
F
f

H
R
K
A
J
Y
S
B
1
S
E

1
F
u
a
o
v
f
t
t
i
b
e
p
t
s
c

1
P
o
i
s
s
s
f
t

0

Optical Engineering 48�4�, 047202 �April 2009�

O

ake-fingerprint detection using multiple static
eatures

eeseung Choi
aechoong Kang
youngtaek Choi
ndrew Teoh Beng Jin
aihie Kim
onsei University
chool of Electrical and Electronic Engineering
iometrics Engineering Research Center �BERC�
34 Shinchon-dong, Seodaemun-gu
eoul 120-749, Korea
-mail: jhkim@yonsei.ac.kr

Abstract. Recently, fake fingerprints have become a serious concern
for the use of fingerprint recognition systems. We introduce a novel fake-
fingerprint detection method that uses multiple static features. With re-
gard to the usability of the method for field applications, we employ static
features extracted from one image to determine the aliveness of finger-
prints. We consider the power spectrum, histogram, directional contrast,
ridge thickness, and ridge signal of each fingerprint image as represen-
tative static features. Each feature is analyzed with respect to the physi-
ological and statistical distinctiveness of live and fake fingerprints. These
features form a feature vector set and are fused at the feature level
through a support vector machine classifier. For performance evaluation
and comparison, a total of 7200 live images and 9000 fake images were
collected using four sensors �three optical and one capacitive�. Experi-
mental results showed that proposed method achieved approximately
1.6% equal-error rate with optical-based sensors. In the case of the ca-
pacitive sensor, there was no test error when only one image was used
for a decision. Based on these results, we conclude that the proposed
method is a simple yet promising fake-fingerprint inspection technique in
practice. © 2009 Society of Photo-Optical Instrumentation Engineers.
�DOI: 10.1117/1.3114606�

Subject terms: fake-fingerprint detection; fingerprint recognition; multiple static
features; SVM �support vector machine�.
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Introduction
ingerprint recognition systems have been widely used for
ser authentication on account of their reliable performance
nd usability compared to other biometric systems. More-
ver, due to the development of low-cost acquisition de-
ices, these systems have been utilized in a wide range of
orensic and commercial applications, e.g., criminal inves-
igation, e-commerce, and access control.1 Although the in-
erest in fingerprint recognition systems has been increas-
ng, some researchers have reported that the systems may
e vulnerable to certain threats. Ratha et al.2,3 analyzed
ight possible kinds of attacks on fingerprint systems and
roposed some general guidelines to protect them from
hese attacks. Although all these attacks are serious from a
ecurity viewpoint, the use of fake fingers is the most criti-
al according to several researchers.4–10

.1 Related Works and Motivation

utte and Keuning4 introduced two duplication methods
ne with and one without the user’s cooperation, for mak-
ng fake fingers. They used fake silicone fingers to attack
ix conventional fingerprint sensors. Experimental results
howed that all these sensors were deceived on the first or
econd attempt. Furthermore, Matsumoto et al.5 introduced
ake gelatin fingers �called gummy fingers� and used them
o attack eleven different fingerprint recognition systems. It

091-3286/2009/$25.00 © 2009 SPIE
ptical Engineering 047202-
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was found that the fake fingers were enrolled in all systems.
The acceptance rates ranged from 67% to 100%.

Existing methods for detecting fake fingerprints use ad-
ditional hardware to acquire signs of aliveness. These meth-
ods include the use of temperature,4 pulse oximetry,11 blood
flow,12 electrical characteristics,13 spectral characteristics,14

odor,15 and heartbeat.16 All of these methods use explicit
characteristics of live fingers, which are not present in fake
fingers. However, the implemented systems are bulky and
costly due to the additional hardware. Apart from that, the
process of acquiring life signals usually takes several sec-
onds or minutes; this might cause inconvenience to the us-
ers.

This situation invites research on software-based ap-
proaches, since they do not require additional hardware,
and they work with the images captured by existing sen-
sors. Accordingly, many existing fingerprint systems can
easily adopt these software-based approaches by simply
modifying their embedded software.

