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Abstract

Massively Multiuser Online Games (MMOG), now supporting millions of simultane-

ous participants on a regular basis, have become a significant contributor in human-to-

human communications. While originally designed for games, they have now moved

into serious realms of socialization, business, commerce, scientific experimentation,

and others. As more and more people participate in these massive environments, the

underlying infrastructure is starting to exhibit shortcomings that limit the progress,

practicality, and applicability of MMOGs. This thesis explores various architectural

challenges inherent in MMOGs and offers effective solutions in the context of a hy-

brid model. The key objective of this hybrid model, named Massively Multiuser

VIrtual Simulation Architecture (MM-VISA), is to form a stable and scalable col-

laboration platform that economically combines the resources of both servers and

player peers, incorporating the advantages of a centralized architecture and a scal-

able Peer-to-Peer distributed system, which in turn leads to improved support for the

participating masses.

Synchronous communication among massive number of users in an MMOG is a

prime concern, and difficult and/or expensive to support. This massiveness causes

challenges that cannot be solved with conventional techniques used in traditional col-

laborative environments. Massive number of players’ frequent and random movements

in the virtual environment and zone-switching can easily break synchronous communi-

cation and cause substantial strain on the underlying system, networking, and server
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infrastructure. To alleviate such problems, this thesis proposes a model consisting

of interest-driven zone crossing, dynamic shared regions, clustering of players based

on their attributes, multilevel multiphase load-balancing with several plug-able solu-

tions, hybrid routing based on a combination of centralized and Peer-to-Peer (P2P)

networking, and interest-management techniques considering dynamics of the area

of interest and graphical computing. It is then revealed that the model significantly

improves overall system performance and enhances infrastructure stability in terms

of load, network overlay, and other performance characteristics.
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Chapter 1

Introduction

1.1 Virtual Environments and Online Games

Games are a form of entertainment, a source of excitement, fun and socialization.

Massively multiplayer online (role-playing) games, MMOGs or MMORPGs, are a

new genre of online games that emerged with the introduction of Ultima in 1997

(Figure 1.1). An MMOG is a kind of online computer game built on the participation

of hundreds of thousands of players in a virtual world. An MMOG such as World of

Warcraft or Quest can have millions of subscribers. According to an announcement

on the game’s official website, a record 45,186 gamers have gathered together in EVE

Online’s virtual environment, breaking the previously announced record of 35,000

gamers 1 .

A fascinating imaginary environment is the key to a successful MMOG that will

attract players. These players participate in activities and races, enhance their re-

sources, exercise their power and improve their skills by carrying out various missions.

Each player has a graphical representation of the virtual world and controls an avatar,

which can perform different actions. Examples of such actions include moving the

1EVE online (2009): http://www.eve-online.com/

1
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Figure 1.1: Players interacting in Ultima Online, a classic MMORPG

avatar (path-finding), picking up objects, or communicating with other players. The

challenge of an MMOG is to administer a massive number of connected players and

present them a consistent view of the game world.

In addition to entertainment, these games offer ”the reward of being socialized

into a community of gamers and acquiring a reputation within it” [DYNM06]. In

many cases, MMOGs have become addictive for players. Ducheneaut et al. present

an inclusive case study on how World of Warcraft is designed to catch the interest

of subscribers, who also become audiences for other players’ in-game performances,

providing an easy and accessible source of information and chitchat [DYNM06]. In

this sense, playing the game is like being ”alone together”-the player is surrounded

by others for ”spectator experience” and an impression of social presence. Klastrup

goes further, adding a psychological factor to these games [Kla06]. He studied how

players’ culture and stories enforce a ”heroic” approach to a problem, e.g. death,

directly and indirectly, serving as a guide to new players, teaching them how to ”do

better” both as social players and gamers.

Online games have achieved popularity due to increasing broadband adoption
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among consumers. Relatively cheap high-bandwidth Internet connections allow large

numbers of players to play together. With the advancement of computer graphics and

artificial intelligence, the success of online gaming is growing dramatically. It has now

become a profitable sector to vendors. New players are always joining online games

to share the gaming experience with fellow players in alluring virtual worlds such as

Sony’s EverQuest, Valve’s Half-Life, and Blizzard’s World of Warcraft. According

to a general report from game companies, the number of online players at any given

time is between 6,000 and 10,000, bringing in a powerful US$1 billion in subscription

revenue in 2004 [DFC03].

Interestingly, the most valuable Internet company in China is an MMOG, clicking

in at US$2.0 billion in market cap. Once considered a small business, multiplayer

gaming is growing sharply. It has an enviable business prospect for many reasons

like recurring revenues, competitiveness, social networking effect, real competition,

and the amount of time engaged. For most online games, the experience of gaming is

compelling for incremental users. It appears Metcalfe’s Law of self-reinforcing form

is alive in many MMOGs. The big criticism of MMOG is that it is a hit business like

Hollywood. A closer look will reveal that the average life of a successful MMOG is

around five years.

The growth and evolution of MMOGs is confirmed by technical data and mea-

surements from different organizations and surveys. For the past few years, studies

have revealed that online games are becoming a major contributor to Internet traffic.

DFC Intelligence forecasts that the worldwide online game market will expand from

$4.5 billion to over $13 billion in the period from 2006 to 2011. More interestingly,

in that period, the total number of online gamers in the 20 leading online gaming

countries is expected to increase by 51%. A meticulous analysis by In-Stat/MDR

reports that approximately 9% of the traffic sent back and forth over the U.S. back-

bone was due to online gaming in 2002, and this is estimated to reach nearly 30%

by 2008 [Man04]. More recently, the NPD Group reports that 59% of the total U.S.
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population (ages 2 years old and higher) play games, with 56% of them doing so on-

line, leading to almost a third of the population playing online games 2 . Although

similar studies are not available for Canadian gaming traffic, it is estimated that the

percentages in Canada are about the same if not higher due to the very high rate

of home Internet penetration in Canada, and the fact is that Canada is consistently

ranked in the top five countries in per-capita spending on computer games.

MMOGs are now widely used for socializing, business, commerce, scientific ex-

perimentation, and many other practical purposes. One could say that MMOGs are

the ”killer app” that brings MMVE into the realm of eSociety. This is evident from

the fact that real companies are opening ”virtual branches” in these online games,

such as jean manufacturers, IBM, and CNN, to name a few. In fact, IBM has ready

launched a free multiplayer online game, PowerUp, which challenges teens to save a

fictional planet from ecological disaster. Virtual currencies such as the Linden 3 (or

L$) in Second Life are already being exchanged for real-world money . Similarly, vir-

tual goods and virtual real estate are being bought and sold with real-world money.

Massive numbers of users spend their time with their fellow players in online games

like EverQuest, Half-Life, World of Warcraft, and Second Life. World of Warcraft,

for example, has over 10 million users with a peak of over 500,000 players online at

a given time. There is no doubt that MMOGs and MMVEs have the potential to

be the basis of any eSociety in the near future, because they bring the massiveness,

awareness, and interpersonal interaction of real society into the digital realm.

The biggest surprise with online games is their diversity. Compared with the

traditional video and PC game industry, online games offer many more types of games,

more business model options and greater international appeal. And finally, online

games are one of the great ”sticky” content categories. Many consumers subscribe to

one service over another. The business is always active.

2NDP Group, ”Online Gaming 2008”, http://www.npd.com
31 US$ = 266.50 L$, with roughly US$ 1.5 million exchanged daily
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1.2 Motivation

1.2.1 Applications - Simulation to Entertainment

MMOGs are similar to the generic massively multiuser simulations that have existed

for decades, most notably combat training simulations used by Departments of De-

fense (DoD) around the world, and more recently, disaster management applications,

emergency planning simulators, etc. These have reached their current state because

of their significant impact on virtual training in high-risk situations as well as their

ability to interpret the real and simulated results in extraordinary circumstances such

as natural disasters or terrorist attacks.

Military simulations are seen as a useful way to develop tactical solutions. The

scope of simulations has widened to include not only military but also political and

social factors. Defense ministries and aviation companies are primary users of this

technology, which offers a virtual world in which parties can interact and collaborate

in real time. A scalable architecture that is fully deployable over the Internet is in

demand. MMOGs, a system for entertainment and fantasy, are a variant of such

environments.

The motivation behind this research is therefore clear: MMOGs are here to stay,

and will be used not only for gaming but also for many other purposes. Therefore, an

architecture that could efficiently support such environments would be of a scientific

value and a contribution to the field.

1.2.2 Scalability

The development of an MMOG faces many challenges. Multiuser simulations and

MMOGs introduce hard challenges to the system designers. The most important

challenge is scalability, which is a desirable property of a system that indicates its

ability to either handle growing amounts of work in a graceful manner, or to be readily
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enlarged. This is a critical issue to consider when designing large-scale simulators

and MMOGs, as it is a complex function of the other components of the system that

requires regular exchange of update messages among the participants.

Online games also have a set of other requirements - consistency, responsiveness,

reliability, security, and persistency [SKH01]. Real-time applications like networked

games require observing the effect of an action in time. Network latency and process-

ing delays, however, make this difficult to achieve. It is true that latency tolerance

usually varies from game to game and is typically limited to a value between 100ms

and 1000ms [CC06]. This value depends on game perspectives (i.e. first-person or

third-person), game genres (i.e. racing or role playing game), and the sensitivity

of actions. The system’s scalability depends on servers’ and clients’ available band-

width, types and frequencies of activities, and as well as players’ density in a given

region. The key factor for scalability is whether resource usage is bounded both at

clients and servers. Reliability may be characterized by fault-tolerant capabilities in

case of accidental/intentional software and hardware failures. In such cases, normal

operations must be resumed as early as possible without a noticeable disturbance.

1.2.3 Communication Architecture

Commercial MMOGs use the client-server architecture with a single authentic server

designed to support the game logic. In addition to the bottleneck problem, the client-

server architecture is expensive to deploy and maintain. For example, SL (Second

Life) has approximately 5000 servers to support its virtual space. Such expensive

deployment issues, as well as complex maintenance demands, are common in bettering

gaming experience, performance and administrative control. In MMOGs, the server

pool regulates game traffic using the zoning concept and makes its implementation

more convenient. Practically, the communication structure within a zone is similar

to the Internet multicast structure, not client-server, because of the players’ common
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interest in the game logic. IP multicast, which was originally proposed for group

communication, can be an ideal solution for this purpose. But it is a well-known fact

that IP multicast is not fully deployable on the wide-scale Internet, even in the future

with IPv6 [ESRM03][HASG07][DLL+00]. Hoplon’s Taikodom, which has managed to

support 700 users in one zone, with 50 of them engaged in battle [Gui08]. However,

Taikodom uses an IBM z10 supercomputer to achieve that! This is not an affordable

solution for all MMOGs.

Network lag is another well-known problem that affects the performance of the

system. In online games, when a player interacts with other players, the updated infor-

mation must be sent to all participants. Because of networking limitations and traffic

conditions, some of these updates might be delayed or lost. Much research has been

conducted to overcome the networking limitations and provide a better distributed

system. Some of these studies provide receiver-initiated [PK99] and selectively reli-

able transport protocols [Pul99] that can be used to deliver important messages with

a high degree of reliability, while others use sender-initiated approaches, transmitting

key updates with guaranteed reliability [SG01]. The IEEE DIS standard [IEE98] has

also been successfully used in a controlled environment with vast resources, mostly for

military simulations. These approaches are based on IP multicasting, and, although

they achieve good results in an Intranet environment, they are not readily deployable

on the Internet.

A peer-to-peer (P2P) computer network is a network which generally relies on

computing power and bandwidth of the users rather than one or more servers. Peer-

to-peer architecture has self-scalable properties, but considering its business issues

and quality concerns, it is apparent that pure peer-to-peer architecture is not a vi-

able solution. At present, different mixed architectures are being proposed using peer

resources, but the practical deployment hurdles are not yet fully overcome. Cur-

rent designs (research-oriented), however, try to incorporate client- and server-side

resources in a peer-to-peer fashion to address different challenges such as scalability,
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responsiveness, and persistence [KLXH04][IHK04][YV05]. The peer-to-peer commu-

nity strongly believes that development of online games over such a platform would

be valuable in terms of deployment cost, and of performance, in some sense, through

reduced latencies.

1.2.4 Area of Interest Management

The game space of MMOGs contains plenty of information, but a single player needs

to be informed of only a small subset of that information. For online games, Area of

Interest Management (AoIM) is a technique used to reduce communication overhead.

AoIM methods intelligently determine useful information for a player and block other

irrelevant information. For example, the area of interest of an avatar in an MMOG

is the set of avatars and non-playing components (NPC) with whom it interacts

within its neighborhood. Since a game’s virtual world is large, filtering out irrelevant

information is a fundament requirement for a scalable system. Thus, relaying relevant

information to each player is an effective way to approach messaging in online games.

But the need for an efficient support of one-to-many and many-to-many applications

led to the proposed implementation of multicasting on the global inter-network called

IP Multicast [DC90].

An IP multicast-capable network can allow one or more sources to efficiently send

data to a group of receivers, wherein the source transmits only one copy of a packet

and the appropriate network nodes, i.e. routers, efficiently make duplicate copies for

each receiver as needed (Figure 1.2a). After a decade of research into the various

issues of IP multicasting, such as routing, group management, address allocation,

authorization and security, quality of service (QoS) and scalability, the widespread

deployment of IP multicast on the global inter-network has struggled with technical,

administrative and business-related issues [DC90]. Internet Service Providers (ISPs)

rarely allow home users to be a part of an IP multicast session. Therefore, there have



Chapter 1. Introduction 9

been recent proposals for alternative group communication services that would grow

out of the IP multicast model. El-Sayed et al. survey such proposals [ESRM03] and

present multicasting approaches alternative to classic IP multicasting. These include

the use of reflectors, permanent tunneling (e.g. MBONE), relying on specific routing

services such as IPv6, and application-layer multicasting or automatic tunneling.

Figure 1.2: The concept of (a) IP multicast and (b) ALM

Arguably, the most influential development to encourage and bring about the

idea of Application Layer Multicasting (ALM) has been the tremendous success of

peer-to-peer file-sharing applications, such as Napster, and its successors, such as

Kazaa. Millions of home Internet users with limited dial-up bandwidth and DSL

connections could cooperate together in order to distribute gigabits of media content

on the global network. Its success therefore encouraged other forms of media dis-

tribution services such as teleconferencing and media on demand using end systems,

acting as cooperating peers. In ALM, data packets are replicated at end-hosts rather

than at routers, as shown in Figure 1.2b. As the ALM does not require any special

infrastructure support, it is fully deployable on the Internet. However, an ALM does

come with trade-offs: more bandwidth and delay (compared to IP multicasting). But

it has been shown that ALM-based algorithms can have ”acceptable” performance

penalties with respect to IP multicasting and other practical solutions [CRZ02].
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1.3 Research Problem and Direction

In this thesis, a hybrid MMOG architecture, Massively Multiuser VIrtual Simulation

Architecture (MM-VISA) is presented that provides the properties of a centralized

architecture, while exploiting P2P communication to achieve scalability. This ”hy-

brid” (centralized combined with P2P) MMOG architecture divides the virtual world

into several manageable zones where each zone covers the players in a given vicinity.

This division of the game into zones is a common practice and not exclusive to our

architecture. The rationale behind zoning is that players are only interested in what

goes around in their own vicinity. In our architecture, each zone has a zone master

responsible to build a P2P overlay network within its zone for intra-zonal communi-

cation among players. This P2P communication model can reduce traffic load on the

servers, and decrease deployment and maintenance cost. Together, the set of zone

masters forms a top-level management mechanism that regulates the operation of the

MMOG.

As the game world is broken into smaller manageable zones, a player can move

from its current zone to a neighboring zone (called zone crossing) causing the re-

structuring of the overlay network. This restructuring will change the P2P overlay

and cause problems for routing messages. To limit such problem, the proposed ar-

chitecture uses players’ gaming characteristics, such as velocity, to group them into

clusters, where players in each cluster have similar characteristics. With clusters in

each zone, a leaving player only affects the players in that cluster. Thus, this struc-

ture reduces the zone-crossing problem from the whole zone to only a single cluster.

New methods like interest-driven zone crossing and dynamic shared regions between

adjacent zones, which will be explained in Chapter 4, are proposed that help making

informed decisions to solve the above problems more efficiently.

Due to massive number of players, MMOG applications require much network

bandwidth to function properly. In a distributed MMOG server architecture, the
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server nodes may become overloaded by the high number of players. The main re-

source to consider here is the number of packets produced by the players; the more

players join the same server, the more packets are produced for that server, demand-

ing more bandwidth; this is the current bottleneck for MMOGs. To address this

problem, this thesis presents load-balancing algorithms for both uniform and non-

uniform zonal MMOGs. In uniform zones, zones’ shape and size are the same; like

hexagons of the same size. On the other hand, in non-uniform zones, the size can

be different like rectangles of different sizes. The proposed load-balancing schemes

identify a loaded server in terms of either the number of players or packets processed

per unit time, and then move the load to other servers considering communication

overhead and P2P overlay restructuring. The proposed Multilevel Multiphase Load

Balancing (MMLB) method introduced in chapter 5 is designed for uniform zones.

MMLB reduces load in a step-by-step manner, and avoids problems associated with

current load balancing schemes. We also present a novel load balancing scheme for

non-uniform zones using a bisection procedure that does not adhere to any predefined

zone size; i.e., zone sizes are flexible and can be determined dynamically.

Broadcasting all update messages to every player is not a viable solution to

maintain a consistent game world. To successfully overcome this challenge, multi-

player online games need to employ sophisticated interest management techniques

as explained earlier. Here we propose an area of interest management technique for

a peer-to-peer architecture. This technique assigns interest management duties to

a subset of players for each AoI. As players move in the virtual world, the area of

interest also changes. So, the subset of players performing the interest management

duties needs to be redefined. Apart from this, as an improvement, several plug-able

solutions are proposed such as expedited state dissemination, opportunistic state for-

warding to comply with hard time constraints, and others which will be explained in

Chapter 6.
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1.4 Research Contributions

In short, the main contributions of the thesis are a comprehensive MMOG architecture

consisting of the following novelties:

• The thesis presents a hybrid communication middleware for MMOGs that ex-

ploits P2P technology to allow efficient player communication within a zone, and

between zones. To improve performance and achieve P2P network stability, it

proposes player clustering and interest-driven zone crossing.

• Three load-balancing techniques are presented - two for uniform and one for

non-uniform zonal MMOGs.

• This thesis proposes an area of interest management technique for MMOGs in

the context of a P2P architecture.

• In an MMOG, quick dissemination of the current state of players and objects

is of outmost importance. This thesis also proposes an expedited state sharing

mechanism among players.

• The thesis also proposes an algorithm that transports messages between players

based on their virtual and geographical (real-world) positions, improving the

gaming experience among players.

1.5 Scholastic Output and Achievements

In addition to meeting its objectives as described above, this research undertaking

has also lead to a variety of scholastic achievements and publications, as listed below.
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Awards

1. OCRI Student Researcher of the Year, 2009

2. Inscribed on the 2007-2008 Faculty of Engineering’s Dean’s Honour List

3. Best Poster Award in Computer Science, Faculty of Engineering Research and

Graduate Studies Day, 2008

4. Student Travel Grant Award, IEEE International Instrumentation and Mea-

surement Technology Conference, Victoria, BC, Canada, 2008

5. Best Paper Award in IEEE WETICE COPS workshop, Paris, France, 2007

6. Research travel grants, University of Ottawa (3 times)

Refereed Journals (published)

1. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”A Hy-

brid P2P Communications Architecture for Zonal MMOGs”, Multimedia Tools

and Application (Springer Netherlands), vol. 45, I(3), pp. 313-345, 2009

2. Shervin Shirmohammadi, Ihab Kazem, Dewan Tanvir Ahmed, Madeh El-Badaoui,

Jauvane C. Oliveira, ”A Visibility-Driven Approach for Zone Management in

Simulations”, SCS Simulations, V. 84(5), 215-229, 2008

3. Mojtaba Hosseini, Dewan Tanvir Ahmed, Shervin Shirmohammadi, Nicolas D.

Georganas, ”A Survey of Application-Layer Multicast Protocols”, IEEE Com-

munications Surveys and Tutorials, vol. 9, I(3), pp. 58-74, 2007

Refereed Journals (under review)

1. Dewan Tanvir Ahmed, Shervin Shirmohammadi. ”A Load Management System

for Massively Multiplayer Online Games”, Emerging Systems with Advanced

Information Networking Technologies, a special issue of IEEE Systems journal,

submitted - under review, 2009
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Book Chapters

1. Dewan Tanvir Ahmed, S. Shirmohammadi. ”Zoning Issues and Area of Interest

Management in MMOGs”, Handbook of Digital Media in Entertainment and

Arts, Borko Furht, Springer, pp. 175-196., and ISBN: 978-0-387-89023-4, 2009

2. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Networking for Massively

Multiuser Online Gaming”, Encyclopedia of Multimedia, pp. 664-670, Borko

Furht, Springer, ISBN: 978-0-387-74724-8, 2008

3. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Mobile P2P Computing”,

Encyclopedia of Wireless and Mobile Communications, pp. 751-758, Borko

Furht, Taylor & Francis, ISBN: 1420043269, 2008

4. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Multicasting in Mobile Ad

Hoc Networks”, Encyclopedia of Wireless and Mobile Communications, pp.

