation errors 2000 | ]
decreased to 1G. o I D I B R

The absolute values of approximation errors are highly R
dependent on the sampling time because the longer sampling (b)

time causes the bigger deviations of the operating points frafg. 10. Estimated parameters and tire forces using the tire model with the

their linearized points. The simulation was performed at testimated parameters. (a) Single forgetting method . (b) Adaptive multiple

sampling time of 0.01 s which is the slowest sampling rate §f9eting method.

ECU's for commercial vehicles. With a shorter sampling time

such as 0.005 s which is the typical sampling time for ECU’s . . .
) ) L software. Two different simulations were performed oip-a

for commercial vehicles, the approximation errors can he

. . : ansient surface and a split-surface. The actual values of
bounded even in a smaller range. Since theses approximation

errors are insignificant comparing to the errors of the estimated parameters were found iteratively using a nonlinear solver.
tire forces or vehicle states, the linearization of the nonlinear
tire model (1) and (2) for RLS is justifiable. A. Simulation on gu-transition surface

In the first simulation, the three paramete@, C,, and
VI. SIMULATION RESULTS u, were identified using the simplified tire force estimator on
The performance of the proposed algorithm was evaluatbidh, middle, and, low friction surfaces with the sensor signals
by simulations using the D-class sedan model in Carsiwhich are readily available in commercial vehicles including
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and lateral dynamics with corresponding true values (solid lines).
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Simulation results: Comparison of three estimators based on (a)
Longitudinal dynamics only (b) Lateral dynamics only (c) Both longitudinal

related to only longitudinal and lateral vehicle dynamics, re-
spectively. Since longitudinal excitations alone was insufficient
to identify the tire-road friction coefficient, there exists a huge
yaw rate, lateral and longitudinal accelerations and steer anglelay of 7 s to 8 s in identifyingu transition from 09 to
The results of the first simulation are presented in Fig. 12. TBe. In Fig. 12(b), the tire-road friction coefficient identifier
first simulation was performed to evaluate the performance wfiderestimated the actual friction coefficient since the absolute
the proposed tire-road friction identification algorithm with the&alues of lateral tire forces were not large enough comparing
measurements related to vehicle longitudinal dynamics ontg, the maximum lateral tire forces available on the surfaces
vehicle lateral dynamics only and both vehicle longitudinabhere the vehicle located and the lateral forces at the given
slip angles and the vertical loads were diminished along with
The sensor signals from Carsim and the observed valigg increasing longitudinal forces which is called the friction
during the first simulation are plotted in Fig. 11. Fig. 12(a) anéllipse effect.
Fig. 12(b) show the estimation results using the measurement3he estimation result presented in Fig. 12(c) which inte-
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Lt ' ","I,.’ \;l\l“"‘,\,”‘\,‘,“l'r‘f“\ll\,’ A
‘o . 05 1 15 2 25 3
S Arton o o st identifier to handle the different longitudinal tire forces on the
- ‘ ‘ P N ) left hand side and the right hand side. The sensor signals from
061 7 el . . . .
T ool o Carsim and the observed values during the second simulation
8 oozl e are presented in Fig. 13.
g o = S A full braking was applied at arounti= 0.2 s and the
ol ‘ / ‘ ‘ ] Carsim built-in ABS was initiated at around= 0.3 s. It
' o8 ! Time e 2 28 : took longer time for the highu parameter to converge to its

Slip Ratios of Four Wheels
T

actual value comparing to the lowparameter because friction
identification on a highu surface requires more excitations as
explained in Section V-A. The four-parameter identification

IR e S S WE PN

é-oz “\7,‘,‘;',"l,"i!_f','r:,"i’.l;v’\'.'u-l»'l'l"_.,'-‘;_' ','I'if')_f;";k'i'{r"f . .
& v RIS Gy successfully followed two different values of the friction

en MV et
'|;‘-“ "~ "' |" I
1}

o F " coefficients of the spli# surface. Overall performances of the
08 o5 1 T.mi"f;eq E 25 3 friction identification algorithm was satisfactory though there
2000 ‘ __ Longiudnal Forces ‘ were some minor errors which were caused by the mismatch
ok — of the actual and the used tire model, inaccuracies in the
_ 20 —_-_-gilgi estimated values, and the noise of the measured signals.
Y 4000 S e R R ]
-6000 1 VII. CONCLUSION
% 05 . T,mg‘-f;eq . s 3 A new real-time tire-road friction coefficient identification
3000 ‘ [ teePoces ‘ algorithm which considers both lateral and longitudinal vehicle
2000} : —rH dynamics using only readily available sensor signals on com-

k mercial vehicles was developed and investigated in this paper.

o RIS NP The proposed algorithm distinguishes itself from the previ-
000 - s " ously reported methods by the following features: it can (i)
00, os 1 s 2 2 s detect two different tire-road friction coefficients of both sides

Time [sec]

of a vehicle on a splitt surface, (ii) uses adaptive multiple
Fig. 13. Measured and observed signals of the second simulation. forgetting factors based on slip angle and slip ratio in order to
efficiently weigh meaningful measurements and (iii) identifies

. tire-road friction coefficient using the integrated lateral and
grated measurements related to both lateral and longitudig{gitydinal tire model without the pre-identified parameters to

dynamics was satisfactory. The delays and lags of trackigg,iq ynderestimating the actual tire-road friction coefficient
actual parameter values were minimized while taking thghiie fully utilizing longitudinal and lateral excitations.
friction ellipse effect into account. The tire force estimator with full measurements is developed
] ) ] to take individual wheel dynamics into account using the
B. Simulation on a split surface readily available vehicle signals. Then, it is modified into the
Four parameter<y, Cq4, 1 and y;, were identified in the simplified tire force estimator to apply the friction estimation
second simulation to cope with the different values of frictioalgorithm to the vehicles that do not have brake pressure
coefficients on the left hand side and the right hand side sénsors or engine torque signals. The simulation results using
the vehicle on a split+ surface. The tire force estimator withthe developed tire force estimators prove that the proposed
full measurements was integrated with the tire-road fricticagorithm quickly estimates the tire-road friction coefficients
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without requiring large slip angles or ratios qritransition [21]
and splity surfaces.
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