The software-based approaches can be roughly grouped
into dynamic and static, according to the kinds of features
used. Dynamic approaches exploit features extracted from a
sequence of fingerprint images, such as skin
perspiration17–24 and skin distortion.25–28 Skin-perspiration-
based approaches have been the most widely researched for
fake-fingerprint detection. Such an approach utilizes the in-
herent perspiration of fingers. As perspiration persists, the
sweat diffuses along the ridges and the image becomes
April 2009/Vol. 48�4�1
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arker. Hence, several images are captured over a period of
few seconds and compared to search for the signs of that

ffect.
Another approach uses skin distortion analysis. Due to

he different elasticities of live and fake fingers, they show
ifferent elastic tension when pressed on a sensor surface.
he resulting skin distortion features can be obtained by
aving the user rotate a finger on the sensor surface.

Experimental results are promising under controlled en-
ironments for the two preceding approaches. However,
hese approaches have limitations in that they require users’
ooperation. For example, users have to keep their fingers
n the sensor for a few seconds �for perspiration analysis�
r rotate their fingers on the sensor surface �for distortion
nalysis�. Furthermore, the degree of perspiration may be
reatly dependent on both skin and environmental condi-
ions, such as temperature and air humidity. Skin distortion
atterns can also be affected by the characteristics of the
ser’s movements. For precise finger movement recording,
he system needs special sensors25 to guarantee a high
rame rate. These requirements may be cumbersome for
sers and may not be suitable in practice.

Some researchers have suggested static approaches to
vercome these drawbacks. These approaches used features
hat were extracted from a single image. The features in-
lude pores,17,29 the power spectrum,30 surface
oarseness,31 morphological characteristics,32 and statistical
roperties.33 The reasons for using these features are as
ollows. Firstly, the materials used for making fake fingers
re typically composed of large organic molecules; thus
aking high-quality fake fingers is not an easy task.25 For

xample, small features such as pores are usually not per-
ectly imitated, and the surface of fake fingers is coarser
han that of live fingers. Secondly, the fake-fingerprint im-
ges appear different to live fingerprint images in various
eatures because of the casting and molding processes.30,33

ven though the static approach is useful in practice, it falls
hort of the dynamic approach in that it has to make a
ecision based only a single image. This deteriorates the
lassification performance.

.2 Contributions
ased on the preceding considerations, we introduce a
ovel fake-finger detection method using multiple static
eatures from a single image and satisfying requirements of
sers’ convenience, time, and performance. Specifically, we
tudy and utilize various features, including the power
pectrum, directional contrast, ridge thickness, ridge signal,
nd first-order histogram, of the fingerprint images. These
eatures encode the differences between live and fake fin-
erprints in terms of physiology and statistics. The feature
ector sets formed by multiple static features are combined
t the feature level through a support vector machine
SVM� classifier.

Two other significant contributions made by this paper
re:

1. A total of 7200 live images and 9000 fake images
were collected using four sensors on the market
�three 500-dot / in. optical and one 508-dot / in. capaci-
tive dc type, hereafter called optical�1, optical�2, op-
tical�3, and capacitive.�, taking various variabilities
ptical Engineering 047202-
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of live and fake fingerprints into account. The data set
contains a large number of data compared to the data
sets used in other researches. The detailed description
of the database is presented in Sec. 3.1.

2. The proposed method can be used with various sen-
sors easily, since only simple feature extraction and
one session of offline training are involved.

The rest of this paper is organized as follows: in Sec. 2,
feature analysis and feature vector extraction are explained.
In Sec. 3, we describe the data acquisition process and
present experimental protocols and results. Finally, conclu-
sions are drawn in Sec. 4.

2 Extraction of Static Feature Vectors
To the best of our knowledge, there is no single static fea-
ture that is absolutely superior to all others in fake-
detection performance. This is because sensor characteris-
tics vary and the characteristics of both live and fake
fingerprint images depend on user skin conditions, operat-
ing environments, fabrication materials, etc. Static features
also contain less useful information than features extracted
from dynamic approaches, because they are extracted from
only a single image. In order to obtain better performance,
it is desirable to select useful static features and combine
them by means of an effective method. In this section, we
analyze and select several representative static features, us-
ing image analysis. We then convert these features to vec-
tors for classification.

2.1 Image-Based Feature Analysis
We observed some visual differences between the live and
fake images, as shown in Fig. 1. As is seen, some micro-
details differ in the fake images. These differences were
mainly attributed to the stamping process and the charac-
teristics of the materials used to create the fake images. The
following categories explain the detectable microchanges
that sometimes appeared in the fake images.