546-555, Borko Furht, Taylor & Francis, ISBN: 1420043269, 2008

Conference and Workshop Papers

1. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ” An Algorithm for Measure-

ment and Detection of Path Cheating in Virtual Environments”, Proc. IEEE

Conference on Virtual Environments, Human-Computer Interfaces, and Mea-

surement Systems, Istanbul, Hong Kong, May 2009

2. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Model and Measurement of

MMOG Time-Constraint Relaxation Algorithm”, Proc. IEEE International

Instrumentation and Measurement Technology Conference, Singapore, May 5-

7, 2009

3. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Intelligent Path Finding for

Avatars in Massively Multiplayer Online Games”, Proc. IEEE Workshop on
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Computational Intelligence in Virtual Environments, in Proc. IEEE Symposium

Series on Computational Intelligence, Nashville, TN, USA, March 30 - April 2,

2009

4. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ” A Dynamic Area of Interest

Management and Collaboration Model for P2P MMOGs”, Proc. IEEE Int.

Symposium on Distributed Simulation and Real Time Applications, Vancouver,

BC, Canada, October 2008

5. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ” A Microcell Oriented Load

Balancing Model for Collaborative Virtual Environments”, Proc. IEEE Confer-

ence on Virtual Environments, Human-Computer Interfaces, and Measurement

Systems, Istanbul, Turkey, July 2008

6. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Model and Measurement of

State Dissemination in MMOGs”, Proc. IEEE International Instrumentation

and Measurement Technology Conference, Victoria, BC, Canada, May 2008

7. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”An Expedite State Dissem-

ination Mechanism for MMOGs”, Proc. International Symposium on Parallel

Architectures, Algorithms, and Networks, Sydney, Australia, May 2008

8. Razib Iqbal, Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Distributed

Video Adaptation and Streaming for Heterogeneous Devices”, Proc. IEEE

Workshop on Mobile Peer-to-Peer Computing, Hong Kong, China, March 2008

9. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”Perfor-

mance Enhancement in MMOGs Using Entity Types”, Proc. IEEE Int. Sym-

posium on Distributed Simulation and Real Time Applications, Chania, Crete

Island, October 2007
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10. Ihab Kazem, Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”A Visibility-

Driven Approach to Managing Interest in Collaborative Virtual Environments

with Dynamic Load Balancing”, Proc. IEEE Int. Symposium on Distributed

Simulation and Real Time Applications, Chania, Crete Island, October 2007

11. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”Improv-

ing Gaming Experience in Zonal MMOGs”, Proc. ACM Multimedia, Augsburg,

Germany, September 2007

12. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”State

Management in Large Scale Group Communication”, Proc. IEEE Int. Confer-

ence on Signal Processing and Communication, Dubai, UAE, November 2007

13. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”A Framework for Provision-

ing Overlay Network Based Multimedia Distribution Services”, Proc. IEEE

International Conference on Multimedia and Expo, Beijing, China, July 2007

14. Dewan Tanvir Ahmed, Shervin Shirmohammadi, A. El Saddik, ”A Dominat-

ing Set Based Peer-to-Peer Protocol for Real-Time Multi-Source Collabora-

tion”, Proc. IEEE Workshop on Collaborative P2P Information Systems, Paris,

France, June 2007

15. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”Sup-

porting Large-Scale Networked Virtual Environments”, Proc. IEEE Confer-

ence on Virtual Environments, Human-Computer Interfaces, and Measurement

Systems, Ostuni, Italy, June 2007

16. Choudhury A. Al Sayeed, Dewan Tanvir Ahmed, Akbar G. P. Rahbar, ”Hybrid

Maximal Matching for Input Buffered Crossbar Switches,” Proc. IEEE/ACM

Conference on Communication Networks and Services Research, Fredericton,

NB, Canada, May 2007
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17. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Architectural Analysis of

Multicast Routing Protocols for Wireless Ad Hoc Networks”, Proc. IEEE In-

ternational Conference on Networking, Martinique, April 2007

18. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Design Issues of Peer-to-Peer

Systems for Wireless Ad Hoc Networks”, Proc. IEEE International Conference

on Networking, Martinique, April 2007

19. Ihab Kazem, Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”A Zone Based

Architecture for Massively Multiuser Simulations”, Proc. SCS/ACM Commu-

nications and Networking Simulation Symposium, Norfolk, VA, USA, March

2007

20. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”Multi-Level Hashing for Peer-

to-Peer System in Wireless Ad Hoc Environment”, Proc. IEEE Workshop on

Mobile Peer-to-Peer Computing, White Plains, NY, USA, March 2007

21. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”BM-ALM: An Application

Layer Multicasting with Behavior Monitoring Approach”, Proc. IEEE Interna-

tional Symposium on Multimedia, San Diego, CA, USA, December 2006

22. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Jauvane C. Oliveira, ”A Novel

Method for Supporting Massively Multi-user Virtual Environments”, Proc. IEEE

Workshop on Haptic Audio Visual Environments and their Applications, Ot-

tawa, ON, Canada, November 2006

23. Dewan Tanvir Ahmed, Shervin Shirmohammadi, Ihab Kazem, ”Zone Based

Messaging in Collaborative Virtual Environments”, Proc. IEEE Workshop

on Haptic Audio Visual Environments and their Applications, Ottawa, ON,

Canada, November 2006



Chapter 1. Introduction 18

24. Dewan Tanvir Ahmed, Shervin Shirmohammadi, ”A Hybrid P2P Protocol for

Real-time Applications”, 15th IEEE International Workshops on Enabling Tech-

nologies: Infrastructures for Collaborative Enterprises, Manchester, UK, June

26-28, 2006

1.6 Road Map

The road map of the thesis is as follows: Chapter 2 illustrates the necessary back-

ground and relevant literature reviews for virtual collaboration architectures, ALM-

based protocols, AoIM, and load balancing. Chapter 3 outlines a strategic model

on how to choose an application-specific ALM protocol. The zonal hybrid MMOG

architecture and its communication structure are outlined in Chapter 4. Several

load-balancing algorithms for zonal MMOGs are presented in Chapter 5. In Chap-

ter 6, several performance enhancement mechanisms such as dynamic area of interest

management, expedited state dissemination, and quality improvement procedures are

presented. The simulation results and validation of the presented model and algo-

rithms are given in Chapters 7 and 8, respectively. Finally, the thesis is concluded in

Chapter 9 with suggestions for future research.



Chapter 2

Background and Related Work

Since the introduction of the networked virtual environment (NVE) in the 1980s

for military simulations, many interesting applications have evolved. The NVE and

its variants are hot research topics that need to be explored. The genre of multi-

player online games is relatively new but increasingly popular. The development of

online games requires overcoming several technical challenges including consistency,

responsiveness, reliability, and synchronization [Ale05][McF05]. For a consistent and

reactive game space, each player maintains a clone of the appropriate game states

in his station. When a player performs an action or generates an event that af-

fects the game space, the game state of all other players influenced by that action

or event must be updated. As consequence, the amount of information that must

be exchanged among players roughly depends on game rules, density of players in an

area, and game perspectives. However, capacity is bounded by at least two technical

limitations: network bandwidth and processing power [SZ99][SKH01]. Much research

has been conducted on the various aspects of networked virtual environments and

MMOGs. This chapter will cover this research in detail and present a preliminary

understanding of the system.

19
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2.1 Zoning and Area of Interest

For easy state administration, the virtual space is divided into multiple adjacent

areas, technically called zones. But the perspective from which a zone is constructed

is subject to specific implementation. From a networking perspective, each LAN can

be considered a zone where several LANs are connected through the Internet, forming

the entire world. A LAN provides high bandwidth, so it could be easy for the server,

i.e. the master, responsible for a zone to construct the overlay network if required,

maintain its state, and manage newcomers and early departures. However, this is

not a sufficient requirement; other factors such as virtual distance and participant’s

visibility scope need to be taken into consideration when defining a zone. Thus, a

zone involves a logical partitioning, which is usually transparent to players in the

game space.

Figure 2.1: Two versus multiple zones layout, with a player moving across zones

2.1.1 Multiple Zones and Their Shapes

At its simplest, a zone can be represented by a square or a triangle. Multiple-zone

definition can be adopted while defining the map of a game space. To accommodate

many players, the map is logically divided into multiple zones. Each zone encompasses

the players that are in the same vicinity. Henceforth, when a player moves from one

zone to another, the player is disconnected from one server and joined to another

server. If this multiple-zone layout is considered, more connections and disconnections
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can be encountered for the same path traversal scenario (Figure 2.1). Triangular and

hexagonal shapes have an advantage over circular shapes as these shapes can stick

together and cover the entire game space (Figure 2.2).

Figure 2.2: Hexagonal versus circular zone shapes

2.1.2 Area of Interest Management

An MMOG deals with plenty of information: monitoring each player’s activities,

tracking its location and many others. Rationally, a player does not need state infor-

mation about the entire virtual world, which is too large. Thus, determining correct

information for each player is a fundamental requirement of online games. From this

perspective, interest management is a way of determining the functional details of a

player. Thus, the performance of a virtual world depends on the cost and effectiveness

of the AoIM approach deployed.

Publisher-Subscriber Model

Interest management for an MMOG can be abstracted using a publisher-subscriber

model. The concept is that publishers create events and subscribers consume events.

In this model, interest management consists of determining when an avatar registers

to or bows out, gracefully or ungracefully, from a publisher’s (avatar’s) updates.

Generally, interest management for online games can has multiple domains. The most

common domain is visibility, although other domains like audible range and radar are
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also possible. Each interest domain has special properties for the transmission and

reception of data, so different sets of publisher-subscriber models might be needed.

Figure 2.3: The aura-nimbus model

Space-based AoIM Model

Interest management can also be categorized into two general groups: space-based and

class-based. Space-based interest management can be defined based on the relative

position of avatars in a virtual world, while class-based can be determined from an

avatar’s attributes. Space-based interest management is the most useful for MMOGs

because of the relevant information of a player is usually closely related to its position

in the environment and is typically based on proximity, which can be realized in terms

of the aura-nimbus information model illustrated in Figure 2.3. Aura is the area that

bounds the existence of an avatar in space, while nimbus, i.e. area of interest, is the

space in which an object can perceive other objects. In the simplest form, both aura

and nimbus are usually represented by circles around the avatar. This model is more

appropriate when a server maintains a connection with each client. The drawback

of a pure aura-nimbus model is scalability, because of the computing cost associated

with the determination of intersection between nimbus and aura for a large number

of players.
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Figure 2.4: Region-based area of interest

Region-based AoIM Model

Region-based interest management partitions the game space into several fixed re-

gions. The interest management scheme then determines which regions intersect

with the players’ expression of interest. Thus, an area of interest becomes a union

of intersecting regions with respect to the expression of interest, as shown in Figure

2.4. This is an approximation of true expression-of-interest and generally cheaper to

compute but less precise than a pure aura-nimbus model.

In reality, a significant portion of a large game space is irrelevant to a player. It

is apparent that the simulation data space should be filtered based on relevance and

channeled efficiently to the appropriate players. So at a particular instant in time,

such ’relevant’ information depends on a player’s place and its surroundings, which

are influenced by metrics like virtual proximity, field of vision, line of sight, action

context, etc. Events should be sieved in a communication model according to players’

interest, which could reduce stress on latency and congestion [ERMS06].
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2.1.3 Discrete View versus Continuous View

An MMOG can have a discrete view for its players where a player is interested

in a single zone. The idea is covered in P2P Support for Massively Multiplayer

Games [KLXH04] and Zoned Federation of Game Servers [IHK04]. The discrete view

simplifies the design and makes it more scalable and robust. However, in reality,

simulation and game mechanics require continuous view, where nodes can see across

zones. Thus, the area of interest management cannot assume a discrete view for

all entities and must support continuous view for frequently occurring events and

for special entities like radar. Boulanger et al. present a nice comparative study

of different interest management algorithms [BKV06]. Eight different approaches are

compared and evaluated in the context of MMOGs. One of the interesting regulations

is that an interest management algorithm that considers obstacles in a virtual world

reduces update messages exchanged between players.

2.1.4 Geographic versus Behavioral Modeling

There are two approaches to model AoIM for MMOGs. The first is static geographical

partitioning, implemented at the initialization phase of a simulation. This is practical

as it describes the structure of a virtual world. For example, a virtual world may

consist of multiple cities where each city defines a geographical partition: it is the

area where most of the interactions take place, and in most cases, participants are

not affected by what is happening in other cities. Second Life has adopted such an

approach [VBV+05]. The virtual world can place uninteresting items around the

borders, such as cities separated by empty forests or wilderness where players do not

want to stay long. Although static geographic partitioning is good for some cases, it

might not be a general solution for all virtual simulators.

The second approach for AoIM is behavioral modeling. In military simulations,

two different units, such as a jeep and an aircraft, have different characteristics in
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terms of how fast they can move, how far they can see, and the scope of their inter-

action space (a jet launching a missile has a larger area of influence than a jeep on

patrol). Lu et al. argue that, as the mapping of processing resources to geographic re-

gionalization is straightforward and uncomplicated, the behavioral approach has not

been deeply explored [LPM06]. One of the limitations of a geographic regionaliza-

tion is its unintelligence in preventing inter-server communications. This is because

the geographic regionalization does not give enough importance to players’ interac-

tions. Even though behavioral modeling is the ideal approach to manage interest

among parties, geographic regionalization is not without its merits. Thus, geographic

regionalization can be augmented by behavior-based communications for better in-

terest management.

2.2 Networking and Scalability for MMOGs

Since the introduction of NVEs, several architectures have appeared, with a wide

variety of approaches and characteristics. Hu et al. propose, in some sense, a fully

distributed peer-to-peer architecture to solve the scalability problem of networked

virtual environments [HCC06]. This method exploits the locality of player’s inter-

est inherent to the system and is based on the mathematical construct known as a

Voronoi diagram. In this concept, the game space is dynamically partitioned depend-

ing on players’ position using a Voronoi graph-partitioning algorithm. Thus, players

in the same region can directly exchange game events and maintain a consistent game

space. However, as the number of player nodes in a sub-state increases, the number

of messages sent from each player or its management node also increases. Thus, com-

munication and message exchange cannot be regulated properly. Here, the position

of players is managed in a centralized way that creates a big problem for scalability.

Marios et al. present an approach to support massively multiplayer online role-

playing games (MMORPGs) using a centralized distributed architecture [AT06]. This



Chapter 2. Background and Related Work 26

approach considers the player’s locality of interest to reduce bandwidth requirements

for both game servers and clients. But from an architectural point of view, it is simply

a multiple server-based client-server architecture where performance improvement is

flat. There is no guarantee of end-to-end delay. Here, a player state includes a set

of all other players and servers that currently know this player. However, if a player

leaves, it is not clear what will happen to others, i.e. how will this departure be

handled? This effect of player departure is not addressed in this architecture.

The model proposed by Hampel et al. reuses architectures capable of exploiting

the flexibility and scalability of peer-to-peer networks [HBH06]. The main drawback

of peer-to-peer networks for games is the lack of a central authority that can regulate

access and prevent cheating. This model uses a set of controller peers that can

supervise each other. This kind of redundancy can prevent cheating. The model is

based on the existing distributed hash table Pastry, which has been extended into

SCRIBE. The key issue is unbounded end-to-end delay, which could be a problem for

synchronization.

Yamamoto et al. present a load-balancing mechanism for a crowded sub-space

[YMYI05]. The proposed technique reduces end-to-end event delivery delay through a

load-balancing tree by replacing one of the intermediate nodes with the backup node

incrementally. This also presents a technique for efficient and seamless sub-space

switching for subscription while each player’s view can move in the game space. For

each sub-space, a player node called the responsible node is selected. The responsi-

ble node forwards events to all players in the same sub-space, but the technique as

described does not explain on what basis such nodes can be chosen or consider the

ability of nodes to perform such a critical task. In short, it is clear from the descrip-

tion that event distribution is performed from one-to-all nodes in a sub-space. This

pattern resembles client-server architecture, which is a big concern for scalability.

Knutsson et al. describe peer-to-peer support for massively multiplayer games

by using Pastry and SCRIBE, a peer-to-peer overlay and its associated simulated
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multicast structure [KLXH04]. The virtual world is divided into regions of fixed size.

Each region is managed by a coordinator, the root of the multicast tree. Players

inside the same region subscribe to the address of the root node to receive updates

from other players. Thus, neighbors are discovered via the coordinators. The co-

ordinators maintain links with each other, easing player transition to other regions.

However, this model has some undesirable properties. Due to discrete AoI, users

cannot see across regions. If players decide to listen to more regions, as suggested

in the paper, unnecessary messages beyond AoI will be received. This can create a

serious performance penalty as the overlay does not cover the appropriate area of

interest; messages may need to be relayed by other nodes (one to two hops in most

cases, but some cases may go beyond 50 ”virtual hops”, so more delays can happen

at the physical level). In short, the architecture does not fully use the power of direct

connections. There are many key differences between MM-VISA, presented in this

thesis, and their approach. One of the salient characteristics of MM-VISA is its con-

tinuous view for the player, even with multiple zone layouts. MM-VISA has a sound

zone switching mechanism as well as several intelligent techniques to avoid frequent

connections and disconnections with zone masters.

The Delaunay network is a good solution for NVEs in that it organizes players

according to their positions in the virtual space [VBD07]. The maintenance cost of

a Delaunay network increases against players’ density and velocity. Thus, a player

may generate a considerable volume of traffic to be dealt with. To address this

issue, authors propose a dynamic clustering algorithm where each peer in the network

monitors its cost of maintenance and creates a new cluster when the volume of traffic

exceeds a given threshold. The members of a cluster then expand their coordinates

to increase their reciprocal distances. In this way, by decreasing the concentration of

players, the system tries to reduce maintenance cost. But its centralized architecture

is the main drawback for scalability. The architecture of MM-VISA is an integration

of centralized servers and distributed peers that retains the benefits of both systems.
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It achieves scalability through the use of peer resources while maintaining the central

power of the system in the different aspects of group management.

SCORE (scalable multicast-based communication protocol) is designed for Large-

Scale Virtual Environments (LSVE) over the Internet [LTB04]. To handle a large

number of participants, it supports multiple multicast groups and multiple agents. It

dynamically partitions the virtual world into spatial areas and applies planar point

processes to determine a proper cell size. Thus, it ensures traffic at the receiver

side below a threshold with a given probability. Although the goals of SCORE and

MM-VISA are similar, i.e. large-scale collaboration, MM-VISA focuses specifically

on networked games. Hence, as the application domain is different, every aspect of

the design varies, from zone definition to both intra- and inter-zonal communications.

MOPAR, a peer-to-peer networked game architecture, is a scheme for interest

management in NVEs [YV05]. It is a combination of both structured and unstruc-

tured peer-to-peer systems. Here, a master node is chosen in each zone and becomes

the parent of all other players, named slaves, in the zone. Each master node supports

all slaves within its zone. Although the architecture is peer-to-peer in the sense that

the master node is also connected to other master nodes and manages inter-zonal

communication, the networked architecture within a zone looks like the client-server

architecture. Thus, it has a single point-of-failure problem. One of the main draw-

backs of MOPAR is unexploited slaves’ bandwidth as slaves are only connected to the

master node, not among themselves. On the other hand, MM-VISA offers a scalable

system that can reduce the master’s workload through peers’ participation.

A. Steed et al. propose a simple but powerful visibility structure called frontier

sets [SA05]. The proposal shows how to construct this set at runtime. For a pair

of nodes, a frontier identifies two mutually invisible regions containing nodes. The

frontier set allows a system to scale. This is possible because, as long as two nodes

stay in their respective frontiers, they do not need to send update information to each

other. This is an interesting method in theory. However, it would be computationally
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expensive to realize it in real-time and, in fact, would be difficult, especially when

offering continuous views to the players. The MM-VISA can take care of these issues

through the use of multiple multicast groups and can maintain a low data rate through

locality awareness.

The key issues in CVE research include managing consistency and persistency

of distributed information and assuring real-time interactivity. Fook et al. present

Collaborative Interaction Management (CIM) and Task-Oriented Interaction Man-

agement (TIM) approaches to resolve extensibility issues in CVE [FQL03]. When

multiple interactions occurred at the same time, these approaches can govern and

control the message flow. Here Scene Interaction Manager (SIM) monitors the net-

work characteristics to prevent load saturation and large network delay. This ap-

proach is mainly conceptual that does not consider the key features of real MMOGs

like interest management. From this perspective, it is not particularly realistic and

not very well-suited for MMOGs.

ATLAS focuses two broad concepts to support users in collaboration in het-

erogeneous environments [LLH02]. It goes for self-tune-ability rather than for re-

configurability, where a system automatically configures itself based on the current

execution environment. The other concept associated with ATLAS is personalized

information filtering. Based on human heuristics, application semantics, user prefer-

ences and current system status, it filters out events to increase scalability without

degrading interactive details for the user. A virtual environment allows users on a net-

work to interact with each other by sharing the common view of their states. ATLAS

analyzes scalability in terms of communication architecture, interest management,

concurrent control, and data replication.

To support a large number of concurrent participants, Z. Liang proposes a mobile

agent-based architecture for a Large-scale Collaborative Virtual Environment (LCVE)

[LQF03]. This software system is made up of mobile agents, and each mobile agent

is responsible for different independent tasks in the LCVE. Theoktisto and Fairn
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propose a component framework for transforming standalone virtual reality (VR) ap-

plications into multithreaded collaborative virtual reality environments [TF05]. Their

approach includes a hybrid distributed user interaction model, multithreaded software

components and network communications under a peer-to-peer scalable topology.

The accessibility of fast Internet connections and the availability of cheap and

smart graphics cards have made networked virtual environments viable for millions

of users. Now it is time to cope with the growing heterogeneity that arises from

the differences in computing power, network bandwidth and users’ preferences. H.

Trefftz et al. present a mathematical model to integrate this heterogeneity that

considers policies and users’ preferences as the controlling parameters in a linear

equation [TMZ03].

2.3 Application-Layer Multicasting

Unlike IP multicast, where the routers take care of routing and avoid multiple copies of

a packet over the same link, possibly constructing optimal trees, ALM is implemented

by application nodes (either end-systems or proxies) and results in multiple copies

of a packet over the same link as well as typically constructing non-optimal trees.

In exchange for its inefficiency, as compared to IP Multicast (higher-stress links and

larger-diameter trees), ALM remedies the key shortcomings of the IP Multicast model:

it promises easier and possibly immediate deployment over the Internet. End System

Multicast (ESM), one of the current implementations of ALM, has already been

deployed successfully on the Internet for various applications. As online games require

group communications, ALM can be a promising alternative to native IP multicast

considering its limitations. There have been significant research activities in ALM-

based protocols. We discuss some of the well-known approaches, mostly related to

collaborative applications. The classification of different ALM protocols both in terms

of group management and routing policy can be found in [HASG07].
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Kim et al. propose an approach that constructs topologically-aware data paths,

which are based on topological clustering of multicast group members [KC04]. This

approach hierarchically arranges the clusters and separates data paths into two types

(i.e., inside-cluster path and outside-cluster path) to exclude outsider nodes from the

inside-cluster paths. Topologically-aware data paths can reduce unnecessary high

latency and redundant network resource usage with a low overhead.

Wierzbicki et al. introduce Fastcast for efficient peer-to-peer applications [WSB03].

This is a root-based topology-aware ALM protocol. This ALM algorithm can adjust

performance by limiting the number of children in an ALM tree, since nodes could

be connected by slow modems or slow wireless connections. The MM-VISA consid-

ers resource limitations of end-hosts and assigns out-degree/fan-out accordingly as a

preventive approach against device heterogeneity.

Yoid is an ALM protocol that constructs a multicast tree using distributed end-

hosts [Fra99]. It uses hop count as a measure of distance. Guo et al. propose a

solution to deal with the problem of disruption in live video streaming for a group of

clients [GA04]. Video continuity is maintained in spite of the departing clients using a

combination of time-shifted streams and video patching. Both techniques need high

bandwidth not only from the server but also from the end-users. Thus, neither is

readily deployable for virtual collaborations.

Brosh et al. propose a new model that directly maps node load to the delay

penalty at the application hosts [BLS07]. The trade-off is either to select shortest

path trees or to restrict load on the hosts. Another interesting application layer

multicast protocol is the VRing (Virtual Ring) [SYH04]. This protocol establishes a

virtual ring among the multicast group members in a self-organizing and distributed

manner that provides less control overhead, consumes less bandwidth, and provides

lower average node degree at the cost of higher path stretch and higher link stress

than some other ALM protocols. The main problem of a ring-based topology is the

large routing delay.
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NICE is a recursive acronym that stands for Internet Cooperative Environment

[BBK02]. This scalable application layer multicast protocol uses a hierarchical clus-

tering approach to support a larger number of receivers. NICE was designed to

provide architectures for low-bandwidth soft real-time data-streaming applications

such as real-time stock quotes and updates, and Internet radio. It organizes hosts in

hierarchical layers where each layer has several clusters of hosts. The lowest layer in

the hierarchy is denoted by L0. The size of a cluster is between K to 3K−1, where K

is a constant. Each cluster has a leader to communicate with the higher layer, which

is chosen at the center of the cluster. Thus, the leader has the minimum maximum

distance to all other hosts in the cluster. NICE is different from other protocols in

the sense that its data delivery paths form a simple loosely-connected tree (loop-free

structure) while control paths are a clique (a strongly connected structure to reduce

traffic and to quickly detect changes and restore invariants).

The Minimum Spanning Tree (MST) and Shortest Path Tree (SPT) routing algo-

rithms can be modified to comply with the degree constraint of each node. The prob-

lem of finding minimum-cost degree-constraint multicast trees or degree-constraint

Steiner trees is NP-complete [Dou92]. There exist several heuristic approximation

algorithms addressing this problem [CLR93][KR00][KR03]. Some of these algorithms

(such as [KR00][KR03]) cannot provide exact guarantees on the degree of each node

in the tree and instead provide a bound on the worst-case degree. Others focus on

constructing a single tree and do not consider multiple trees over the same graph

([Dou92] [ST02]). Though there has been some research constructing multiple trees

on a shared graph [CGY00], they still only provide a bound on the worst-case (maxi-

mum) degree of any node as opposed to guarantees on the individual maximum degree

for every node which is required for a protocol supporting multi-source applications.

Designing a protocol typically involves making the design decisions based on a given

set of requirements, and most importantly respecting the constraints in all circum-

stances. For intra-zonal communication, MM-VISA considers a new ALM protocol
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that is robust even in peer dynamics. The zone master constructs a mesh through a

greedy heuristic method subject to degree constraints. As a result, the constructed

mesh covers all players (i.e. peers) with a lower stretch and provides a good plat-

form for multi-source collaborations. The routing tables are constructed through the

dominating set principles to address the ad hoc nature of the players.

2.4 Load Balancing

Traditionally, each user in an NVE is only interested in a small portion of the world

where most of the interactions take place. This interaction space is called the user’s

Area of Interest(AoI). In an MMOG, it is possible that many players can move into

a zone, degrading gaming quality and affecting players’ gaming experience. This

problem is known as the hotspot problem. Chen et al. mention that flocking (i.e.

the appearance of a hotspot or too many players moving into a zone administered

by one server) is an MMOG pattern that cannot be avoided [CWD+05]. This is

natural as some areas in a game are more interesting than others. Moreover, hotspot

development is unpredictable as it depends on game events like players chasing each

other or performing a mission. Chen et al. also mention that in most cases, static

partitioning handles it poorly [CWD+05].

According to Duong et al., dynamic load distribution methods can be categorized

into load-sharing algorithms and load-balancing algorithms [DZ03]. Load-sharing al-

gorithms prevent unbalanced load among servers. Load-balancing algorithms address

the situation by equalizing the workload of the servers in a distributed manner. The

computational overhead associated with load balancing impedes an algorithm’s effec-

tiveness, and subsequently the gaming experience. So, this fact cannot be ignored.

A preventive mechanism for migration is to impose boundaries between zones:

cities are separated by forests or wilderness, where parties cannot stay long [VBV+05].

Thus, a migrating player cannot experience others’ interactions at boundaries. But



Chapter 2. Background and Related Work 34

such restrictions cannot always be imposed, and even if applied, they cannot avoid

hotpots in ”battle” situations where everyone must be in the same zone facing the

enemy. Vleeschawer et al. introduce a microcell approach to balance load [VBV+05].

Instead of only managing a zone or a microcell, each server is responsible for a cluster

of microcells. Different algorithms are presented and tested to show how microcells

can be clustered to reflect players’ distribution within a map. In this way, an optimal

configuration can be determined to balance load. However, this clustering is only

applicable when the game is first loaded. Microcell clustering needs to be done in

real time, but it is expensive and impractical to run such algorithms dynamically

in the simulation at a full phase. Needless to say, to reach an optimal mapping

of clusters-to-servers, one should assume global knowledge of load distribution and

events in the map, which is inappropriate in distributed environments [CWD+05].

Lu et al. also present some techniques for load balancing [LPM06]. An ideal

solution ensures equal load distribution to avoid exhausting one server while keeping

spare resources at other servers. Theoretically, this is an ideal solution and does

not interrupt players’ gaming experience. But assessing load on servers, frequent

migration of players from one sever to another, and tracking areas of interest are big

problems in this situation. It would be even more difficult for hybrid systems where

players have routing responsibility.



Chapter 3

Application-Layer Multicasting

and P2P Communications

In light of the slow deployment of IP Multicast technology on the global Internet and

the tremendous popularity of peer-to-peer file-sharing applications, there has been a

flurry of research investigating the feasibility of implementing multicasting capability

at the application layer, referred to as Application Layer Multicasting (ALM), and

numerous algorithms and protocols have been proposed. This chapter provides an

understanding of ALM protocols by identifying significant characteristics, both from

application requirements and networking points of view, and by using these charac-

teristics as a basis for organizing the protocols into an integrated and well-structured

format.

3.1 Trade-off: ALM vs. IP Multicast

The concept of ALM is simply the implementation of multicasting functionality as

an application service instead of a network service. Figure 3.1a represents an ALM

configuration for the same group of senders and receivers in the IP multicasting

35
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scenario shown in Figure 3.1b. Here, the multicasting tree has been built at the

application layer. Using only the unicast capability of the network, the source sends

two packets, one to D1 and one to D2, each of which in turn sends the packet to D4 and

D3, respectively. While IP Multicast is implemented by network nodes (i.e. routers)

and avoids multiple copies of the same packet on the same link as well as possibly

constructing optimal trees, ALM is implemented by application nodes (either end

systems or proxies) and results in multiple copies of the same packet on the same link

as well as typically constructing non-optimal trees. In exchange for its inefficiency,

as compared to IP Multicast (by resulting in higher-stress links and larger-diameter

trees), ALM remedies the key shortcoming of the IP Multicast model: it promises

easier and possibly immediate deployment over the Wide Area Network. For example,

End System Multicast (ESM) 1 [CRZ02], one of the current implementations of

ALM, has been already deployed successfully on the Internet in various applications.

In ESM, when a user tunes into the system, this end-host can download data and

upload it to other end-hosts.

Figure 3.1: (a) Application layer multicast (b) IP multicasting scenario

Chu et al. illustrate, using both simulation and Internet experiments, that ALM

systems can form overlay multicast trees that introduce low performance penalties

(in terms of link stress and tree stretch) compared to IP Multicast [CRZ02]. ALM

disadvantages in comparison to IP multicasting, such as longer delays and less efficient

1http://esm.cs.cmu.edu/technology
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network usage, are balanced by its advantages, such as immediate deployability on the

Internet, easier maintenance and updating of the algorithm, and last but certainly

not least, the ability to adapt to a specific application. A common approach to

Application Layer Multicasting for the multicast participants is to establish an overlay

topology of unicast links to serve as a virtual network (overlay network) on top of

which multicast trees can be constructed. Figure 3.2 shows an example of seven peers

forming a topology (Figure 3.2a) and a multicast tree being constructed with node D

as the source (Figure 3.2b).

Figure 3.2: (a) Sample overlay topology (b) an overlay multicast tree

To better illustrate the performance penalties mentioned above, let’s take a closer

look at a scenario comparing IP Multicast and ALM. Consider Figure 3.3a, which

shows a physical topology. There are four routers (A-D), and four end-systems (a-d).

Link delays are as indicated. Assume ’a’ wishes to send data to all other end-systems.

Figure 3.3b depicts the IP Multicast tree constructed by Distance Vector Multicast

Routing Protocol (DVMRP). Routers A and C receive a single copy of the packet and

forward it along multiple interfaces. At most, one copy of a packet is sent over any

physical link. Each recipient receives data with the same delay, as though end-system

’a’ were sending it directly by unicast. On the other hand, ALM does not rely on

router support for multicast. Here, data replication and forwarding are handled by

the end-systems, as shown in Figure 3.3c. Figure 3.3d shows how the end-system

overlay network maps onto the underlying physical network. The resource usages

of IP multicast and ALM for this particular case are 37 and 39 respectively. ALM
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is therefore more ”costly” in this example, again balanced with the benefit of being

immediately deployable.

Figure 3.3: (a) A physical topology (b) IP multicast tree constructed by DVMRP (c)

ALM concept (d) End-system overlay network

Multicast routing protocols build multicast trees to deliver data and to exchange

necessary routing information. In IP multicast, each host informs its designated mul-

ticast router in its sub-network when it joins or leaves the group. Then the multicast

routers exchange group membership information over the multicast tree. All of this

control overhead about members joining, members leaving, and updating the multi-

cast tree is carried by the Internet Group Membership Protocol (IGMP) [Fen97]. As

there is no redundant path in the tree, IP multicast improves network efficiency and

scales to a large group size. Despite its bandwidth efficiency, it suffers from the de-

ployment issues mentioned earlier. Application layer multicast, although less efficient

than IP Multicast as demonstrated in the above comparison, is becoming increasingly
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Table 3.1: Conceptual comparison of IP Multicast and ALM

Issues IP multicast ALM

Multicast efficiency

in terms of delay/bandwidth
High Low - Medium

Complexity or overhead Low Medium - High

Ease of deployment Low Medium - High

OSI layer where the

multicast protocol works
Network layer Application layer

popular in the multicast community primarily due to its ease of deployment. In ALM,

multicast architecture, group membership, multicast delivery structure construction,

and data forwarding are exclusively controlled by participating end-hosts; thus, it

does not require the support of intermediate nodes such as routers. Negatively, end-

hosts in ALM have little or no knowledge about the underlying network topology,

thus resulting in performance penalty in terms of longer latency and lower efficiency

compared to IP multicast. Group membership and multicast delivery structures and

monitoring of network conditions are also performed at end-hosts, causing additional

overhead for end-hosts compared to IP multicasting. Table 3.1 is a conceptual com-

parison of typical IP multicast and ALM.

In ALM, new members learn about the topology from a common bootstrap point

called a Rendezvous Point (RP) and join the topology by exchanging control messages

with a subset of members already part of the topology. Unlike the IGMP protocol

used in IP Multicasting, the control messages in ALM are exchanged in an application-

specific manner and are completely up to the designers of the protocol. A ”good”

topology consists of a rich connected graph, such that a peer is connected to other

peers through multiple paths, and in an efficient and cost-aware manner, such that
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the distance or delay between peers is minimized while the number of connections is

bounded. Other metrics such as robustness (ability to deal with members leaving the

topology), scalability (ability to efficiently increase the size of the topologies for a very

large number of peers) and low control overhead (minimizing the exchange of control

messages) also indicate the quality of an overlay topology. Creating and maintaining

’good’ topologies thus becomes one of the core responsibilities of ALM protocols.

Once a topology is constructed and maintained, a multicast tree can be constructed

on top of the graph according to a routing strategy that would commonly strive to

minimize the cost of the multicast tree in terms of the delay (or other important

parameters, depending on the application) experienced by each peer as well as the

amount of data duplication required with each peer. Revisiting Figure 3.2, we can say

that Figure 3.2b shows an example of overlay tree over the sample topology of Figure

3.2a. In the next section, we will take a closer look at these design issues related to

ALM topology and multicast tree.

3.2 ALM Protocol Design

Since its introduction, there have been many ALM protocols with a wide variety

of approaches and characteristics. Designing a protocol typically involves making

design decisions based on a given set of requirements, constraints under certain cir-

cumstances and a given set of resources whose availability is assumed. The aim of

this section is to highlight some of the important categories and general approaches of

different protocols based on these requirements, constraints and resource assumptions

and discuss how they affect the service each protocol provides as well as its overall

characteristics.
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3.2.1 Application Domain

Perhaps the most crucial feature of an ALM protocol and one that affects most of its

resulting characteristics is its targeting application. The application domain deter-

mines the number of users that a protocol must support, the data types a protocol’s

delivery tree must accommodate and the metrics that such a tree attempts to op-

timize. We follow the same categorization of application domains driving multicast

deployment as those according to Diot et al. [DLL+00]:

1. Audio/video streaming : usually involves a single source distributing media to

a large number of receivers. Examples include live streaming of a sporting

event, or streaming of pre-recorded news. The primary metric is bandwidth

and latency to a lesser extent.

2. Audio/video conferencing : these involve small to medium-sized groups inter-

acting in a multi-party conferencing session. The difference from the previous

category is the smaller group size, higher degree of interactivity and the exis-

tence of multiple sources. Both bandwidth and latency are important metrics.

3. Generic multicast service: protocols falling into this application domain try to

create a generic multicast service based on specific metrics that can affect a

variety of applications.

4. Reliable data broadcast and file transfer : reliable transfer and distribution of

(usually large) files (e.g. distributed databases and file sharing). Bandwidth is

the only metric.

As can be seen, the different classes of applications have different sets of re-

quirements regarding reliability, latency, bandwidth, and scaling. Such requirements

in turn determine the design choices of ALM protocol regarding the group manage-

ment mechanism it deploys. The application domain therefore influences the ALM
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protocol. In a tree-based multicast system, for example, a node is either an interior

node (has children) or a leaf node (has no children). This design choice initiates two

problems. First, it is an unfair system as only the interior nodes are responsible to for-

ward the data. The system becomes unbalanced as leaf nodes increase more rapidly

than the interior nodes. Second, due to network capacity, interior nodes may not

handle high-bandwidth applications - sacrificing the quality. In an application-level

streaming system, audio/video streams are usually split into several smaller streams.

Each stream is stamped with a numerical sequence number to place it in the correct

sequence for playback. Usually FEC (forward error correction) code is used to ensure

guaranteed stream delivery. For example, Split stream [CDK+03] ensures that the

majority of nodes are interior nodes in one tree, and they will be leaf nodes in all

other trees. Hence, the system distributes forwarding workloads among all nodes and

solves the unfair-and-unbalanced problem in the conventional streaming system. In

Split stream, nodes choose to join a subset of the stripes to control their inbound

bandwidths and also opt to limit the number of children nodes they accept to control

their outbound bandwidths. Thus, it accommodates nodes with different bandwidths

and solves the second problem. Similarly, other application domains could have dif-

ferent objectives and different constraints. Typically, an ALM protocol focuses on

optimizing its tree designed for a specific application domain.