• Broken ridges and blowholes: As shown in Fig. 1�a�,
fake fingerprints may have more broken ridges and
blowholes because of deficiencies in casting at the sur-
face of fake fingers.

• Noise components in valleys: As shown in Fig. 1�b�,
fake fingerprints may show random noise components
in valleys, since incomplete stamping can arise in val-
leys when making molds.

• Nonclarity of ridge-valley structures: Even though
fake images have similar geometrical structures to live
images, ridge and valley shapes are not perfectly re-
producible in all duplications and sometimes crumble
as shown in Fig. 1�c�.

• Thick ridges: To create fake fingers, users must im-
print their fingers on molding materials, or latent fin-
gerprints on sensing surface must be captured. Hence
ridge widths can be altered depending on the amount
of pressure the user exerts. Besides that, due to the
stamping process, the ridge-to-valley depth of fake
fingers can be lower than that of live fingers. Conse-
quently, most fake images have thicker ridges than
live images, as shown in Fig. 1�d�.
April 2009/Vol. 48�4�2
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.1.1 Extraction of the global image-based feature
vector

n this sub-subsection, we explain the detection of live and
ake images by using power spectrum analysis. Power
pectrum analysis has been widely used in fingerprint im-
ge enhancement, quality checking, and matching.34 Gen-
rally, a fingerprint image is composed of ridges and val-
eys of specific frequencies. For instance, the ridge-to-ridge
istance in 500-dot / in. fingerprint images ranges from
to 10 pixels. Hence, its corresponding frequency bands

ontain more energy than other frequency bands and gen-
rate ring patterns in the specific spectrum area.34 In our
bservation, the power spectra of live and fake images ex-
ibit similar ring patterns, since their overall geometric
tructures are alike, as shown in Fig. 2.

However, the power spectra of live and fake images
ave distinct energy distributions due to microchanges that

(a)

(b)

(c)

(d)

ig. 1 Visual differences between live �left� and fake �right� images.
a� Broken ridges and blowholes. �b� Noise components in valleys.
c� Nonclarity of ridge and valley structure. �d� Thick ridges.
ptical Engineering 047202-
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show in the fake fingerprint images. The differences can be
analyzed and a power spectrum feature vector can be elic-
ited through the following procedure:

1. An image is first transformed using the discrete Fou-
rier transform �DFT�

F�u,v� =
1

MN
�
x=0

M−1

�
y=0

N−1

f�x,y�exp�− j2��ux

M
+

vy

N
�� ,

�1�

where f�x ,y� represents an image of size M �N in
the spatial domain.

2. A transformed image is tessellated according to con-
centric rings to alleviate the rotation problem. Each
ring’s radius differs from that of its neighbors by one
frequency unit. This means that two adjacent rings
are one pixel apart in the frequency domain.

3. We compute the energy values of pairs of adjacent
rings. The numbers of rings were different among the
sensors, since the sizes of the images vary. If two
adjacent rings are denoted as R�i−1� and R�i�, the
sum of all energy values of pairs of adjacent rings,
V�i�, is obtained from the following equation:

V�i� = �
�u,v��Pi

�F�u,v��2, �2�

where Pi represents the set of all �u ,v� pairs between
R�i−1� and R�i�.

4. For all adjacent rings, we repeat step 3.
5. Finally, the sums of all energy values for the fre-

quency indices are computed and grouped to form a
feature vector.

Figure 3 shows a comparison of the energy distributions
that were calculated according to this procedure. We notice
that live fingerprint images had higher energy concentra-
tions in ridge-and-valley frequencies. Fake images had
more diffused energy distribution because of microdetail
changes such as broken ridges and valley noise described
earlier. Also, the random noise components were distrib-
uted so that the high-frequency components of the fake
images had more energy than those of the live images.
Based on these differences, we used the energy values cal-
culated by the procedure described to obtain the feature
vector. Hereafter we denote by SFV�1 the power spectrum
feature vector �static feature vector 1�.

(a) (b)

Fig. 2 The power spectra of �a� live and �b� fake fingerprint images.
April 2009/Vol. 48�4�3
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As mentioned in Refs. 21 and 33, live and fake finger-
rints are visually different. For example, fake fingerprint
mages look darker and have less contrast than their corre-
ponding live fingerprints. Therefore, to analyze the visual
ifferences between live and fake images, we used the
even first-order histogram features that were suggested in
ef. 33 �energy, entropy, median, variance, skewness, kur-

osis, coefficient of variation� as another set of representa-
ive features. These seven features formed a feature vector
alled SFV�2.