3.2.2 Deployment Level

A key factor determining the set of assumptions on whose basis an ALM protocol op-

erates is at what level the protocol is expected to be deployed: at the infrastructure

level or end-system level. Infrastructure-level, also known as proxy-based ALM pro-

tocols, requires the deployment of dedicated servers/proxies on the Internet, where

they self-organize into an overlay network and provide a transparent multicast ser-

vice to the end-user (Figure 3.4a). End-system-level ALM protocols, on the other
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hand, assume only a unicast service from the infrastructure and expect end-system

hosts to participate in providing multicasting functionality by taking on some of the

forwarding responsibility (Figure 3.4b). Figure 3.4 highlights the difference between

the two approaches to ALM.

Figure 3.4: (a) Proxy-based deployment of ALM (b) End-system ALM

The choice between developing an infrastructure level or an end-system-level

ALM protocol is perhaps driven as much by business and marketing issues as by

purely technological ones. End systems sharing the forwarding load of a multicast

session use the existing Internet infrastructure available to them and may not be

expected to pay more for participating in the multicast session (as illustrated by the

free nature of peer-to-peer file-transfer applications). An infrastructure of dedicated

proxies deployed over the Internet that offer multicasting services however are more

likely to expect a service charge. There are, however, technological consequences for

a choice between a proxy-based and an end-system-level approach to ALM.

Proxy-based ALM protocols can take advantage of existing IP Multicast ’islands’

by including a representative of an island as an overlay node (and therefore increase

their efficiency), assume greater bandwidth availability to the proxy nodes (compared

to the bandwidth available to end-systems), assume the longer life cycle of overlay

nodes (compared to the transient nature of end systems), relieve end-systems from

any forwarding responsibility, and therefore reduce application complexity since mul-
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ticast is transparently made available to end-systems. The major disadvantage of this

approach is the need for the deployment of dedicated proxies over the inter-network,

thus incurring the cost associated with acquiring and deploying them. Proxy-based

ALM may also be less adaptable to and less optimized for applications since it would

typically provide a generic multicast service rather than a service specific to a partic-

ular class of applications.

End-system ALM protocols have more flexibility and adaptability to specific ap-

plication domains and immediate deployment over the Internet, but they may not

scale well (either to a large number of users or to a large number of simultaneous ses-

sions), must deal with the limited bandwidth of end-systems and require end-systems

to take some of the forwarding responsibilities (and therefore increase application

software complexity).

3.2.3 Group Management

Once application domain and deployment level has been decided, a protocol designer

must make some key decisions regarding how to manage a group of nodes in a mul-

ticast session. This includes:

1. Basic group management: how users find out about multicast sessions, how

they join a session (whether through a rendezvous point, or if p2p substrate is

required and some form of flooding is used to find the appropriate source), how

they leave (depending on how permanent and cooperative the users are assumed

to be), and whether the users still contribute to existing multicast session even

if they are not a part of them. Are they assumed to be very transient and

anonymous or more permanent and known users?

2. Whether the management of the group is done in a centralized or distributed

way and how this affects the design and service provided.
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3. Whether to take a mesh-first approach or a tree-first approach. What are the

advantages and disadvantages of each? If a mesh-first approach is chosen, is

a peer-to-peer substrate is assumed to exist, and if so, what type of substrate

with what requirements and services does it provide?

4. Whether the protocol will take advantage of existing IP Multicast islands in

order to reduce part of the multicasting load. If so, how will the protocol

interface to these islands?

5. Depending on the assumed lifetime of the multicast sessions, whether it is nec-

essary to refine the multicast tree to improve performance as well as deal with

fluctuations in the network resources available and deal with congestion. If so,

the designer must also determine how aggressive these refinement methodologies

can be and their effects on the stability of the system and the service provided

to users.

The basic group management services that an ALM protocol can provide consist of

a mechanism for the new nodes to discover a multicast session (typically through

rendezvous point(s)), a distributed or centralized administration, and the mesh-first

or the tree-first approach for constructing source-specific or shared trees based on

some metrics. Such characteristics of group management mechanisms are primarily

driven by the application domain. For instance, single-source video streaming with a

large number of receivers usually involves a distributed group management and the

construction of a source-specific tree based on bandwidth and delay metrics, whereas

medium-sized conferencing applications may involve the mesh-first construction of a

shared tree based on bandwidth and delay and can afford a centralized approach to

group management. These characteristics are described next.
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Figure 3.5: (a) A mesh: a network topology with many redundant interconnections

between network nodes (b) Initial tree (c) Lopsided Tree

Mesh-First versus Tree-First

There are two basic approaches to configuring the data distribution pathways: mesh-

first and tree-first. In the mesh-first approach, members keep a connected mesh

topology (Figure 3.5a) among themselves. Usually the source is chosen as a root and

a routing algorithm is run over the mesh relative to the root to build the tree. This

mesh topology is explicitly created at the beginning; hence, it is known. On the other

hand, the resulting tree topology is unknown. So the quality of the tree depends

on the quality of the mesh chosen. By contrast, in a tree-first approach, the tree is

built directly without any mesh. The members explicitly select their parent from the

known members in the tree. This may require running an algorithm to detect and

avoid loops, and to ensure that the structure is indeed a tree. There is no intervening

mesh topology here. The reason for using the tree-first approach over the mesh-first

approach is that the tree-first approach gives direct control of the tree. This control

is valuable for different aspects such as maintaining strict control over the fan-out,

selecting the best parent neighbor that has enough resources, or responding to failed

members while minimizing impact on the tree. Another advantage of the tree-first
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approach is independent actions from each member. It makes the protocol simple,

as it has a lower communication overhead. But when a member changes a parent, it

drags all of its descendants with it (Figure 3.5c). This is desirable in the sense that

the descendants do not need to change their neighbors; in fact, they are unaware of

the incident. However, this can also result in lopsided trees, which are ”uneven” and

less efficient than correctly formed trees. The advantage of the mesh-first approach

becomes apparent here as it gives more freedom to refine the tree. It is possible to

manipulate the tree topology to a significant extent by selecting mesh neighbors and

changing the metrics. A mesh-first approach is therefore more robust and responsive

to tree partitions and is more suitable for multi-source applications, at the cost of

higher control overhead.

Source-Specific Tree versus Shared Tree

In multicasting, two conflicting design goals are (a) minimizing the length of the path

(usually in terms of hops or end-to-end delay) to a specific individual destination

and (b) minimizing the total number of hops or the cumulative end-to-end delay to

forward the packet to all the destinations. To the best of our knowledge, there is as

yet no good heuristic to balance these two conflicting goals. The choice between a

source-specific tree (case a) and shared tree (case b) usually depends on whether or

not the multiple sources use the same overlay for data distribution. Shared trees are

preferred when there is a multiparty communication; i.e. multiple sources, such as

online games. It is better than a source-specific tree in terms of maintenance cost. A

source-specific tree, on the other hand, allows for optimization of the tree for a given

source, but cannot efficiently support multiple sources on that tree.
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Distributed versus Centralized

Although it might seem intuitive that a distributed routing approach would better

suit large-scale applications to efficiently manage group communications, there are

still incentives for a centralized approach [PWCS02]. In a distributed approach, the

workload of maintaining the tree is evenly distributed among the root nodes. But the

synchronous communication among the members for real-time applications like media

streaming is hard to ensure due to the inherent decision-making delay in distributed

techniques. The centralized management of multicast groups is a fair choice for

small-scale applications. It is simple and easy to deploy. Naturally, there is always

the risk of a single point of failure in a centralized system. Designers must balance

simplicity and practicality against robustness when choosing one of these approaches

in designing an ALM protocol.

IP Multicast Compatibility

It would be beneficial if an ALM protocol could exploit IP multicasting where it is

available. This is advantageous for applications where the existing infrastructure of IP

Multicasting (typically in a large organization or company) can be further enhanced

to support Internet users. An example is the Hybrid Distributed Simulation Proto-

col (HDSP), which allows military simulations, traditionally performed on expensive

networking infrastructure, to be extended to home users and/or between multiple

multicast sites [DSG+06]. Another example is Island Multicast (IM), which inte-

grates IP Multicast with ALM [LLS+05]. It has a two-level architecture, with the top

level concerned with packet delivery between ”islands” using a unicast mechanism

and the bottom level concerned with packet delivery among the members in an island

using IP multicast.
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Refinement

Depending upon the order of joining requests for the same set of nodes, constructed

trees could be different and have different perception qualities. The quality of an

ALM path between any pair of members is comparable to the quality of the unicast

path between that pair of members. This implies a requirement for a minimum-

diameter tree. But, as the protocol constructs the tree in real time and has no prior

knowledge of node arrivals, it is hard to construct this optimum tree. Refinement is

a solution to this problem. It moves the overlay structure from the local optimum to

the global optimum and improves the system’s performance. But excessive refinement

makes the structure unstable due to the ad hoc nature of node behavior. Moreover,

the effectiveness of the refinement for real-time applications is questionable due to

interrupted data distributions among the members. Thus, the designer must carefully

choose the depth and frequency of tree refinement for a given ALM.

3.2.4 Routing Mechanisms

Once the overall group management has been designed and the various choices are

fixed, the most important part of the design is how the tree (or a different structure) is

formed to provide the multicast service. This greatly depends on the previous choices

such as application domain (mainly determining the quality metric and constraints),

deployment level (mainly determining the resources available to each node in terms of

permanency and bandwidth) and group management. Design of the routing mecha-

nism typically involves a (heuristic) solution to a graph theory problem. That is, given

a certain graph (i.e. a certain existing structure of nodes) and certain constraints on

each node (e.g. inbound and outbound bandwidth constraints), the problem involves

the creation of a structure connecting the group of users (or in case of a tree, con-

necting a source to all its recipients) that satisfies a given requirement-e.g., minimum

overlay delay or minimum worst-case delay. The solution to the problem largely com-
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prises the routing mechanisms; the routing mechanisms must then be augmented with

stipulations about nodes leaving the multicast structure, as well as possibly periodic

or event-based refinement strategies for the improvement of the structure. In this

section, we include a survey of common approaches to the routing mechanism.

Figure 3.6: (a) A graph with link costs (b) Shortest path tree (b) Minimum spanning

tree

Group 1 - Shortest Path

The aim of this group is to construct a degree-constraint minimum-diameter span-

ning tree. Here, it can use round-trip time (RTT) to determine the shortest path

tree from the source to the end-hosts and can minimize delay for applications while

considering the degree constraint and QoS. A Shortest Path Tree (SPT) constructs a

minimum-cost path from a source node to all its receivers (see chapter 25 of [CLR93]

for Dijkstra’s algorithm for building SPTs). The shortest path tree or its variants is

commonly used in ALM protocols (such as Yoid [Fra99], SpreadIt [HDGM01], TAG

[KF02], RITA [XTBL03]) in order to construct a source-specific multicast tree or,

in graph theoretic terms, a rooted tree. Figure 3.6b shows the SPT rooted at the

filled-in node. It is important to note that both MST and SPT can be modified to

respect the degree constraints of each node [BV95].
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Group 2 - Minimum Spanning Tree

This group does not worry about degree constraint of nodes and just tries to construct

a ’low-cost’ tree or, in other words, a Minimum Spanning Tree. Given a graph with a

cost associated with each edge (usually delay), a Minimum Spanning Tree (MST) is a

tree with minimum total cost spanning all the members (see Chapter 24 of [CLR93]

for Kruskal and Prim’s algorithms for building MSTs). Given the graph with edge

costs shown in Figure 3.6a, an MST is constructed to have the minimum total cost as

shown in Figure 3.6c (total cost is 11 in this example). An MST is commonly used by

a centralized ALM protocol such as ALMI [PSVW01] and HBM [RES01] in order to

construct a low-cost shared tree that is not rooted at any particular source (a shared

tree implies that all nodes use the same tree to distribute their data).

Group 3 - Clustering Structure

This group constructs clusters of nodes that can be used to construct trees. In order

to better organize the overlay tree and reduce control overhead, some ALM protocols

such as ZIGZAG [THD04] and NICE [BBK02] construct a hierarchical cluster of

nodes with each cluster having a ”head” representing it in the higher layer (Figure

3-7). The advantage of a hierarchical clustering approach to a multicast tree is the

reduction in control overhead (nodes keep states only about a subset of other nodes)

and faster joining and management of the tree at the cost of a sub-optimal tree and

a lack of hard guarantees on the degree limitation of each node.

Group 4 - Peer-to-Peer Structure

In P2P structure, the routing is simply done through reverse-path forwarding or

forward-path forwarding, or in some cases a combination of both. We can say that

many ALM protocols (such as RMX [CMB00]; Gossamer [Cha00]; Bayeux [ZZKK01];

Borg [ZH03]; Scribe [CDmKR02]) operate based on an existing peer-to-peer substrate



Chapter 3. Application-Layer Multicasting and P2P Communications 52

Figure 3.7: A hierarchical cluster of nodes with cluster size 4

that serves as a mesh on top of which an overlay multicast tree can be constructed,

using either a reverse-path forwarding scheme (Gossamer [Cha00]; RMX [CMB00];

Scribe [CDmKR02]), a forward-path forwarding scheme (Bayeux [ZZKK01]) or both

(Borg [ZH03]). The advantages of these approaches are low control overhead and

distributed management of the multicast tree, but they cannot restrict the degree of

each node and produce sub-optimal trees.

It should be noted that peer-to-peer technology is a research area of its own. In

general, a P2P system is a system where peers communicate directly with one another.

As such, there is not necessarily a multicasting component. For example, Skype 2

is a well-known P2P Internet telephony system that does not use multicasting. The

P2P aspects covered here applies to ALM systems that have a P2P component, such

as TVUPlayer 3 , Sopcast 4 , and PPLive 5 , to name a few.

3.2.5 Degree-Constraint Routing

The feasibility of supporting multicast data over an ALM depends on whether or

not there is available bandwidth (out degree) at the end-hosts. Usually, end-hosts

2http://en.wikipedia.org/wiki/Skype
3http://en.wikipedia.org/wiki/TVUPlayer
4http://www.sopcast.org/
5http://en.wikipedia.org/wiki/PPLive
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have asymmetric downloading and uploading capabilities. Moreover, the heterogene-

ity of outgoing bandwidth of end-hosts forces protocols to consider realistic degree

assignment. It may happen that a user has zero out degree, i.e. that this user is

a pure receiver. In the real world, around 50% of hosts have zero out degree to

support a streaming bit rate [SGMZ04]. From a practical perspective, asymmetric

bandwidth cannot be ignored and should be taken into consideration when assigning

out degrees to nodes during implementation. This reflects the maximum bandwidth

a node can provide. For example, if a node has an out degree of four, this means

it can support at most four children. There are two types of degree constraints. In

some cases, there is only a bound for the maximum number of edges that a node

can have; this is usually flexible and can be changed according to different applica-

tions. In other cases, there is a fixed bound that is restricted and predetermined.

Minimum Spanning Tree (MST) and Shortest Path Tree (SPT) routing algorithms

can be modified to respect the degree constraints of each node. The problem of find-

ing minimum-cost degree-constrained multicast trees or degree-constrained Steiner

trees is NP-complete [Dou92]. There exist several heuristic approximation algorithms

addressing this problem [CLR93][KR00][KR03][MLRS02][RMR+01]. Some of these

algorithms (such as [KR00][KR03]) do not provide exact guarantees on the degree of

each node in the tree and instead provide a bound on the worst-case degree. Others

focus on constructing a single tree and do not consider multiple trees over the same

graph ( [CLR93][ST02][RMR+01]). Though there has been some research into con-

structing multiple trees on a shared graph [CGY00], they still only provide a bound

on the worst case (maximum) degree of any node as opposed to guarantees on the

individual maximum degree for every node as is required for a protocol supporting

multi-source collaboration applications.
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3.3 Challenges

An open issue for all ALM protocols is that of tree refinement: the reorganization or

shuffling of the nodes in the tree. This is usually conducted to enhance the system

performance. In ALM, the quality of the path between any pair of members is com-

parable to the quality of the unicast path between that pair of members. Typically, a

lower-diameter tree performs better than a higher-diameter tree. Hence, refinement

is a way to improve the quality of an ALM structure once it is already constructed.

The key point is that, if a node with zero out-degree joins a multicast session, the

tree cannot be extended beyond that point which ultimately increases the height of

the tree. To handle such situations, refinement acts as a solution. But it is an ex-

pensive operation and thus should be applied only under special conditions. This is

because protocols require too much information to carry out the operation. Research

should therefore be conducted to find efficient mechanisms to determine whether or

not refinement is applicable to a particular node. If so, how much it improves the

performance of the system-say, in terms of average latency or other parameters. The

protocol should also be aware of the transient period of the refinement when it ac-

tually takes place-whether it affects its dependent nodes, and if so, to what degree

it affects them. Furthermore, the protocol must consider its side effects, including

churn, which may lead to an inconsistent system. As an example, OMNI uses local

transformations (child promote, parent-child swap, iso-level-2 transfer, aniso+level-

1-2 swap) and probabilistic transformations (simulated annealing) to refine its struc-

ture [BKK+06]. As it is an expensive operation and requires extra care, frequent

refinement may adversely affect the system performance. Most ALM protocols apply

refinement operations strategically and rarely.

Another open issue is balancing the two conflicting design goals mentioned earlier:

(a) minimizing the length of the paths (usually in terms of hops) to the individual

destinations and (b) minimizing the total number of hops required to forward a packet
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to all its destinations. The minimum spanning tree (MST) and the shortest path tree

(SPT) are two well-known data distribution methods in ALM. The MST optimizes

the resource usage of the multicast tree but the pair-wise paths may not be optimal

and can cause large end-to-end delay. Hence, it is suitable for non-interactive data

dissemination when end-to-end delays are not an issue. In SPT, the distribution

tree will consist of separate unicast connections from the sender to each receiver.

It is optimal from the source to the receiver in terms of end-to-end delay, but it

causes high consumption of network resources. Moreover, it is not practical when

the sender’s bandwidth is not sufficient to serve all receivers simultaneously. Scalable

ALM systems usually require clustering of the nodes. This hierarchical clustering

has low control overhead as nodes keep states only about a subset of other nodes.

Furthermore, faster joining and group management is possible at the cost of a sub-

optimal tree.

In this chapter, we looked at the roots and rationale of application layer multi-

casting. Compared to IP multicasting, ALM has certain disadvantages such as longer

delays. However, due to its overwhelming advantages for certain applications, such as

immediate deployability and application-specific adaptation, it can be a practical so-

lution to many of the existing problems in multi-user communications. The fact that

an ALM protocol can be developed and deployed on the Internet without the need

to make any changes to the existing network infrastructure and the ability to evolve

and apply modifications to the protocol quickly and easily at the application layer

have helped give the ALM approach a quicker start compared to other multi-user

communications solutions. These advantages have caused the serious consideration

and development of ALM protocols, which in turn would lead to the creation of new

applications and communications paradigms on the Internet.

The popularity of application layer multicasting continues to grow in differ-

ent fields as an alternative to native IP Multicasting. These include newsgroups,

videoconferencing, internet games, internet jukeboxes, interactive chat-lines, distance



Chapter 3. Application-Layer Multicasting and P2P Communications 56

learning, and video on demand, to name a few. Although ALM has been consid-

ered an active research topic over the last decade, still there are many open issues

for research into creating efficient and robust ALM protocols in terms of application

requirements and better quality of service.



Chapter 4

The Hybrid MMOG Architecture

In this chapter, a new hybrid (P2P combined with Client-Server) architecture de-

signed for zonal MMOGs will be presented. As will be shown, this solution will

address some of the problems inherent in the related work presented in chapter 2,

such as scalability and discontinued zone views. However, since our work is partially

client-server based, the single point of failure issue remains unresolved. While exist-

ing fault tolerance approaches such as back-up servers can be used to overcome this

problem, their discussion and details are beyond the scope of this thesis.

We will also present a number of load balancing schemes for zonal MMOGs in

the next chapter, among which Two-Level Partitioning (section 5.1) and Multilevel

Multiphase Load Balancing (section 5.2) can be applied to the architecture proposed

here, with the latter being more efficient as will be shown. Let us start by an overview

of the proposed architecture and assumptions that are made.