.1.2 Extraction of the local image-based feature
vector

s shown in Fig. 1, ridges and valleys in fake images are
ess conspicuous than those in live images. Moreover, val-
eys in fake images often contain noise components. In
ractice, when creating fake fingers, ridge widths are easily
ncreased and also ridge-to-valley depths are decreased
ith respect to the corresponding live fingers. Therefore we

dentify two additional representative static features for
ake fingerprint detection: directional contrast and ridge
hickness �SFV�3�. Directional contrast was used to mea-
ure the distinctness and clarity between the ridges and the
alleys. This is because the blocks near to ridges and val-
eys in live images are well separated and display high
irectional contrast. The following procedure was devised
o measure the level of directional contrast:

1. A fingerprint image is partitioned into 8�8 blocks.
2. A 3�3 four-directional mask is created as shown in

Fig. 4 to extract each directional value. The function
Sj�x ,y� �j=1,2 ,3 ,4� at the �x ,y� position as de-
scribed

Sj�x,y� = �
k=1

2

I�Pjk�, j = 1,2,3,4, �3�

where I�Pjk� denotes the intensity value of the pixel
that corresponds to the position Pjk in the filter.

3. For each block, the local directional gray value Dj is
calculated as

Fig. 3 A comparison of the energy concentra
concentration of live and fake images. �b� Norm
ptical Engineering 047202-
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Dj = �
x=1

8

�
y=1

8

Sj�x,y� . �4�

4. We average each four-directional contrast value over
all the blocks, and the four resulting values are then
used as directional contrast features.

In general, the ridge thickness measures the width of the
ridges. The ridge thickness was computed in each 16�16
block.35 Figure 5 shows the gray-level plot of a fingerprint
image. The ridge thickness is calculated using the gray-
level values of each block in a direction normal to the ridge
orientation. Ridge orientation is calculated using the
method suggested in Ref. 36. The threshold value that sepa-
rates the ridges and valleys is determined by averaging the
local maximal and local minimal gray-level values in each
block.35 Then, the average ridge thickness value is com-
puted using all blocks. Table 1 shows the average values of
the ridge thickness of the live and fake fingerprints using
our data set. In Table 1, it is clear that the ridges of the fake
images were thicker than those of the live images.

Finally, we consider the average four-directional con-
trast values and the ridge thickness values to be represen-
tative static features. These features also formed a feature
vector �denoted as SFV�3 hereafter�.

live and fake fingerprint images. �a� Energy
energy concentration.

(a) (b)

Fig. 4 Measuring directional contrast. �a� Mask for eight-directional
filter. �b� Windowing operation for measuring directional contrast.
tion of
alized
April 2009/Vol. 48�4�4
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.2 Ridge-Based Feature Analysis
ores are usually considered to be one of the most useful
tatic features for fake-fingerprint detection,17,29 since typi-
al materials used for making fake fingers are composed of
arge organic molecules. Therefore, miniature features such
s pores are not reproduced exactly. Derakhshani et al.17

nalyzed the periodicity of sweat pores along ridges. Their
lgorithm was used to transform a two-dimensional finger-
rint image into one-dimensional signals denoting the gray-
evel values along ridges �called the ridge signals�. The fast
ourier transform �FFT� was used to analyze the gray-value
ariability due to the occurrence of pores. The total ridge
ignal energy was then calculated using 11 to 33 FFT
oints, which took account of pore periodicity.17 Then,
hese energy values were used as static features, in that the
nergy extracted from live fingerprints is higher than that
rom fake fingerprints. However, in our observation, we
ound that pores could be detected in fake fingerprints even
hough the pores of live fingerprint images are invisible, as
hown in Fig. 6. This is because pore presence in live im-
ges can be greatly affected by environmental conditions
such as temperature and humidity� and user’s skin condi-
ions �dry or wet�.