4.1 Architectural Overview and Assumptions

To accommodate a large number of players and to ensure proper game administration

(e.g. intra-zone and inter-zone communications, load management) the proposed

57
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Figure 4.1: Number of zones covered by a visibility circle in hexagonal, square, and

triangular zones (respectively from left to right).

architecture divides the virtual world into several manageable logical zones where each

zone covers the players in a given vicinity. In this thesis, the terms ”zone”, ”region”,

and sub-space are interchangeable. Each zone will have one ”master”, essentially a

server, responsible for administrative tasks that will be described shortly. Zones in

our architecture are hexagonal. Other options are square tiling or triangular tiling.

We choose the hexagonal tiling because of its geometric properties that have also

made it appropriate for use in wireless environments, cell phone cites, or any other

partitioned environment that must deal with mobility of entities. What is unique

about hexagons is that, when considering a player with a certain radius of visibility,

the maximum number of different zones covered at a given time is 3, as opposed to

4 for squares and 6 for triangles, as shown in Figure 4.1. This means less overhead

in communications between zone masters when a player is near multiple zones and

hence needs to see what’s happening inside its neighboring zones, as will be discussed

in 4.6

For the game world itself, we assume a virtual ’planar’ world in which players

move over the surface but are not restricted to stick to the surface. The geometry

of the world does not allow teleportation; i.e., there is no special gate that connects

different isolated parts of the world. In addition, this framework makes the following

assumptions:
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Figure 4.2: The top level hybrid architecture

• each player (here the terms player, peer, entity, user, object, avatar are used

interchangeably) has a unique identity, such as its IP address;

• each player is categorized into a class, also called an object type, based on

certain characteristics such as velocity (more about this in section 4.2);

• each player has an interest vector to define its inclination (or interest) in different

other object classes;

• each player has a maximum outgoing bandwidth for a game session, used to

determine its out degree (number of peers it can support as a parent), which is

also known as the fan out;

• each player knows the identity of at least one master at the startup;

• Masters know of each other (configured by a human operator) and can exchange

messages with one-another.

The general hexagonal zone layout with a master in each zone is shown in Figure

4.2. The masters comprise the top-level hierarchy, are connected to each other, and
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can exchange information when needed. A master performs several administrative

tasks coordinating players in the virtual world, and provides a consistent game world.

The key functionalities of the masters are outlined below:

• Player registration, which takes note of which players are currently in this zone;

• Zone organization; i.e. defining zone size and buffer region at the beginning

of the game and sharing of game states among the masters of the neighboring

zones;

• Construction of an Application Layer Multicast (ALM) tree among players of

the same group in a given zone;

• Inter-group communication, i.e., message passing between P2P groups within

a given zone, which is needed when players in different groups are in close

proximity to each other;

• Inter-zone communications; i.e., enabling a player to communicate beyond its

own zone, which is needed when players in different zones are in close proximity

of each other;

• Player hand-off from one zone to another when the player crosses zone bound-

aries; and

• Load balancing, as will be shown in chapter 5.

A set of master nodes regulates the operation of the MMOG, while each individ-

ual master also provides overlay services with the active participation of the players

in its zone. In that sense, the system is hybrid as it combines the benefits of both

centralized and distributed systems. To overcome the functionality limitations of the

IP multicast, application layer multicasting (ALM) has been chosen for intra-zonal

communication. The advantages of such an approach were presented and explored
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extensively in Chapter 3. In this model, most of the visibility issues and game func-

tionalities are solved by the local ALM structure and through the master, who is also

a member of the ALM tree. In addition, the master can learn the state of other zones

through the exchange of explicit messages with other masters when needed.

After this overview, we now proceed to the detailed description of the system.

The rest of this chapter will cover:

4.2 Clustering of Players: how, within the same zone, players of different type are

grouped together in order to stabilize the ALM trees inside that zone;

4.3 Intra-zone Communications: how the ALM tree is formed between players of

the same group, and how communications is performed;

4.4 Message Overhead Reduction: how to reduce bandwidth and processing by

eliminating message delivery between players who, even though they are in the same

group, they are not within each other’s visibility radius;

4.5 Zone Crossing: how to stabilize connection/disconnection rate between a player

and multiple masters when the player crosses a given zone boundary back and forth

repeatedly, which can happen during a battle in repeated shoot-and-run, return and

shoot-and-run, ... fights;

4.6 Visibility Issues: how to allow a player to ”see” inside another zone when the

player’s visibility crosses into that zone; and

4.7 Seamless Player Handoff: how two masters should hand off a player from

one master to the other without the player noticing any discontinuity or losing any

updates.

4.2 Clustering of Players

To the best of our knowledge, current MMOG systems do not differentiate between

soldiers walking slowly and tanks driving fast when they construct their routing table.

This assumption of likeness is inappropriate and can lead to unstable overlays. For
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example, assume the high-velocity players are positioned at the top of the ALM tree

structure. These fast-moving players can leave the zone soon, breaking the links with

their children and causing reorganization of the players in the ALM structure. But if

there are clusters in each zone, a leaving player only affects the dependent nodes of

that cluster. This simply isolates different types of players in the structure and shifts

the zone-crossing penalties from the whole zone to a cluster. This is the reason that

we distribute players into multiple clusters based on their physical characteristics like

velocity or movement pattern. As the velocity of an avatar is not constant, we consider

average velocity to determine that player’s class type. It follows that clustering of

players on their activities or types can significantly improve the performance of zonal

MMOGs [ASO07]. The reason is that clustering forms a number of P2P overlays and

restricts, for example, slowly moving players to be children of fast moving payers and

therefore from being affected by the departure of the latter from the P2P data delivery

path. This means a leaving player can only break routing paths within its own cluster

keeping other clusters untouched. In other words, the P2P routing problem faced due

to a player disappearing is limited to a cluster. Clustering will therefore help stabilize

the overlay networks used in zonal MMOGs.

Our model assumes the general characteristics or attributes of the players are

invariant; and based on this assumption it classifies players and forms clusters. But

during runtime, a player’s attribute might change, either temporarily or permanently.

For example, a slow-moving soldier can jump into a jeep and drive away at a fast

speed. In this case, the master can move such players from one cluster to another

and refine the overlay network accordingly for better stability of the system. Details

for this are however beyond the scope of the presented model.

Even though players are clustered, state information about a player must be

relayed to other clusters. For example, state messages from cluster C4 in Zone 1

must be sent to clusters C1, C2, and C3 in the same Zone 1 (Figure 4.3) but not

necessarily to the other zones like Zone 2. We used the term ”‘not necessarily”
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Figure 4.3: The clustered ALM, message propagation and isolation scenery

because there can be cases when this is necessary. For example, players staying in

different zones can be in each others’ close proximity and ”visually” can see each

other. This requires solving visibility problems to give a continuous view. But such

”imported” messages from a foreign zone must be filtered considering their irrelevance

to local zone members. For example, a player from cluster C2 in Zone 2 imports a

message from a player from cluster C4 in Zone 1 with the help of the master (Figure

4.3), because the two players are very close to each other. This imported message is

not flooded further in Zone 2.

4.3 Intra-Zone Communication

Intra-zone communication means communication within a zone or inside a group. The

players who are closer to each other in the virtual world interact more frequently and
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are involved in many common activities. In order to retain a consistent game space,

there is a need to exchange messages among them, and intra-zone communication

becomes necessary. For local communication inside a zone, zone master’s and players’

active participations are integrated to overcome the resource limitations of the master.

This is a kind of overlay-based state-sharing mechanism. In our system, a graph

theoretic framework is considered to create an ALM tree for players. We incorporate

the features of dominating set (explained in 4.3.3), which is a well-known routing

approach in wireless ad hoc networks. The reason for using dominating set is its

cooperative communication structure in ad hoc environments and distributed fault

tolerance property, which fits quite well with an MMOG scenario. As it cannot be

directly applied to our system, we adapt it as will be shown in section 4.3.3. There are

two steps to forming the ALM tree: constructing a mesh and defining a routing table.

A greedy heuristic algorithm is run to build a mesh with the objective of minimum

cost-connected graph subject to degree constraints. This ensures players are not out

of resources while the game is on. The goal is to discover routing paths over the mesh

to reduce high network latency and to reduce redundant network resource usage over

other existing scalable approaches.

4.3.1 General Policy and Node Registering

In this framework, each player requires registration through a master. The player

provides the following information to the master:

• class type [i.e. slow, normal, fast or very fast]

• interest vector to represent its inclination (or interest) to other types of players

• its available outgoing bandwidth to determine its out-degree

The ’type’ is used to differentiate players in a zone. The master accepts a player’s

join request and places the player in the appropriate cluster. As described in section
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Figure 4.4: Controlling the diameter of the tree from master’s perspective

4.2, the clustering technique never allows a slowly moving player to suffer from the

activities of other outgoing normal, fast or very fast-moving players as there is no

differentiation in the ALM path path between any two players of same type. We use

average velocity to classify players into types.

In our architecture, each cluster will be served by a number of channels, where

each channel has its own separate ALM tree. The reason not to use one ALM tree (and

hence only one channel) for the whole cluster is that, if there are too many players in

one cluster, putting all of them on one ALM tree will make the tree’s diameter large

and might exceed the required end-to-end delay thresholds. By separating a cluster

into a number of channels, each channel’s ALM tree will meet delay thresholds and

give a higher quality of service. It is technically important to define how many

channels can be dedicated to a cluster type. MM-VISA does not fix the number of

channels early - it determines this as players join as will be discussed next. Let us

assume, we have T types of objects/classes; thus the master should have at least T×b

bandwidth to make the system operational where b (application-specific parameter)

stands for the bandwidth required by the master to serve a single channel. Thus, if

we define the master’s channel capacity (C) as the number of clusters it can support

simultaneously, then, we must have C ≥ T . Let outGoingBW be the master’s total

available bandwidth. So, C = boutGoingBW/bc. For a specific game, b is fixed
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(depends on the game), OutGoingBW depends on the server/network resources used,

and T can be configured. Hence, C is known when the game starts. When a new join

request comes to the master, the master processes the request and accommodates the

node by adding it to the ALM tree of the appropriate cluster. To reduce average

end-to-end delay, we restrict the height of the ALM tree. Whenever a channel can

no longer support more players (ALM path exceeds its maximum limit), the master

opens another channel as long as it has enough resources. Figure 4.4 presents such a

tree, where players under a particular channel have the same attributes.

4.3.2 Mesh Construction

The master of each zone constructs a mesh, used later to create the ALM tree, based

on geographical position. Instead of using end-to-end delay or hop count, geographical

position is used as an alternative to perceiving physical distance on the fly. The key

benefit of geographic location comes from its quicker approximation as we do not need

to exchange explicit overhead messages among players to calculate distance or delay.

The master determines the player’s fan-out, i.e. out-degree, using the following simple

division where bc stands for the bandwidth needed to serve each client: out−degree =

buploadBW/bcc, where uploadBW is the client’s upload bandwidth. The master is a

member of all meshes and therefore all meshes are connected. The mesh construction

procedure is explained below.

If we allow each node to choose the closest nodes as its neighbors, the resulting

graphs may be disconnected. Consider Figure 4.5, where Nodes a, b, c and d each

have a degree of two. Nodes a, b and c are close to each other and use their degrees.

But Node d cannot make an edge to any of them, as none of a, b, or c have any

capacity to serve d, so the resultant graph is disconnected. This could have been

avoided if the algorithm was not random, and instead of c connecting to a it would

first connect c to d and then d would connect to a. To remove the randomness and
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Figure 4.5: Random choice leads to disconnected graph

avoid a disconnected graph, we propose a degree-constraint minimum-cost connected

mesh construction algorithm. The objective of this algorithm is to determine the

edges to form a connected mesh subject to the degree constraints while optimizing

(minimizing) the overall distance. This algorithm works in 2 steps. In the first step,

considering a completely connected graph, the master sorts the edges in the ascending

order.

It greedily selects N − 1 edges (N being the number of nodes) to span all the

members. This policy ensures a connected graph - in fact a tree - while satisfying the

degree constraints. The next step is to include as many edges as possible to form a

dense mesh while obeying degree constraints and greedily optimizing overall distance.

Let us take a look at the details of this algorithm next.

4.3.3 Data Delivery Path Based on Dominating Set

A routing table is a set of rules or database usually kept in a table format that

contains the necessary information to forward a packet along the path towards its

destination. This section describes how to construct such routing tables to share

game states among the players in the overlay network. In our model, these routing

rules will tell which player will forward packets to whom according to the dominating
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Algorithm 1 Constructing meshes for a zone: a heuristic approach

Require: G = (V,E) for each cluster

Ensure: meshes

1: for each cluster do

2: e := minHeap(E) {Let e := edge(ni, nj)}

3: add edge e to G′

4: vertexSet := {ni, nj}

5: // N : total no of nodes in a cluster

6: while |vertexSet| 6= N do

7: e := minHeap(E)

8: if (ni ∈ vertexSet⊕ nj ∈ vertexSet) then

9: if (nj /∈ vertexSet and ni.freeDegree > 0) then

10: vertexSet := vertexSet ∪ {nj}

11: add edge e to G′

12: else if (ni /∈ vertexSet and nj.freeDegree > 0) then

13: vertexSet := vertexSet ∪ {ni}

14: add edge e to G′

15: end if

16: end if

17: update data structures

18: end while

19: greedily add as many edges as possible to G subject to degree constraints

20: end for
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set principles. In graph theory, a dominating set for a graph G = (V,E) is a subset

V ′ of V such that every vertex not in V ′ is joined to at least one member of V ′ by

some edge. Minimum dominating set refers to a dominating set where the solution

is optimal, meaning the fewest number of nodes have formed a backbone covering

the entire graph. However, to find a minimum dominating set is indeed NP-hard 1

[WL99], but a minimal set can be found by using efficient approximation algorithms.

In routing, it is effective for a dominating set to be minimal, as a minimal number of

nodes cover every nodes of the graph and the backbone will be less complex to build

and maintain.

A graph is a set of nodes or vertices connected by links called lines or edges. In an

undirected graph, a line from point A to point B is considered to be the same as a line

from point B to point A. For our overlay network, we construct an undirected graph

G = (V,E) using the heuristic approach shown in algorithm 1. The objective is to

determine a subset of nodes that would connect all other nodes in the overlay. These

nodes will be the overlay ”routers” which we will call gateway nodes, and which will

ultimately form a backbone disseminating packets across the overlay. This subset

can be determined using the dominating set rules which will be explained in this

subsection.

Let us define two terms. In a graph, the open neighbor set of a vertex v, represents

a set of all the direct neighbors of v whereas the close neighbor set is the union of

the open neighbor set and the vertex v. Mathematically, open neighbor set and

close neighbor set of a vertex v ∈ V are represented by N(v) = {u|(v, u) ∈ E}

and N [v] = N(v) ∪ {v} respectively, where vertex u and vertex v are two ends of

an edge (v, u) ∈ E. The following marking schemes are carried out to determine

the backbone nodes that connect the other nodes together (i.e. gateway nodes).

Nodes are labeled either as T or F, standing for gateway and non-gateway nodes,

1The class of decision problems that are fundamentally harder than those that can be solved by
a nondeterministic Turing machine in polynomial time.
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respectively. A function called marker m(v) assigns T or F to node v depending on

whether v is gateway or not. Initially, the algorithm assigns F to each v ∈ V . While

the dominating set algorithm runs the marker m(v) is changed to T, if there are two

unconnected neighbors of v.

A subgraph G′ of a graph G is said to be induced when, for any pair of vertices

u and v of G′, uv is an edge of G′ if and only if uv is an edge of G.The subgraph G′

is induced by V ′ where V ′ = {v|v ∈ V,m(v) = T} and, according to the definition of

dominating set given earlier, the vertex set V ′ becomes the dominating set. However,

the dominating set constructed in this way is not minimal. Subset relation techniques

like set covering can be used to reduce its size to make it more minimal. Hence, the

next two rules are applied assuming that each vertex v has a unique identifier named

key(v), which for example can be a hash of its IP address:

Rule 1: Consider two vertices u and v in G′. If N [v] ⊆ N [u] in G and key(v) <

key(u), mark it as non-gateway node if node v is a gateway node, i.e. G′ becomes

G′ − {v}.

Rule 2: Assume u and w are two marked neighbors of a marked vertex v of G′. If

N(v) ⊆ N(u) ∪ N(w) in G and key(v) = min {key(u), key(v), key(w)}, mark it as

non-gateway node if node v is a gateway node, i.e. G′ becomes G′ − {v}.

It can be shown that: (a) If G is connected but not completely connected, then

V ′ forms a dominating set of G; (b) the induced graph G′ is connected; and (c)

the shortest path between any two nodes does not include any non-gateway node

[WL99]. Figure 4.6 shows a connected dominating set construction process. Once

the connected dominating set is constructed, it defines the core nodes responsible

for data forwarding. The master sends the list N [v] and their labels (gateway/non-

gateway) to each node v ∈ V .

We use a mesh-first approach to construct the routing substrate, because this

is more fault tolerable than a tree-first approach, as discussed in chapter 3. In the

mesh-first approach, the members maintain a connected mesh topology. Typically,
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Figure 4.6: Connected dominating set formation: (a) Initially all nodes are non-

gateway nodes, (b) A node becomes gateway if it has two unconnected neighbors, (c)

Rule-1, (d) Rule-2

the source is chosen as the root and a routing algorithm is run over the mesh relative to

the root to build the tree. This mesh topology is explicitly created at the beginning;

hence, it is known. On the other hand, as explained in chapter 3 for mesh-based

approaches, the resultant tree structure is unknown at this point, but the quality of

the tree depends on the quality of the mesh chosen.

After having the mesh, the next task is to determine data delivery paths for the

nodes. To make the system practical, each node exchanges the neighbor set only

with its own neighbors. This requires a route activation message RouteActMsg) for

loop-free routing. Each source sends a periodic RouteActMsg. When a node receives
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Figure 4.7: The ignore set buildup

more than one activation message through different paths sent by the same source, it

keeps one and ignores the others, denoted as ignore set I(v). In Figure 4-6, Node x

receives three packets from the same source node. According to Figure 4.7, Node x

accepts only one and declines other two. Here, the ignore set is I(x) = {a, c}. The

routing policy is simple: if a non-gateway node receives a packet, it does not forward

it to others, but if a gateway Node u receives a packet from Node v, it forwards it to

w ∈ F where F = N(u)−N(v)− I(u).

4.3.4 Handling the Ad hoc Nature of Nodes

Incorporating newcomers and handling early departures are also complex tasks in this

type of application. In the following subsections, we explain a simple but effective

algorithm to treat such situations.

Newcomers

Upon receiving a newcomer’s Join Request, the master discovers a neighbor set

based on the requester’s location and available bandwidth, lets it join the session,
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and informs its neighbors about the new node. When the system is operational,

changing the overlay structure could be costly because topology reformation will lead

to break in synchronous communication between players. But because we use the

dominating set, each node can independently determine its type (gateway or non-

gateway) simply by exploiting its neighbor set with the help of a unique identification

number (i.e. key). The tree is then reformed according to the algorithm presented in

4.3.3. We will see more details about this in the recovery action: section below.

Early Departures

Ideally, departures can be divided into two categories: graceful and ungraceful. In

a graceful departure situation, a departing node notifies its communication partners

and then leaves. The nodes can update their states and can reconstruct the structure.

In an ungraceful situation, a node leaves without a notice (e.g., a computer crashes).

To handle such cases, every node runs a node departure detection mechanism. This

mechanism is similar to the fault-detection algorithms, where a ”keep alive” message

is sent to a communication partner and a timer is started. If the timer elapses and it

does not receive any acknowledgment, the node realizes that the partner has departed

and then acts accordingly.