Besides that, pore spacing may not be useful depending
n the sensor’s characteristics. Fig. 7 shows the energy dis-
ributions of live and fake images using this method.17 As
hown in this figure, discrimination may be difficult when
sing only 11 to 33 points for pore the spacing. The fol-
owing procedure was then applied to rectify this problem:

1. A binary image is produced and skeletonized using
the Gabor filter.36

Fig. 5 The gray-leve

Table 1 Comparison

Image

Ri

Optical�1 sensor Optical�2 s

Live 6.44 8.33

Fake 9.55 12.88
ptical Engineering 047202-
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2. A 1-D gray-value signal is acquired along each
thinned ridge.17

3. 256 FFT values from each ridge signal are computed
and averaged.

4. An average power ridge signal is formed using the
FFT coefficients from 1 to 127 points.

To analyze the usefulness of ridge signals, Fisher’s lin-
ear discriminant was used. Fisher’s linear discriminant is
well known as a measure of separability among classes and
is expressed as follows37:

Fisher ’ s linear discriminant =
��Live − �Fake�2

�Live
2 + �Fake

2 �5�

where �Live and �Live ��Fake and �Fake� represent the mean
and variance of the live �fake� class. Fisher’s linear dis-
criminant analysis is performed for all frequency compo-
nents of the average power ridge signal in each data set.
Figure 8 shows the Fisher discriminant values of all the
frequency components in each data set.

We notice that the dominant frequency region depends
on the sensor characteristics. The dominant frequency
bands in the ridge signal show higher discrimination power
than that in the frequency bands �11 to 33 points for 256
FFT values� corresponding to the pore spacing. Further-
more, their relative discrimination values are distinctively
different. Thus, we consider all the 127 frequency compo-
nents of the average power ridge signal, denoted as SFV�4.
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Experiments

.1 Data Acquisition
s mentioned in Sec. 1, producing good-quality fake fin-
ers is not an easy task, and most fake-fingerprint databases
re made for in-house testing. This means that there is no
ublic database for benchmarking. Moreover, to generalize
he method by analyzing the selected features and evaluate
heir performance, various kinds of live and fake images
hould be considered. In this work, we collected a larger
umber of live and fake fingerprint images than in previous
orks.18–31 Four fingerprint sensors on the market were

onsidered: three 500-dot / in. optical sensors �the IZZIX
D 1000 from Digent Co. Ltd.,38 the HFDU04 from Nitgen
o. Ltd.,39 and the VIRDI FPR02 from Unioncomm Co.
td.40� and one 508-dot / in. capacitive dc sensor �the

(a)

Fig. 6 Two sets, �a� and �b�, of live and fake
resolution optical sensor �CrossMatch Co. Ltd�.
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(c)

Fig. 7 The energy distribution of each data set:
sensor, �c� the optical�3 sensor, �d� the capaciti
ptical Engineering 047202-
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SFM3050-TC1 from Suprema Co. Ltd.41�. We named these
sensors optical�1, optical�2, optical�3, and capacitive, re-
spectively. With each sensor, we collected fingerprint im-
ages from live and fake fingers. By considering various
characteristics of live fingerprints, 60 volunteers were gath-
ered: 30 males and 30 females. Their ages are ranged from
6 to 60 years. For each volunteer, thumbs and index fingers
were used to capture 15 impressions at various pressure
levels �low, medium, and high�. Exact pressure values were
recorded using our special pressure gauge �CAS
CI-1500A42� during the capturing process. When making
fake fingerprints, we only used the silicone and gelatin,
because these two types of materials are generally regarded
as the most critical and able to produce higher-quality fake
fingerprint images than other materials such as paper, film,

(b)

rint images captured with a 1000-dot/ in. high-
ve image; right: corresponding fake image.
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nd rubber. To generalize the fake-fingerprints creation pro-
edures, 60 volunteers cooperated with five instructors and
ollowed the same basic steps to make their fake finger-
rints. Figure 9 shows the steps in our fake-finger genera-
ion process.

By this process, 120 silicone and 60 gelatin fake fingers
ere collected. Since the color of a finger affects the image

haracteristics of optical sensors, we added an incarnadine
igment similar to finger skin color to the fake fingers. For
ach fake finger, 15 fake images were also captured at vari-
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(c)

Fig. 8 The Fisher discriminant values with ave
from �a� the optical�1 sensor, �b� the optical�2
sensor.