Mesh Reconstruction

The recovery process follows two steps. The first step fixes the neighbor set and the

second step deals with updating the routing responsibilities, i.e. flipping from gateway

to non-gateway or vice versa if necessary. After the detection of a node departure,

let Node a, the ”highest key node” neighbor of Node a (Node HKey) informs the

incident to the master, where Node HKey = max{key(u)|u ∈ N(a)}. This means

that only the highest-key neighbor is responsible for sending such messages to the

master. This is possible as every neighbor u ∈ N(a) knows the neighbor set N(a).
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Figure 4.8: Handling node departures

This policy discards the redundant repair requests. The master starts repairing the

mesh by simply dropping the links (a, u) where u ∈ N(a) and greedily including edges

incident to nodes u ∈ N(a) (Figure 4.8). Let R be the set of nodes affected due to the

mesh reconstruction. The master sends the updated information to the nodes r ∈ R

to update their neighbor lists.

Recovery Action

The recovery action is carried out in a distributed manner. Every node u ∈ R (R being

the set of nodes affected due to the mesh reconstruction) follows the following steps,

in order, after receiving the modified neighbor list from the master for a consistent

system: (1) u marks itself as a non-gateway node; (2) u marks itself as a gateway

node if there are two unconnected neighbors; (3) if u is a gateway node, apply rule 1

to become a non-gateway node; (4) if u is still a gateway node, apply rule 2 to become

a non-gateway node. After recovery, nodes forward packets based on the algorithm

presented in the previous section.
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Figure 4.9: Key and regular messages in the timeline

4.4 Message Overhead Reduction

Based on the position of players within a zone, two nodes belonging to the same

cluster may actually not be in each other’s visibility range; thus, not all messages are

important to all the players. In the following paragraphs, we discuss a simple but

effective mechanism to reduce such undesirable message propagation.

As the simulation progresses, events are shared among the players in a zone

using the P2P structure. These messages are short but frequent, so filtering out

messages that are outside a player’s visibility range will further reduce bandwidth

consumption on the ALM tree. We consider two types of messages: key messages

and regular messages. Key messages are important ways to refresh and synchronize

game states within a zone. They are typically associated with terminal events, such

as a sniper firing a bullet (another update representing this event will not be sent) or

a vehicle stopping at a point (no update messages will be sent until it moves again).

These are ’key’ because losing those messages can cause inconsistency. On the other

hand, messages between two key messages are defined as regular messages; they are

not terminal messages and the loss of one is made up relatively quickly by the arrival

of the next one. Figure 4.9 shows the position of key and regular messages.

To accommodate such filtering, we define two rules. First, a gateway node is

never allowed to filter out messages, because gateway nodes work as a backbone that
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Figure 4.10: (a) Propagation of key message (b) Prune activation message (c) Filtering

delivers messages across the overlay. Second, a non-gateway node can request, from

its parent, pruning of regular messages from a given source, but key messages will

still be delivered to it in order to keep it up-to-date regularly in case a previously-

pruned source does move into the node’s visibility range. Let us illustrate this by an

example. Consider Figure 4.10a, where Source S is sending messages in the overlay

tree. Let us assume a key message from S reaches gateway Node x. Although Nodes

a, b and c are part of the same ALM tree as S, they may not be interested in S if their

visibility range does not encompass S. Let us assume this is the case for a and c. As

Node x gets a key message, it forwards it to all nodes according to the routing policy

mentioned earlier. Now, Nodes a and c send prune messages to Node x, requesting

pruning on source S (Figure 4.10b). Thus any regular message originating from Node

S will not be relayed to Node a and Node c (Figure 4.10c). However, the ensuing key

messages from S will still be sent to a and c in order to update their area of interest

status. Table 4.1 presents a modified routing table for Gateway node x with respect

to Source S. This scheme greatly reduces unnecessary message propagation in the

overlay structure as will be shown in Chapter 7.
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Table 4.1: Routing table for Gateway Node x

Source S, Message Type: Key

Neighbor Node type Pruned Relay

a Non-gateway Not applicable Yes

b Non-gateway Not applicable Yes

c Non-gateway Not applicable Yes

g Gateway Not applicable Yes

Source S, Message Type: Regular

Neighbor Node type Pruned Relay

a Non-gateway Yes No

b Non-gateway No Yes

c Non-gateway Yes No

g Gateway Not applicable Yes

4.5 Interest-driven Zone-crossing

A zone crossing occurs when an avatar crosses a zone boundary, i.e. a node leaves a

zone and enters into a neighboring zone. This has an impact on the P2P structure as

nodes in the overlay tree are displaced. How well the protocol handles zone crossings

will have a direct effect on synchronous communication and hence the quality of the

game. There are two tasks associated with zone crossing: first, the detection of zone

crossing; and second, the reconstruction of the P2P tree in both the departing and

the entering zone. Irrespective of an overlay structure, when a node crosses a zone,

all dependent nodes lose the continuity of data as shown in Figure 4.11. This can
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cause low quality of experience for users. What is even worse is that a player might

do this repeatedly; i.e., a player might move into one zone (Znew) only to come back

to its old zone (Zold) within a few seconds, and then move to Znew again, and re-enter

Zold again, etc. We can call this the zig-zag effect, which is not unusual to happen in

hit-and-hide battle scenarios.

Figure 4.11: Impact of zone crossing

As it is difficult to predict players’ movements at the boundaries, repeated con-

nections and disconnections may be encountered either among the zone masters (i.e.

servers) or among the multiple overlay networks. VELVET’s area of interest man-

agement scheme can be implemented to avoid the problem of a player’s frequent

movement around the zone boundaries [OG03]. Interest-driven zone crossing with

dynamic shared regions between adjacent zones is a nice solution to regulate such

ungraceful events. Here, each zone has two marks, namely check-in and check-out

(Figure 4.12a). The area between the two marks is called the buffer region (a.k.a.

common area or overlapped area). It can control the total number of disconnections

and connections between the master and a player by adjusting inner and outer marks

(Figure 4.12a). To make it even more effective, we propose to integrate an ”interest

vector” with dynamic shared regions, as described below, taking also into considera-
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Figure 4.12: (a) Hexagonal regions with check-in and check-out radii with dynamic

adjustment of zone marks (b) Controlling of frequent zone crossings

tion the player’s velocity; i.e., the overlapped region will be different for different types

of players. The interest vector I is defined in the weighted form I :< w1, w2 . . . wc >

where wi represents the weight of the object of type i, and c is the number of object

types with the restriction that
∑c

i=1wi = 1. The weights are set by the players when

they join and it is up to the application to determine their exact values. Generally, a

player can put a bigger weight on its own class compared to other classes. The logic

is as follows: first, if a player is completely inside a zone it is a member of that zone,

which is obvious. But if it overlaps two zones and crosses out the check-out mark,

then the master applies the interest vector formula below to determine the interest

values for both zones:

Zj(I) =
c∑

i=1

wi ×Oj
i (4.5.1)

where Zj(I) indicates the interest of this node in zone j, and Oj
i is the number of

objects of the type i in Zone j. These values will depend on the number of players

that fall inside the visibility range of the node and weights of its interest vector

(Figure 4.12b). So if Z1(I) > Z2(I), the player is considered to be a member of
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Zone 1, even if it ’physically’ lies in Zone 2. For more overlapping zones (at most

three in the hexagonal architecture), the same principle applies. As it is difficult to

predict the movement of a player, a safety margin can be considered that expands

the area of interest of the concerned player when the master takes the zone crossing

decision. This increases the radius of area of interest by epsilon (ε), which we define

as ε = v ×∆t, where v is the velocity of the player, and (∆t) is the safety period: a

time limit big enough to make decision about zone crossing. The value of ∆t is set

by the master and is configurable at the beginning of the game. Thus, by controlling

the parameters, the protocol can change the circle (as shown in Figure 4.12b by the

blue and brown circles) and hence regulates zone crossings.

4.6 Visibility Issues

Passing messages between zones is generally called inter-zone communication. To

provide continuous view for players who are either crossing from one zone to another

or are close to zone boundaries and hence should be able to see players in neighboring

zones, inter-zone communication is mandatory. Consider a hexagonal zone layout

where a player stays close to the corner of a hexagon; logically it should be connected

to the three different overlays because it can see players close to it in all three zones.

Bu connecting to three zones at once leads to overhead, as each message must be

shared with three overlays, but most of the other players are likely not interested

in those messages. To avoid such irrelevant state-sharing, we follow a hierarchal

architecture. The lower layer of this hierarchy is the overlay consisting of the players

coordinated by a master solely within a zone, while the upper layer is the mesh formed

among the masters. Such a mechanism was roughly described earlier in Figure 4.2.

If a player’s visibility exceeds the border of its current zone, the simplest solution

is to send an explicit message to the local master, as shown in Figure 4.13a. This

local master communicates with the foreign master to solve the visibility problem by
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Figure 4.13: Solution to visibility problem: (a) a simplest approach (b) a smarter

approach

asking the foreign master to involve the player in the exchange of messages relevant

to the player and happening in the foreign zone. But the idea of an ’explicit’ message

is redundant since the master is already a member of the player’s ALM tree and so

this can be automated as follows. Whenever the master receives a message from a

player, it checks whether the players’ visibility exceeds the border of the zone (Figure

4.13b).

If so, it means the player needs to see into the neighboring zone, and so the

local master forwards a control packet to the foreign master (i.e. the master of the

neighboring zone) asking for the player to be involved in future message exchanges

happening in the neighboring zone. This will solve the visibility problem. At this

point, and while the player still hasn’t crossed the zone boundary, the message ex-

change is done directly between the master of the neighboring zone and the player;

i.e., the player does not join any P2P clusters of the neighboring zone. If the player

does cross the zone boundary, a hand-off occurs according to the design presented in
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section 4.7

4.7 Seamless Player Hand-Off

Despite entity typing and smart interest-driven zone crossing with buffer regions, zone

transition may not be seamless. When a player crosses a zone, the player’s area of

interest can overlap with one or more zones. So, inter-server communication becomes

necessary as discussed in the previous section. But, in addition, there is a possibility

of interrupted communication when players cross zone boundaries as the P2P overlay

network is re-tuned. One of the straightforward techniques to address this problem is

the sharing of game states among zone masters; i.e, each zone master not only knows

the game state of its own zone, but also that of its surrounding zones. Using this

approach, if a player crosses into another zone, the master of the new zone has the

game states of both the new zone and the old zone of the player, and can therefore

still provide the player with what’s happening in the old zone while adding the player

to the new zone, causing no perceived discontinuity for the player. While this nave

approach can achieve sufficient fault tolerance and proper consistency control, it has

a couple of problems. First, it is an impractical solution as it requires sharing of a

huge amount of information (six neighboring zones for each master plus its own zone),

and might lead to overloading the masters. Second, even if masters somehow have

this huge capacity, it is a wasteful approach in terms of bandwidth as most of the

messages from neighboring zones have no effect in the gameplay of the current zone.

A better approach would be to share only the relevant state information with

adjacent zones. Instead of sharing the complete state information of a zone, we

propose state sharing of only the buffer regions. A buffer region is defined as an area

between two adjacent zones which belongs to both zones, as shown in Figure 4.14.

The region marked by 1/2 and 2/1 is a buffer region; hence, zone masters 1 and 2

always share states of the players that fall inside those buffer regions. This reduces
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Figure 4.14: State sharing leads to smooth zone crossing

Table 4.2: Message exchange reduction for different buffer sizes

Size of 1/2 Number of enclosed zones % of msg. exchange

buffer zone 1 2 3 4 5 6 reduction per zone

1/8 0.13 0.25 0.38 0.50 0.63 0.75 87.50

1/9 0.11 0.22 0.33 0.44 0.56 0.67 88.89

1/10 0.10 0.20 0.30 0.40 0.50 0.60 90.00

1/11 0.09 0.18 0.27 0.36 0.45 0.55 90.91

1/12 0.08 0.17 0.25 0.33 0.42 0.50 91.67

1/13 0.08 0.15 0.23 0.31 0.38 0.46 92.31

1/14 0.07 0.14 0.21 0.29 0.36 0.43 92.86

1/15 0.07 0.13 0.20 0.27 0.33 0.40 93.33

1/16 0.06 0.13 0.19 0.25 0.31 0.38 93.75
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the exchange of the number of messages between the two zones. However, the core

zones 1, 2 and 3 are solely covered by the zone masters 1, 2 and 3, respectively.

If we assume that the message exchange rate is proportional to zone size, we

can see in table 4.2 reduction in shared messages with respect to the number of

enclosing. The table shows the improvement in percentile with respect to full-zone

state replication. Thus, depending of the size of the buffer zone, approximately 90% of

message redundancies can be avoided while achieving seamless player hand-off within

the buffered region.

4.8 Summary

In this chapter, we have seen the overall architecture of MM-VISA and its various

components, each of which helps resolve a specific problem that is encountered in

zonal MMOGs. We saw clustering of players in a zone can stabilize the P2P overlay

network. Each zone has a zone master responsible to build a P2P overlay network for

intra-zonal communication among players. Interest-driven zone crossing and dynamic

shared regions between adjacent zones were also proposed that can take informed

decisions about zone-crossing and reduce the number of overlay switching operations.

Moreover, the message overhead reduction policy described can reduce consumption

of bandwidth. It was also shown that through game state sharing among the masters,

seamless zone switching can be achieved increasing the quality of experience perceived

by players. But, all of these operations and duties will lead to server load and so load

balancing becomes important since a server could potentially be overwhelmed if it has

too many players. In the next chapter, we will discuss in details how load balancing

can be used to alleviate this problem.



Chapter 5

Hotspots and Load-Balancing

Mechanisms

In this chapter, the term ’Load’ means how many players or objects are waiting in

the queue to access the computer resource. In other words, the system load is a

measure of the amount of work that a computer system can perform. This is indeed

calculated for a certain period of time. As explained earlier, the proposed hybrid

MMOG model divides the virtual world into several manageable zones where each

zone covers the players in a close proximity. Each zone has a zone master that builds

a P2P overlay network for intra-zonal communication among players. Collectively,

the set of zone masters forms a top-level management mechanism that regulates the

operation of the MMOG. MMOG applications require much network bandwidth to

function properly, and so in a distributed MMOG server architecture, the server nodes

can become overloaded by the high number of players with their generated packets.

Thus, a load balancing algorithm becomes necessary which distributes the inbound

traffic to multiple servers.

In MMOGs, it is possible that many players can move into a zone, degrading

quality and affecting players’ gaming experience, which is undesirable. This problem is

85
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known as the hotspot problem. On the other hand, load balancing can be defined as a

scheme to keep servers’ load at a predefined level despite the presence of hotspots while

retaining desired game service. At its simplest, a load-balancing algorithm attempts

to assign equal numbers of players to partitions while minimizing communication costs

between partitions. A partition’s sub-zone consists of the data exclusively assigned to

it. The union of sub-zones is equal to the entire problem domain. But the workload

in a continuously changing system evolves over time, so a partitioning policy that

works well for a static problem or for a slowly changing problem may not be efficient

in a highly dynamic situation. In this chapter, three new load-balancing algorithms

will be presented in the context of zonal MMOGs.

5.1 Load Balancing using Two Level Partitioning

Hotspots affect the quality of gaming where event response times become unaccept-

able. There is a need to define Service Level Agreements (SLAs) for such scenarios:

what is the tolerable limit? Chen et al. assume one second for load balancing and two

seconds for aggregation (algorithm used to restore locality) as an acceptable delay for

load management to stabilize [CWD+05]. A slight variation is sometimes acceptable.

5.1.1 On-the-Fly Two-Layer Partitioning

The basic idea is that if we increase the granularity of zones, we ultimately decrease

the zone sizes. By decreasing the size of each zone, one reduces the probability of

having a high number of players in a zone. Thus, there will be fewer players in a

zone, and thereby reduced load. Consider Figure 5.1, where Zone 1 is marked as a

hotspot. Say the master managing Zone 1 detects the hotspot (explained later). It

then applies the load-balancing algorithm for this zone. Each zone in itself has a

zonal partitioning also, following a fixed partitioning configuration (fixed number of
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Figure 5.1: Two-layer partitioning

partitions). This is what we call a two-layer partitioning: partitioning of the map

and partitioning of the individual zones. All the partitioning is done when the game

is first loaded. Having a fixed configuration for the second-layer partitioning, the

adjacent servers know which partitions they are responsible for in case of overload.

When a load-balancing mode is triggered from Zone 1, zone masters 2–7 can quickly

take responsibility for managing nodes inside the partitions. Having this pattern in

partitioning is the key point of design contribution: everything is set for hotspot

scenarios. The only dynamic element incorporated is the hotspot zone triggering the

load-balancing mode, and nodes subsequently migrating to their new servers. Since

a big part of the hotspot is now managed by the adjacent zones, the load will be

dispatched among six adjacent zone servers. Furthermore, the locality is preserved:

only adjacent zones accept the shed load, so there will be no need for too many

node-specific connections.
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5.1.2 Rejecting a Load

One of the problems introduced by such architecture is the case when an adjacent

server cannot accept a shared load from the overloaded server. Maybe the adjacent

servers themselves are experiencing hotspots and cannot accept additional load. If a

zone is a hotspot, and one of its adjacent zones triggers a load-balancing mechanism

for itself, it simply rejects the request and will not assume responsibility for its part.

It is important to discuss to what extent shedding of load to adjacent servers

disrupts these servers. First, the adjacent servers are only sharing a small portion of

the load: 1/8 of the area of the hotspot zone. Even though we cannot assume even

distribution of nodes to zones, we still consider such a portion relatively small. Second,

if the load shed is small but creates an overload when added to the original load, then

the zone becomes a hotspot itself and can trigger load shedding to its adjacent zones.

This might create a domino effect, but at some point, it will settle on having adjacent

zones without large existing loads taking up the slack. Finally, a direct result of these

hotspots is having zones that are partially or completely empty. So we can say that an

overload in one zone will only cause a small disruption for adjacent zones. Moreover,

such scenarios, when adjacent zones accept load and become overloaded themselves

and then shed load to their adjacent zones, are a good picture of how hotspots should

be managed. The original zone configuration will change and converge to manage the

hotspot, the center of attention of the game or virtual environment at the moment.

5.1.3 Multiple Hotspots

A single-hotspot scenario is fairly simple to deal with as discussed earlier. A multiple-

hotspot scenario, on the other hand, becomes complicated, and it is important to

explain how the architecture works in this situation. Consider Figure 5.2; Zones 5,

6 and 9 represent hotspots. The order in which each zone became a hotspot is as

follows: Zone 5, 6, then 9. When Zone 5 becomes a hotspot, each of its adjacent mas-
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Figure 5.2: Multiple-hotspot scenario

ters assumes responsibility for managing its partition, as explained in the previous

section, including master 6 and 9. When Zone 6 becomes a hotspot itself; however, it

abandons managing its partition in Zone 5, and master 5 resumes management of the

partition adjacent to Zone 6. The same case applies when Zone 9 becomes a hotspot:

Master 9 abandons managing its partitions in zones 5 and 6, and masters 5 and 6

resume management of the partitions adjacent to Zone 9. Figure 5.2 clearly shows

the end result of the server to partition mapping in a multiple hotspot condition. One

can see that the overloaded masters are now managing smaller areas, and how the

original partitioning configuration adapts to the multiple-hotspot situation. Notice

how the original partitioning configuration converges into the second-layer partition-

ing, keeping the same uniform shape. This regularity in partitioning is a critical point

of the architecture and an important result of hexagonal zoning.
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5.1.4 Undo Mode

It is intuitive that there should be a mode in which the original partitioning is restored

once a hotspot ceases to exist. This is important to preserve the regularity of the

first-layer partitioning and reassign servers to zones evenly. We propose that once

the hybrid server is back to less than 70% of its overload threshold, it trigger an

undo mode, so that nodes can migrate back to their original hybrid servers. The 30%

margin is given to prevent oscillations: it makes sure that the hotspot case will not

recur within a short time. (The 30% is a suggested value. This percentage can be

changed depending on implementation and performance analysis of the undo mode.)

Since we cannot assume global knowledge of the load, hybrid servers frequently share

lists of the nodes they are managing (position of nodes, which zone they belong to,

etc). When a hybrid server triggers a load-balancing mechanism after its first-layer

partition becomes a hotspot, it periodically checks the cost of managing the other

second-layer partitions (restoring its original first-layer partition). If, after adding

this cost, the total load is less than 70%, it triggers the undo mode.

5.1.5 Discussion

Lu et al. suggest that there is a contradiction in the trend of research concerned

with dynamic load management in MMOGs [LPM06]. On one hand, server-side

inter-communication is minimized to promote scalability and balance load. On the

other hand, inter-server communications are relied on to alleviate process exhaustion

due to crowding. It is very important, therefore, to choose an appropriate zone size

to minimize inter-server communication, or node-specific connections in this case.

Tumbde et al. also argue that the Voronoi partitioning can lead to the formation of

very small zones, in case of clustering of nodes [TV04]. This can lead to formation

of zones which are smaller than AoI of a player. Such a small fragmentation is

unnecessary and may lead to additional communication overhead. For these reasons,
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zone sizes should surpass nodes’ visibility or interaction ranges, so that inter-zone

communication is temporary and minimal. When choosing the sizes for the our

layered partitions, we try to balance the process of adjacent servers taking part in the

load in the hotspot area, and preserving locality and isolation of nodes in one zone

from those in another to reduce inter-server communication. This promotes message

isolation and keeps interest well managed.

Another problem that our architecture has to deal with is the migrations of

nodes from the original server managing the hotspot to the adjacent servers. Such a

problem is considered a natural result of load balancing. Still, a predictive approach

can be considered in triggering the load-balancing mode before it is needed to avoid

accepting nodes in the first place and reduce migrations.

The architecture presented achieves four objectives: simplicity, practicality, flex-

ible configuration, and preservation of the ALM-based tree architecture. At the time

of load-balancing, a set of players, based on the algorithm, is moved from one server

to another. This definitely requires a maintenance operation in the ALM trees. In-

stead of constructing a new P2P overlay, we perform a repair operation which keeps

the maintenance cost at a lower value and preserves the ALM in some sense. No ad-

ditional third-party processors are added, such as schedulers that get to decide who

accepts the load in an overload scenario. The architecture presented is only dynamic

in switching modes: zoning is layered and only the switch between the zonal informa-

tion is dynamic. Locality is preserved when only adjacent zones assume responsibility

for a hotspot. So, in contrast to other complicated load-management algorithms, this

technique is simple and can achieve desirable results in real time.

5.2 Load Balancing: Multilevel Multiphase approach

The Multilevel Multiphase Load Balancing (MMLB) method presented in this thesis is

designed for fixed-size zones. It works in three phases and can be employed according
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to the load scale in order or independently. The first phase works for the top level of

microcells/zones and takes care of the inter-server communication while regulating the

load among the servers. The second phase works in a preventive manner and reduces

load by discarding state-sharing policy with the neighboring microcells/zones. The

third phase decomposes the top-level microcells into the deep-level microcells and

sheds load with the help of enclosing zone masters. This new MMLB technique limits

structural reformation penalties and gives zone masters, i.e. servers, a provision to

reduce load in a step-by-step manner. This avoids bouncing back and forth from the

top-level partitioning to the deep-level partitioning and reduces control overhead to

a significant extent.

5.2.1 New Load Definition

The first step to deal with a hotspot is to detect a loaded zone. Most of the existing

approaches consider the total number of players in a zone to define the load. If

the total number of players in a zone exceeds the maximum affordable limit, it is

a hotspot. However, we believe looking at the question in a different way would be

more appropriate. In an MMOG, there are many players with different attributes like

soldiers, robots, aircrafts, etc. These behave differently, so the total number of entities

in a zone is not necessarily a good indication of the load. Also, actions and events

do not depend on the number of players. For example, when a building explodes, it

sends update messages to all players in the vicinity. This update generation does not

depend on how many players are around. In fact, a zone with a smaller number of

players but with more actions can be a hotspot, in contrast to a ’peaceful’ zone with

a much larger number of players. Thus, the load is not directly related to the number

of players and, in fact, is linked strictly with the message generation rate. Thus, we

believe message generation rate, Rm(t), is a better way to define the load of a zone.
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Figure 5.3: The layout of microcells and a random microcell distribution to servers

5.2.2 Identifying the Loaded Server

Let a set of microcells/zones define the virtual world that is maintained and coor-

dinated by a set of servers called the server pool. The server pool with n servers is

represented by the set S = S1, S2 . . . Sn. Each server, e.g. Si, serves one or more mi-

crocells depending on load. The microcells are given unique numbers in left-to-right

and top-to-bottom order. The layout of microcells and a random microcell distribu-

tion to servers are shown in Figure 5.3. Say the server Si is in charge of a set of

microcells Mi = {mi1 ,mi2 . . .mik}. Let rij is be the message-generation rate of the

microcell mij . Thus, the load of the server Si according to message generation rate

is:

Rm(Si) =
k∑

j=1

rij (5.2.1)

Let us define a message threshold term Tm. Thus, a server is loaded or there is

a hotspot if Rm(Si) ≥ Tm. Rm(Si) can be computed and refreshed by exploiting the

total packets processed over a period of time (say, every minute). A good recommen-

dation for Tm could be to take the average of Rm(Si) of the entire game space and

increase it by p%,

Am =
n∑

i=1

Rm(Si)/n (5.2.2)
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Tm = Am + p%× Am (5.2.3)

5.2.3 Phase 1: Load Balancing for Top-level Microcells

When there is a hotspot, the load of the concerned server is relieved by moving one or

more microcells to other, less heavily loaded servers. As the movement of microcells

introduces complexities, some intelligence is required to identify the best possible set

of microcells that can be moved. The reduced deployment and maintenance overhead

of hybrid MMOGs comes at the cost of performance due to peer dynamics. Many

techniques have been proposed, such as entity typing and smart interest-driven zone-

crossing with a buffer region to maintain the desired level of performance. As it

is difficult to predict avatars’ movement around a cell boundary (possible frequent

in-and-out movements), it could be effective to share the relevant state information

between both microcells as explained earlier.

The objective of changing a microcell’s ownership from one master to another is

to approach a hotspot. The key point that must be taken care of is to minimize the

inter-server communication while carrying out such a process. Let Ii be the number

of communication links among avatars completely internal to the microcell i and Bi,j

be the number of communication links involved between microcell i and microcell j in

the buffer region. Let the server Si be overloaded and currently serving k microcells.

The target is to determine an ordered list of microcells so that changing the ownership

of microcells in that order introduces less performance penalty in the overlays.

The algorithm initially forms a group of microcells based on the microcell’s neigh-

borhood properties. A microcell can be a member of a nonempty group if and only

if it has a common edge with any microcells of that group. Assume that after this

grouping policy, Server Si has l groups Gi
1, G

i
2 . . . G

i
l in order of their cardinality, i.e.

|Gi
1| ≤ |Gi

2| . . . ≤ |Gi
l|. The general strategy is to find a microcell within a group with

a minimum number of communication/interested links among the microcells in that



Chapter 5. Hotspots and Load-Balancing Mechanisms 95

group. Due to the change of ownership, these links become foreign links that cause

inter-server communication. Thus, a group with more microcells could have more

common edges than a small group, at least heuristically. Thus, it can be effective to

keep a large group intact. Thus, a group with a fewer microcells is chosen for load

balancing and so the system chooses the group Gi
1. Finally within a group, a microcell

with a smaller number of potential foreign links, i.e. Bi,j, is chosen for handover to

the less-loaded server, which is identified by equation 5.2.1.

5.2.4 Phase 2: Exploiting Buffer Region to Release Load

In the case of a hexagonal zone layout, generally, a zone has six other enclosing zones.

A buffer region is defined between two adjacent zones to provide seamless player hand-

off (as explained in the last chapter). We can take advantage of this buffer region to

reduce a master’s load when it reaches its maximum. First, we keep track of the load

of the enclosing zone masters in terms of Rm(Si). The load-balancing procedure can

be activated when Rm(Si) ≥ Tm. In this second phase, each neighboring zone master

can reduce a fixed amount of load from the hotspot, up to six times (six neighbors) if

needed. The order of the cooperating masters will be the increasing order of Rm(Si) of

the enclosing masters. One advantage of having this phase is that when zone master

x stops sharing the states of buffer region with zone master y, it actually releases load

from both zone masters with respect to that buffer region. Naturally, the magnitude

of released load depends on the size of the buffer region. Phase two of the MMLB

removes replicated information used for seamless player hand-off to reduce the load.

However, when there is a hotspot, removing the state-sharing feature is not without

value.

Table 5.1 summarizes the released load at each step for different buffer sizes.

The table covers fictitious data. The motivation of this presentation is to show the

applicability and significance of load releasing with respect to the buffer region. For
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Table 5.1: Load release at different stages for various buffer sizes against current load

% of reduced load for different buffer sizes

Step 1/8 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16

1 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76 4.55

2 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00 4.76

3 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26 5.00

4 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56 5.26

5 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88 5.56

6 11.11 10.00 9.09 8.33 7.69 7.14 6.67 6.25 5.88

example, in Table 5.1, if the size of the half-buffer region is 1/16 of a zone, it can

reduce the load by 4.55% in the first step, 4.76% in the second step, 5% in the

third step and so on. However, despite the approach presented here, there is still a

possibility that the zone master will not be able to carry the load due to overcrowding

(let us call this phenomenon an extra-hotspot). In that case, the third phase can be

applied.

5.2.5 Phase 3: Load Handling through Deep-level Partition-

ing

An extra-hotspot is not unusual even after the use of phases one and two described

above. In this situation, the overcrowded zone master cannot handle its load and this

requires a move to the third phase. The general simulation layout is shown in Figure

5.4a. When the current load exceeds what can be afforded, i.e. Rm(Si) ≥ Tm, the zone

master switches to the third phase, i.e. deep-level partitioning. In this condition, a
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Figure 5.4: Stepwise deep-level partitioning for load balancing

zone is decomposed into seven other, smaller hexagons (deep-level microcells): one is

completely inside the current zone and other six small hexagons are overlapped with

six enclosing zones (Figure 5.4b). Thus, in the worst case, a zone master must partially

shed the load of the six enclosing zones. In that case, its coverage is identical to Figure

5.4c. The key difference from the existing load-balancing methods is that when the

system is loaded, the existing techniques immediately involve all the surrounding

zone masters. This significantly reduces load in the extra-hotspot area, but it is not

actually necessary to involve all the zone masters. Indeed, this unintelligent one-

step switching adversely affects all the enclosing zone masters. Similarly, the undo

operation is carried out in a single step. Thus, the zone master in the center treats

the load at the two extremes: hotspot, followed by a very low load, which soon can

become a heavy load due to the undo operation, and so on. To overcome this, here we
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Table 5.2: Load shedding comparison

% of load shedding against current load

Step Current approach Generic approached [KAS07]

1 12.50 75.00

2 14.29 not application

3 16.67 not application

4 20.00 not application

5 25.00 not application

6 33.33 not application

choose a step-by-step load-shedding mechanism as needed. Thus, for example, when

zone 0 is marked as an extra-hotspot, zone master 6 offers its support (Figure 5.4d).

If the support of zone master 6 is insufficient, another zone master (such as 5) can

be involved, and so on, until the load reaches below the threshold Tm. Similarly, the

undo operation is carried out in steps.

This strategy reduces switching back and forth between the two levels of parti-

tioning, which is more appropriate for a hybrid architecture where overlay stability

is more important. Due to this stepwise load-shedding mechanism, the hotspots are

less likely to propagate and bounce back and forth across different zones. Table 5.2

summarizes the effectiveness of the stepwise deep-level partitioning compared to the

generic approach presented in the earlier section. The numerical value depends on

how many players are inside each deep-level microcell, and here in the table we have

considered a simple case of homogeneous distribution of players across the microcells.
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5.3 Load Balancing for Non-Uniform Zones

A notable point, in zonal MMOGs, is the fixed zone size. There are a few approaches

that deal with dynamic zone shaping, e.g. Voronoi diagrams, but most of these

designs do not have load-handling mechanisms. It is difficult to predict player density

or distribution before the start of a game. As a consequence, if a server is pre-assigned

to a zone, it cannot share its resources with surrounding zone servers. The problem

persists even when the server pool should be able to cope with the total load, at

least theoretically. In this section, we present a load-balancing method where zone

shapes are not predefined which can be adjusted with respect to load. It should be

noted that we cannot intermix the earlier approaches with this one. It is completely

a different method.

5.3.1 The Algorithm

Consider a system withN masters/servers with a big single zone, i.e. the entire virtual

world, where players join and leave over time and initially only one server is involved.

In this adaptive zone-shaping approach, the game field is partitioned dynamically

based on players’ logical position and interaction patterns. Thus the resultant zone

shapes are not uniform. The bisection procedure is used to partition a zone into

two sub-zones of nearly equal load while attempting to minimize the communication

cost, i.e. the number of links crossing logical boundaries. According to the bisection

procedure, the zone is first cut into one dimension to yield two sub-zones. Then other

cuts are made repeatedly in the new sub-zones whenever needed. The simplest form

of the recursive bisection procedure is the ’coordinate bisection’, which is generally

applied to irregular grids that have a local communication structure. This technique

makes a cut, i.e. boundary, based on the physical coordinates of a region (logical

position in our case). At each step, it subdivides along the longer dimension so

that if the cut is made along the X– dimension, the grid points in one sub-zone will
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all have an X– dimension lower than the grid points in the other. This technique

has the advantages of being simple and inexpensive, but it does not consider inter-

zone communication between two sub-zones while partitioning. Here, we present a

modified approach that considers this important parameter.

Figure 5.5: (a) Virtual world partitioning (b) Zone naming

In our approach, the bisection along the X– dimension generates two zones

marked X l and Xr. Similarly, the bisection along the Y– dimension yields Y t and

Y b. Thus, a zone can be identified through the sequence of such marks. For example,

as can be seen in Figure 5.5, the zone Y bXrY tX l is the outcome of bisections along

Y (bottom), X (right), Y (top), and X (left) dimensions, respectively. It should be

noted that this is not merely an equal bisection of a zone in terms of size but in terms

of communication cost. First, it orders all players based on either X or Y dimension.

Say < P1, P2 . . . Pn/2 . . . Pn > is an ordering of players according to the X dimension.

The algorithm initially partitions players in two halves, X l and Xr, where players

< P1, P2 . . . Pn/2 > and < Pn/2+1, Pn/2+2 . . . Pn > belong to X l and Xr, respectively.

In literature, there are several approaches to estimating load in a zone. The simplest
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one is the number of players in a zone. The presented bisection technique belongs to

this category.

This coarse partitioning can be improved by moving the cut along the vectors

perpendicular to the boundary in either direction. The target of the cut movement is

to reduce the cut size, which is the number of edges crossing the partition. In order to

be effective, we restrict the cut movement by length L in both directions, as shown in

Figure 5.6. Let A and B represent the set of players in their respective cut scrolling

zones, i.e. ZA and ZB. We sort the players of both zones by increasing distance from

the cut. The first players (a and b) from each ordered set are picked where a ∈ A

and b ∈ B. The internal and external costs are calculated for the player a ∈ A with

respect to sets A and B respectively. The internal cost calculates the total number

of direct connections that exist between that player and other players in the same

set, Ia =
∑

v∈ACa,v. The external cost calculates the external connections associated

with that player, i.e. Ea =
∑

v∈B Ca,v. The term Ca,v is 1 if there is an interested

link between player a and player v, ; otherwise it is 0. Then the cost difference is

calculated, i.e. Da = Ea − Ia. Let Da∈A and Db∈B be determined by the algorithm

presented here. Say Da∈A is negative. This means that player a has more internal

interested links, so we do not need to move the cut. But if Da∈A is positive, this means

that player a has more interested links in ZB. It also indicates that placing player a in

set B is more effective. Ergo, we need to move the cut to the left to keep them in the

same group B. The cut movement is controlled by these values and is given in Table

5.3. The algorithm continues until there is no feasible cut scrolling area or it satisfies

rule 1, as shown in Table 5.3. In this way, the algorithm partitions the virtual space

over time based on the number of players and their logical positions. It should be

noted that the system can provide this game service as long as the total resource is

sufficient for the whole population irrespective of the players’ logical position. Thus,

it can handle hotspots.
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Figure 5.6: The cut movement

Table 5.3: The cut movement rules

Rule no Da∈A Db∈B Decision

1 -ve -ve Keep the cut as it is

2 -ve +ve Move the cut in the direction of ZB

3 +ve -ve Move the cut in the direction of ZA

Two options a) Keep the cut as it is

4 +ve +ve
b) Move the cut based on the higher difference

5.3.2 Zone Merging

Naturally, an overloaded place in one part of a virtual world can create a low-

population space somewhere else. Thus, there is a scope of merging of unloaded

zones. In this regard, the following policy can be applied to merge two zones, ZA and

ZB, if:

1. One of the corresponding zone masters is capable of handling the total load

2. The lengths of the zone names are equal– say l is the length of the zone names,

and
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3. prefix(ZA) = prefix(ZB), and both prefix have length l − 1

Condition 1 checks the feasibility of zone merging while condition 2 and condition 3

keep the regularity of zone shapes, i.e. rectangles.

5.3.3 Zone Capturing

Sometimes, zone merging is not feasible, but the load of a particular zone is small

enough that it could be handled by another master. If so, such a master is discovered

with respect to the current load distribution. Hence, a master can be the coordinator

of multiple zones, and ’captures’ other zones. It is imperative that zone-merging

preserves the locality of player interactions. Thus, zone-merging is more effective

than zone capturing and should be applied whenever possible.

5.3.4 Dynamic Cut Movement

In order to make load sharing more countable, a dynamic cut movement can be used.

The frequency of this attempt depends on the load on both sides of the cut. The cut

movement toward a zone is also a function of the unused resources of that zone.

5.4 Summary

In this chapter, I have proposed new load-balancing methods for multiplayer games.

The issue addressed here is how to deal with hotspots. The steps are: 1) measure mes-

sage exchange rate; 2) determine hotspots; and 3) apply a load-balancing algorithm.

All presented approaches try to evenly distribute load across different zones formed

over the game map. The presented MMLB works in three phases and can be used

according to load scale; in order or independently. The first phase works for the top

level of microcells/zones and takes care of inter-server communication. The second
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phase works in a preventive manner and reduces load by discarding state-sharing pol-

icy. The third phase partitions the top-level microcells into the deep-level microcells

and sheds load with the help of enclosing zone masters. The advantage of the pre-

sented MMLB is its low structural restoration at the time of load balancing. This is

accomplished with the help of a layered zone layout. The new MMLB technique gives

masters a provision to release load in a step-by-step manner that eventually avoids

bouncing back and forth from the top-level partitioning to the deep-level partitioning

and reduces control overhead to a significant extent. This chapter also presents an

adaptive zone shaping mechanism using a bisection procedure that does not stick to

any predefined fixed zone size. The modified bisection procedure applied here finds

a cut that can efficiently partition a zone considering both the population size and

players’ area of interest.



Chapter 6

Quality and Design Issues

There are several ways to improve the quality of MMOGs. This chapter covers three

new approaches – dynamic area of interest management, expedited state dissemi-

nation, and a time constraint compliance algorithm for improved MMOG systems.

Broadcasting all update messages to every player is not a viable solution to maintain

a consistent game world. To successfully overcome this challenge, multiplayer online

games need to employ sophisticated interest management techniques. In Section 6.1,

we examine some of the most popular area of interest management (AoIM) techniques

for online games, and propose a new dynamic AoIM method suitable for peer-to-peer

architectures to characterize the interaction space in real time. In Section 6.2, a novel

state-dissemination model for hybrid MMOGs is presented by exploiting idle periods

of the participating players. This new approach can perform such tasks much faster

than other traditional approaches with an identical environmental setup. It can also

expedite state sharing even in heterogeneous environments. In Section 6.3, a new

quality control algorithm is presented considering players’ virtual and geographical

positions. We assume that the interaction details between two players is inversely

proportional to their virtual distance. Based on this assumption and time constraint

for the target application, the gaming experience in MMOGs can be tuned.

105
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6.1 Dynamic Area of Interest Management

Area of interest management for online games is a challenging task. In the literature,

there are some effective methods for interest management, but considering a peer-

to-peer gaming framework, these interest management approaches are not readily

applicable. As a consequence, for the proper use of players’ bandwidth and computing

power, we either need to discover new interest management techniques suitable for

this environment or to adapt older approaches accordingly. This section presents a

dynamic interest management technique.

6.1.1 The Proposed Approach

The mapping of an area of interest to a fixed-size zone is common. In short, the

unification of an AoI to a zone is straightforward as logical spaces are predefined.