(a) (b) (c)

(d) (e) (f)

ig. 9 Steps of making a fake finger: �a� A mold is made of a dental
mpression material. �b� A finger is pressed on the mold. �c� A nega-
ive pattern of the fingerprint is formed on the mold. �d� Liquid sili-
one or gelatin is put over the mold. �e� A gelatin fake finger. �f� A
ilicone fake finger.
ptical Engineering 047202-

Downloaded from SPIE Digital Library on 11 May 2011 to 1
ous pressure levels. Specifically, to obtain high-quality
gelatin fake images, the time elapsed between the creation
of the gelatin and its use is a critical factor, in particular
with respect to the deformation. Hence we collected gelatin
fake images from each individual within 30 min after cre-
ation. Our capacitive sensor did not respond to the fake
silicone finger, because it produced too small an electrical
charge. Eventually, 7200 live fingerprint images and 9000
fake fingerprint images �5400 silicone images, 3600 gelatin
images� were acquired. Figure 10 shows some examples of
live and fake fingerprint images.
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ower ridge signals in each data set: obtained
r, �c� the optical�3 sensor, �d� the capacitive

Fig. 10 Some examples of live and fake fingerprint images obtained
from the four sensors: live fingerprint images �top row� and their
corresponding fake fingerprint images �bottom row�.
�
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There are some important things to notice in collecting
ake images. For example, the fake fingers must be able to
nteract with fingerprint recognition systems. If a fake fin-
er is of too low quality, it may be considered as a non-
atched finger and simply rejected. It is relatively easy not

o accept fake fingers when using low quality fake finger-
rints. In our experiments, to ensure the image quality was
ufficiently high, we applied a fingerprint quality checking
lgorithm developed by the National Institute of Standards
nd Technology �NIST�.43 The quality measure is defined
s the degree of separation between the matching and non-
atching distributions of a given fingerprint, which is pre-

icted using neural networks.43 Each fingerprint image was
ssigned to one of five quality levels �excellent, very good,

Table 2 The dimensions of th

Optical�1 sensor Optical�2

Image size: 320�280 292�

SFV�1 160 14

SFV�2 7 7

SFV�3 5 5

SFV�4 127 12

Total 299 28

Fig. 11 The results of the NIST quality check on
�b� the optical�2 sensor, �c� the optical�3 sensor
ptical Engineering 047202-
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good, fair, bad� according to the quality measure. Figure 11
shows the NIST quality-checking results for our database.
It is observed that most of the fake fingerprint images were
of good quality.

3.2 Experimental Protocol
Figure 12 shows the overall procedure of the proposed
method. The representative static feature vectors included
the power spectrum �SFV�1�, seven histogram features
�SFV�2�, directional contrast and ridge thickness values
�SFV�3�, and ridge signals �SFV�4�. After the feature ex-
traction stage, each feature vector was normalized as fol-
lows:

ure vectors in each data set.

r Optical�3 sensor Capacitive sensor

292�265 360�256

146 180

7 7

5 5

127 127

285 319

atabase: obtained from �a� the optical�1 sensor,
e capacitive sensor.
e feat

senso

248

6

7

5

our d
, �d� th
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fn�i =
f i − mi

�i
, �6�

here fn�i represents the i’th normalized feature, and mi and
i represent the mean and standard deviations of f i over all
amples. Table 2 shows the dimensions of the feature vec-
ors in each data set.

Based on the feature vectors described in Table 2, we
iscriminated the input fingerprint images as live or fake
sing a support vector machine �SVM�. The SVM per-
ormed classification by determining the optimal linear de-
ision hyperplane at the maximum distance to the closest
oints of the training vectors, called support vectors.37 Gen-
rally, the SVM is given by39

f�x� = sgn��
i=1

k

�iyiK�x,xi� + b� , �7�

here k represents the number of data points, and
i� 	−1,1
 represents the class label of the training point

i. In the experiments, the coefficients �i were found by
olving a quadratic programming problem with linear con-
traints and b as the bias. Also, the SVM was extended to a
onlinear decision surface by using several kernel func-
ions. We used both polynomial and radial basis function
RBF� kernels as follows:

olynomial kernel: K�x,y� = �Gxy + 1�d, �8�

Table 3 Parameter ranges used in the experiments.

Kernel

Parameter range

Degree
d

Gamma
G

Cost of constraint
violation

Polynomial 1 to 6 0.01 to 1 1 to 100

RBF N/A 0.01 to 1 100 to 10,000

SFV_1:
Power spectrum

SFV_3:
Directional contrast

& ridge thickness

Normalization of
Feature vectors

Classification using
SVM

Decision
Live/Fake

SFV_4:
Ridge signal

SFV_2:
First order histogram

Fig. 12 Overall procedure of the proposed method.
ptical Engineering 047202-
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Table 4 Performance comparison of each feature set using the op-
tical�1 database.

Static features

EER �%�

Polynomial
kernel

RBF
kernel

SFV�1 �power spectrum feature
vectors�

5.8 1.78

SFV�2 �first-order histogram feature
vectors�

9.81 10.63

SFV�3 �directional contrast and ridge
thickness feature vectors�

12.23 11.6

SFV�4 �ridge signal feature vectors� 22.95 20.9

Fused feature vectors 3.5 1.08
Table 5 Performance comparison of each feature set using the op-
tical�2 database.

Static features

EER �%�

Polynomial
kernel

RBF
kernel

SFV�1 �power spectrum feature
vectors�

4.9 1.78

SFV�2 �first-order histogram feature
vectors�

19.34 18.26

SFV�3 �directional contrast and ridge
thickness feature vectors�

13.62 13.88

SFV�4 �ridge signal feature vectors� 19.41 18.45

Fused feature vectors 3.12 1.6
Table 6 Performance comparison of each feature set using the op-
tical�3 database.

Static features

EER �%�

Polynomial
kernel

RBF
kernel

SFV�1 �power spectrum feature
vectors�

4.03 1.63

SFV�2 �first-order histogram feature
vectors�

17.01 16.38

SFV�3 �directional contrast and ridge
thickness feature vectors�

12.99 13.43

SFV�4 �ridge signal feature vectors� 20.15 18.62

Fused feature vectors 3.13 1.16
April 2009/Vol. 48�4�9
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BF kernel: K�x,y� = exp�− G�x − y�2� . �9�

o find the optimal parameters of the polynomial and RBF
ernel, we first divided the data sets into training, valida-
ion, and test sets with an equal number of images. Using
he training and validation sets, we adjusted the optimal
arameters of the kernels. The ranges of the parameters are
hown in Table 3. In each experiment, we found the opti-
al parameters and applied them to the test set.

.3 Experimental Results
he performance of the proposed method was evaluated
sing the false-acceptance rate �FAR� and the false-
ejection rate �FRR�. The FAR is the probability of accept-
ng a fake fingerprint as a live one, and the FRR is the
robability of rejecting a live fingerprint as a fake one. The
qual error rate �EER� is the value when the FAR and the
RR are equal.

.3.1 Performance evaluation of each feature set
and fused feature set

ext, we evaluated the performance of each feature set and
used feature set. Tables 4–7 show the comparative EER
erformance using each feature set in each database. Ex-
erimental results evidenced that all representative feature
ets discriminate well between live and fake fingers. It is

able 7 Performance comparison of each feature set using the ca-
acitive database.

Static features

EER �%�

Polynomial
kernel

RBF
kernel

SFV�1 �power spectrum feature
vectors�

0.5 0.98

SFV�2 �first-order histogram feature
vectors�

13.86 13.64

SFV�3 �directional contrast and ridge
thickness feature vectors�

12.66 14.84

SFV�4 �ridge signal feature vectors� 20.68 22.86

Fused feature vectors 0.49 0

Table 8 EER ranges obtained with a polynomial kernel.

ensor

EER �%�

Using all
test data

Using bootstrap method

Maximum Minimum

ptical�1 3.5 5.21 1.51

ptical�2 3.12 5.21 1.51

ptical�3 3.13 5.22 0.88

apacitive 0.49 0.74 0
ptical Engineering 047202-1
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noted that the performance of the power spectrum feature
set was favorable across all databases. This suggests that
this feature set is generic in a sense and can be applied to
optical and capacitive sensors for fake-fingerprint detec-
tion. We also observed that the performance of other fea-
ture sets, except SFV�1, differed because the image charac-
teristics were all different. We repeat that useful feature sets
are diverse with respect to individual sensor characteristics,
and this research is useful for determining the dominant
feature sets of each database and sensor.

When these feature sets are fused, performance is im-
proved, as shown in Tables 4–7. Specifically, we achieved
an EER of approximately 1.6% in the optical-based sensors
and an EER of 0% in the capacitive sensor �when we used
the RBF kernel�. However, this does not necessarily mean
that the proposed method is more advantageous when using
the capacitive sensor than when using an optical sensor.
The database of the capacitive sensor was only composed
of gelatin fake fingerprint images, and so direct comparison
is impossible. Nonetheless we can conclude that our ap-
proach is useful in both optical and capacitive-based sen-
sors according to the results.

3.3.2 Confidence interval test results

As mentioned in Sec. 3.3.1, the proposed method produced
some promising results for detecting fake fingerprints.
However, it is difficult to evaluate its performance, due to
diverse databases and the evaluation method. It is also not
easy to collect a test set that is sufficiently representative to
cover all types of live and fake fingerprints from various
environments. Therefore, it would be desirable if lower and
upper bounds of the performance rate could be estimated.
We adopted the bootstrap method,44 which is a popular
nonparametric statistical method to measure performance
variations from a limited data set. For estimating the lower
and upper bounds of the error rates, the following proce-
dure was executed:

1. Using the test data set, which included 2400 live im-
ages and 3000 fake images from four sensors, the
bootstrap sampling size was determined by the fol-
lowing equation45:

Table 9 EER ranges obtained with an RBF kernel.

Sensor

EER �%�

Using all
test data

Using bootstrap method

Maximum Minimum

Optical�1 1.08 2.38 0

Optical�2 1.6 3.25 0

Optical�3 1.63 2.39 0

Capacitive 0 0 0
April 2009/Vol. 48�4�0
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n =
N

1 + N�e�2 , �10�

where n is the determined sample size, N is the popu-
lation size, and e is the level of precision. To satisfy
the 95% confidence level, we set e at 0.05.

2. The FAR, FRR, and EER of the proposed method
were computed using the randomly selected test set.
The optimal parameters for the SVM were precalcu-
lated in the experiments as described in Sec. 3.2.

3. We repeated step 2 3000 times and then estimated the
95% confidence intervals of the FAR, FRR, and EER.

Figures 13 and 14 show the receiver operating charac-
eristic �ROC� curves obtained from the bootstrap method
y using the polynomial and the RBF kernel. The solid
ines denote the confidence interval �CI� boundaries ob-
ained by the bootstrap method, and the dashed lines are the
OC curves based on all the test images. As shown in these
gures, the performance varied according to the data set
sed. However, the calculated confidence intervals were
mall, which suggests the robustness of the proposed
ethod. �It is meaningless to find the confidence interval

Fig. 13 Performance evaluation �polynomial ke
fidence intervals: database obtained from �a�
optical�3 sensor, �d� the capacitive sensor.
ptical Engineering 047202-1
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when we applied the RBF kernel to the capacitive sensor,
since the EER is 0.� The EER ranges are also shown in
Tables 8 and 9.

4 Conclusions

This paper describes a novel way of detecting fake fingers
by using multiple static features. With usability in field ap-
plications in mind, static features from a single image
rather than dynamic features were considered for discrimi-
nation between live and fake fingerprints. To improve the
classification performance, we studied and extracted mul-
tiple static features and fused them at the feature level,
using a SVM. Our representative features consist of a
power spectrum, a histogram, the directional contrast, the
ridge thickness, and fingerprint ridge signals, which can be
easily obtained from fingerprint images. The experimental
results were promising: The proposed method produced an
EER of approximately 1.6% when using the optical sensors
and 0% when using the capacitive sensor.

In addition, a total of 7200 live images and 9000 fake
images were collected using four sensors �three optical and
one capacitive� under various conditions.

se� using the bootstrap method with 95% con-
ical�1 sensor, �b� the optical�2 sensor, �c� the
rnel ca
the opt
April 2009/Vol. 48�4�1

65.132.66.48. Terms of Use:  http://spiedl.org/terms



v
a

s
F
r
i
i
b
u
fi
n

A
T
n
n
R

R

Choi et al.: Fake fingerprint detection using multiple static features

O

The proposed method also can be easily integrated into
arious sensors, since it only uses simple feature extraction
nd offline training.

The proposed method has been proven effective, but
everal improvements can be pursued in future research.
or example, larger databases collected in different envi-
onments �with varying temperatures and levels of humid-
ty� can be used to analyze the usefulness of these features
n various conditions. Feature enhancement methods will
e further researched. Various types of sensors can also be
sed to analyze the correlation of the features. Furthermore,
nding the optimal feature set and classification method is
ecessary to improve the classification performance.
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