Thus, players staying in a zone are considered to have a common interest confined

to that logical space. But, due to the nature of a game, an area of interest overlaps

multiple zones and breaks the significance of zone formation. In addition, it requires

regular inter-zone communications for various reasons, like solving the visibility prob-

lem. Thus, it makes a system more vulnerable to heavy load. Here, the new interest

management model can evolve over time and create logical space as needed.

Initially, each player has its own area of interest, which is defined by its visibility

scope. Say pi is a player whose area of interest is defined by aoi(pi). Let’s assume,

two players pi and pj are interacting with each other. This is a symmetric relation of

interest – i.e., if player pi is interested in player pj, then player pj is also interested in

player pi (as shown in Figure 6.1). This symmetric relation is not always true. Some-

times there can be asymmetric relations in the case of radar, sensor arrays, different

entity types, etc., but here we are considering only symmetric relationships. When

more than one player has a common area of interest, then the resulting interested

area can be defined as AoI(i) = {pi1 , pi2 . . . pik} where k is the number of players. So,
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a game space consists of many AoIs, and can be defined by Gspace =
⋃

j AoI(j).

Figure 6.1: The symmetric and asymmetric relation of interest

Let us consider a hybrid MMOG framework, which is more realistic than a pure

peer-to-peer architecture and more scalable than a pure centralized system. The

system is administered and coordinated by a set of servers that also try to use players’

resources whenever possible to relay game states to others to reduce server load. The

key design characteristics of the model are:

• At the beginning of a game session, each player discovers his/her interested area

through a server;

• Each AoI is monitored by a server that provides different maintenance services

like tracking the AoI scope with the help of participating players (explained

later);

• The overlapping conditions of AoIs are checked at regular intervals to reduce

communication overhead.

Due to mobility, players’ position and interaction space can change regularly.

In addition, the peer-to-peer part of the architecture makes it more challenging be-

cause of players’ heterogeneity in terms of bandwidth and processing power, and their

widespread distribution over the Internet. Thus, an appropriate and effective area

of interest (AoI) structure is important. It must keep the AoI maintenance cost to
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a minimum while providing the desired level of game services. The key intuition in

this regard is to discover a subset of players for each AoI and hand over AoI scope

tracking responsibility to them. These responsible players can properly reshape AoIs

when necessary without involving all players in the vicinity. That ultimately reduces

maintenance cost. The proposed algorithm is explained bellow.

Algorithm 2 The area of interest and its scope-tracking node-discovering algorithm

Require: P : the set of players

1: i := 0

2: hull[i] := the leftmost point of P

3: repeat

4: hull[i+ 1] := a point such that all other points in P are to the right of the line

hull[i]hull[i+ 1]

5: i := i+ 1

6: until hull[i] 6= hull[0]

7: Scope-Tracking-Nodes := hull

Let an AoI have k players represented by AoI(i) = {pi1 , pi2 . . . pik}. We form a

convex hull to present such an AoI. A convex hull for a set of points is the minimal

convex set covering that set. The simplest algorithm in the plane was proposed by

R.A. Jarvis in 1973, called a gift wrapping algorithm with a time complexity of O(nh),

where n is the number of points in the set, Sn, (the players, in our case), and h is

the number of points in the hull responsible for tracking an AoI, in our case. The

algorithm starts with a point p0 in the convex hull. One way to discover such a point

is to find the leftmost point in the set. The algorithm then selects the next point in

the convex hull, say point pi+1, such that all points are to the right of the line pipi+1.

This point may be found by comparing the angles of all points with respect to the

point p0 taken for the center of coordinates. The algorithm then starts processing

with respect to the point pi+1. These steps continue until it reaches p0 again. In this



Chapter 6. Quality and Design Issues 109

way, we define the scope of interest. Let Sh be the subset of Sn, i.e. Sh ⊆ Sn, that

forms the convex hull. The area of interest and its scope tracking node discovering

algorithm are given in algorithm 2.

The size of the convex hull changes due to the players’ random movement in the

game space. All players in an AoI know who is at the convex hull periphery, i.e. Sh.

Thus, each player can independently determine its position with respect to the convex

hull. So, if a player is inside a convex hull, it has no role in redefining the convex hull

at that instant; otherwise it is a candidate to redefine it when needed. Considering

the nature of the game at hand, we do not redefine the convex hull instantly if a

player crosses the boundary as we do not know whether the player is returning soon.

That is why we use the term candidate. Two attributes are incorporated to make

the decision while redefining a convex hull for each candidate. These attributes are

safety-edge space and time-span. A safety-edge space is defined for each edge of a

convex hull, as shown in Figure 6.2. It gives a safety margin denoting the fact that

the player has moved far enough and it is unlikely that it will return soon. The

time-span acts like a temporal reference and is used to avoid premature decisions.

Thus, these two conditions ensure a mature decision in terms of time and space. The

convex hull is changed when a candidate player satisfies both conditions, initiating a

task hand-off. Thus, this candidate player informs all members within the modified

set of the convex hull.

The motivation of forming a convex hull is to define a confined game space

for a set of players having a common interest. As the players move frequently in

random directions, the servers require continuous tracking of players’ positions to

precisely detect each one’s interest in the game. When a convex hull is formed for

a set of players, the server can roughly discover their area of interest by monitoring

and tracking those players who are defining the convex hull. The players who are

inside the convex hull do not require regular interactions with the server because the

peer-to-peer architecture is already managing the intra-zone communication. So, the
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Figure 6.2: The safety margin of a convex hull

presented concept should reduce communication load of the server to a significant

extent not only due to the peer-to-peer nature but also due to the confined area of

interest.

6.1.2 Interest Management Classification

There are several types of interest management algorithms, which can be classified

into three broad categories: proximity-based, visibility-based, and reachability-based,

which are explained next.

Proximity algorithms

Proximity-based interest management algorithms are solely based on the Euclidean

distance between publishers and subscribers. This type of algorithm ignores the

presence of obstacles that could occlude parts of the game space. Algorithms like Eu-

clidean Distance, Square Tiles, and Hexagonal Tiles are some examples of proximity-

based interest management. The Euclidean Distance Algorithm (Figure 6.3) is purely

based on the Euclidean distance among objects while the other two are approxima-

tions that use partitioning concepts. In Figure 6.3, the area of interest is shown with

respect to the man at the center of the circle.
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Figure 6.3: Euclidean distance algorithm for interest management

Figure 6.4: Square tile algorithm for interest management
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The Square Tiles Algorithm is a simple region-based interest management where

the virtual world is divided into equal-sized squares. Technically, the size of squares

is set according to the radius of interest of the players. So, at any location, the

subscriber is interested in at most nine tiles: the subscriber’s current tile and the

eight or fewer surrounding tiles (Figure 6.4). Whenever a player performs an action,

the action is shared among all players subscribed to the square where the action has

taken place.

Figure 6.5: Hexagonal tile algorithm for interest management

Like the Square Tiles algorithm, the Hexagonal Tiles algorithm partitions the

virtual world into equal-sized hexagons. If a player’s radius of interest intersects a

tile, the player subscribes to objects in the tiles. So, at any location, the subscriber

is interested in at most seven tiles: the subscriber’s current tile and the six or fewer

surrounding tiles (Figure 6.5). For each subscriber, the algorithm performs a search

from its current tile to find all tiles based on the subscriber’s radius of interest. The

player subscribes to all publishers contained within those tiles. This algorithm could

nicely be implemented using a depth-first search, and is perhaps the most commonly
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Figure 6.6: Ray visibility algorithm for interest management

used proximity-based algorithm for virtual environments and games.

Visibility algorithms

Visibility-based algorithms consider the occlusion created by obstacles in the virtual

world. Theoretically, the area of interest is only limited to the player’s visibility scope.

In visibility-based algorithms, if a player is out of sight of another player, they are not

in the same interest group even if they are physically close. Ray Visibility and Tile

Visibility are two examples of this class. Ray Visibility computes the exact visibility

between two objects; on the other hand, Tile Visibility uses approximation to compute

the visibility between static regions. In Ray Visibility, the area of interest is uncovered

with respect to the players’ visibility scope (Figure 6.6). To determine an object is

visible to a player, it traces a line from the position of the player to the position of the

object. If the line does not intersect with any obstacle in the world, they are visible to

each other. Ray Visibility is a precise interest management algorithm as it accurately

determines the area of interest of a player. Its main advantage is that it provides a

lower bound on the number of messages that need to be exchanged between players.
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The Tile Visibility algorithm is based on the visibility between tiles. The algorithm

pre-computes the visibility relationship between each pair of tiles, and the area of

interest is projected after the tile visibility for each tile has been pre-computed. A

player’s area-of-interest is the set of tiles visible from the tile it currently occupies.

Reachability algorithms

Reachability-based algorithms define area of interest with respect to reachability even

though one or more regions are out of sight due to obstacles. It is somewhat similar

to proximity-based algorithms, but it discards objects that are unreachable. Unlike

visibility-based algorithms, an object that is not visible (e.g., behind an obstacle) may

be in the area of interest if there is a path to reach that object within its radius of

interest. Reachability-based interest management approaches might be less accurate,

but have the advantages that they ”prefetch” information that is very likely to be

relevant to a player in a near future. Tile Distance and Tile Neighbor algorithms

fall into this category. A Tile Distance algorithm uses Euclidean distance between

a player and a triangular tile. It runs a breadth-first search (BFS) algorithm from

the current tile to discover the set of connected tiles that intersect the player’s radius

of interest. Then it discards tiles that are not reachable within the player’s area of

interest. On the other hand, Tile Neighbor algorithm defines area of interest using

tile neighbor relationships. The algorithm implements a breadth-first search from the

current tile of the player and determines all reachable tiles until it reaches a predefined

depth. The depth is defined as a number. For example, if depth is one, the set of

tiles would be all direct neighbors of the current tile.

6.1.3 Comparison

We have explained some interest management approaches suitable for client-server

architecture. Each has its own advantages and disadvantages. Most importantly,
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each was designed for one particular target application. But all of them are best

suited for a client-server framework and not readily applicable for P2P-based online

games. A categorical comparison of various interest management techniques is given

in Table 6.1 which is similatr to the one presented in [BKV06].

Table 6.1: Comparison of different interest management

algorithms

Euclidean Distance - proximity based and Centralized

Positive: Easy to implement; Computationally inexpensive; No partitions of the

virtual world

Negative: High complexity; Less realistic as it does not consider obstacles

Hexagonal Tiles - proximity based and centralized

Positive: Easy to implement; Computationally inexpensive; A good benchmark

Negative: High complexity; Less realistic as it does not consider obstacles

Ray Visibility - visibility based and centralized

Positive: Accurately determines area of interest; Exchange minimum number of

messages between players; Efficient

Negative: Hard to implement; Computationally expensive

Tile Visibility - visibility based and centralized

Positive: Simple as tile visibility relationships are pre-computed; More realistic

than proximity-based

Negative: Dynamic zone shaping is not possible; Requires supporting algorithms

to handle obstacles
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Tile Distance - reachability based and centralized

Positive: Includes some advantages of proximity-based and visibility-based ap-

proaches; Smarter than other two approaches

Negative: Computational cost is high

Tile Neighbor - reachability based and centralized

Positive: Inexpensive compared to tile distance approach; Can be tuned based on

applications

Negative: Less accurate compared to tile distance approach

Dynamic AoIM - distributed

Positive: Good for shared domains; Maintenance overhead is distributed; Dynamic

tuning of area of interest; Frequent AoI alteration and correction are controlled by

time and space parameters; Can be combined with any type of proximity-based,

visibility-based and reachability-based approaches

Negative: Not suitable for centralized architecture; In frequent dynamic environ-

ments performance is likely to drop

6.2 Expedited State Sharing

The fundamental difference between an online game and a streaming system is the

traffic pattern and timing constraints of the transmitted data. In an MMOG, the data

is represented by states that carry useful information describing a player in the virtual
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world, and sharing of such states with other interested players is very important.

Moreover, an event generated by a player can produce more events because of the

reactive actions of other players. Thus, the traffic pattern is completely different

from a streaming system. In an MMOG, the traffic pattern is not continuous where

messages, in most cases, are short but frequent that requires sharing with other

interested players within a time limit.

Figure 6.7: State information distribution through binary tree

Consider a system with N players where each player is a uniform distance away

from each other. Say that each player, with its available bandwidth, can simultane-

ously relay messages to only two other players. The most commonly practiced ap-

proach is the binary tree to distribute state information. The root forwards the state

to its two children, and each of the children in turn relays it to two other players and so

on. According to Figure 6.7, it takes 6 time slots to complete the state-dissemination

task. One of the limitations of such an approach is the unexploited bandwidth of the

players in the following time slots, if they are unused. Consider Figure 6.7 again; at

time slot 4, 8 players can forward state information to 16 other players. But there

are 7 players (1+2+4) at the upper level who can perform the job. In this scenario,

their slots are idle; off-course idleness depends on applications that are irregular. We

can exploit those idle periods of the players even at the cost of a complex protocol.

But when bandwidth is not abundant, this complex protocol could be valuable. The

slot-by-slot state forwarding is shown in Figure 6.8. It means that in the first slot or
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Figure 6.8: State distribution through expedited mechanism

round, the parent can forward the state information to two players. In the second

slot or round, the parent and these two players who received the state information in

the previous round can forward the state to six other players in total, and so on.

The key concept is to characterize a routing table that can share states among

the players quickly. The core model of a player is shown in Figure 6.9. The objective

is to disseminate state information among the players with a minimum number of

time slots. Let all players be homogenous in terms of bandwidth and also equidistant

from each other. This means that each player can be reachable to other players with

the same time. Let each player have degree 1 (degree is an integer denoting how many

players can receive state information from this player; it is a function of bandwidth).

Thus the state-distribution process is like a linear approach. The source relays the

state to player 0, player 0 forwards to player 1 and so on until player N − 1 copies

it to player N . Thus the state information floods the system within N time slots.
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To improve such flooding, the following expedited approach is useful. Our task is

to distribute the state information to N players. Say the source relays the state to

player 0. Now the task can be considered two subtasks where the source and the

player 0 each distribute the state to N/2 other players. So the pattern seems to be a

recursive one, and this approach takes log2N time slots rather than O(N) time slots

when each player has degree 1.

Figure 6.9: Core model of a player

6.2.1 Homogeneous Case

Let us move one step deeper, where each player has a degree of m. From a simple

mathematical derivation, it is clear that a traditional tree-like approach will take

dlogmNe time slots. This could be good enough for many applications, but sometimes

we need a quicker method. Let p(i) denote the number of players have the state

information at the beginning of the time slot i. Thus it takes the form p(i) = (m +

1)×p(i−1) = (m+1)i−1. So the time required to distribute the message is dlogm+1Ne.

The difference between these two approaches is in the base of the logarithmic function.
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6.2.2 Heterogeneous Case

It is complicated to model a system with heterogeneous aspects. In this case, we have

to consider a case where players have different degrees. We can solve this through

the same concept that we have used in the homogeneous case. Let us form groups

whose members have the same degree. Say there are g groups of different degrees

m1,m2 . . .mg and each group has different players: N1, N2 . . . Ng players, respectively,

where N =
∑

j Nj.

The order of state dissemination has an impact on performance. For better

functioning, it is intuitive to forward state information to players with higher degrees.

Let m1,m2 . . .mg be ordered in descending order of degree. The time required to

share state information with N1 players of Group 1, each of whom has m1 degree, is

dlogm1+1Ne. Thus the next task is to distribute the state information to N2 players

of Group 2, each of whom has a degree of m2 degree. At this stage of processing,

there are N1 sources. The time required to do each parallel task is dlogm2+1N2/N1e

by ignoring the extra degree (m1 − m2) of each N1 players. The time requirement

would be dlogm3+1N3/(N1 +N2))e in the next step. So the total time to complete

state dissemination would be:

t = dlogm1+1Ne+ dlogm2+1N2/N1e+ . . .+

⌈
logmg+1Ng/

g−1∑
j=1

Nj

⌉
(6.2.1)

From this equation, it is clear that each subtask can be accomplished quickly even

in the heterogeneous case. Of course, this requires special scheduling mechanisms to

obtain the maximum benefit.

6.3 Quality Control

Quality control, a key requirement for online games, is a demanding task. Game

providers put enormous resources into systems to guarantee the desired level of gam-

ing experience. The client-server architecture is the dominant practice for online
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games with a single authoritative server designed to handle game logic. Hence, if la-

tency between a client and a server is large, the responsiveness of the game decreases,

and the performance is likely to drop. In this section, I present a new quality-control

algorithm considering players’ virtual and geographical positions. The proposed pro-

cedure assumes that the interaction details between two players are inversely pro-

portional to their virtual distance. Based on this principle and time constraint for

the target application, a quality precedence matrix is formed to tune gaming experi-

ence. The intuition is to reduce latency by directly sharing application states between

end-users rather than following a comparatively long path through the server, which

is a variant of pure client-server architecture but incorporates players’ participation

actively.

6.3.1 Problem Formulation

Consider an MMOG system where a server (S) serves n players within a common

area of interest. The application requires a kind of group communication within

the common area of interest. In client-server architecture, each and every update

message (game state) is relayed through the server. Let P be the set of players

P = {p1, p2 . . . pn} and the end-to-end delay between a player pi and the server S to be

li. Let L be the set of end-to-end latency to the server for all players L = {l1, l2 . . . ln}.

Thus, the time required to forward a message from player pi to another player, pj,

through the server is Lij = li + lj. Considering processing delay (Dp) at the server,

it becomes Lij = li + lj + Dp. Thus, the pair-wise latency between any two players

through a single-hop server can be presented by the matrix LM .

The maximum latency can be determined by picking the two highest latencies

to the server. Say lM1 and lM2 are the two highest latencies to the server for players

PM1 and? PM2 . Thus the maximum latency will be Lmax = LM1M2 = lM1 + lM2 +Dp.

The average latency can be defined by equation 6.3.1.
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Lavg =

∑n
i=1

∑n
j=i+1 lij

n×(n−1)
2

(6.3.1)

Now, assume that Tc is the delay threshold constraint. Failure to obey the constraint

deteriorates the performance of the application. Indeed, the performance remains

steady as long as Lij < Tc for all i and j. Our goal here is to relax Lmax for a better

gaming experience using players’ spare resources, i.e. minimize Lmax.

6.3.2 Peer Potentials

One of the big problems of any collaborative group communication is the shortage of

bandwidth. This problem gets even worse with peer heterogeneity. Thus, the pro-

posed system requires confirmation of committed peer bandwidth. For an improved

system, the players can directly exchange state information, in addition to sending it

to the server. Thus, the system roughly estimates a number for each player, implying

parallel message forwarding capabilities. We call this peer potentials or degree. If a

peer has degree four, it could redirect messages to four peers.

6.3.3 Physical Position Approximation

To better comply with game specific time constraints, we need each player’s physical

position. An approximation concept can be incorporated to cover this assumption;

in the process, each player will determines its distances to a few geographical land-

marks placed strategically in the system. The distance to the landmark is going to

be used for position estimation. It should be noted that these landmarks are not

necessarily servers. It is intuitive that three landmarks would be adequate for such

approximation. As the end-to-end delay itself is not invariant, the intersections may

not be explicitly available. Thus, the physical location of a players’ machine in the

global coordinate system is roughly approximated. The server uses these estimates

along with their degrees to comply with time constraints.
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6.3.4 Virtual Position and its Impact

In online games, virtual and physical positions are two different concepts. Virtual

position describes a location in a virtual world or in a game field. On the other hand,

physical position means the actual position of a player on the Internet-for example,

a player located in Berlin, Germany. Both are significant and need to be considered

for an improved system:

• If two players are from two distinct geographical positions and are located far

away from each other, their interaction in a virtual world could be challenging

and timely state-sharing would be hard. In reality, physical position positively

influences game performance;

• The virtual position of players in a game defines closeness. Area of interest

is a well-known term in the gaming community. It forms a group for a set of

closer players in terms of their virtual position. But we believe that even in the

same area of interest, the importance of interaction for any two players is not

uniform. Simply put, a closer player has greater importance than a distant one,

even within the same area. For a better gaming experience, the importance of

interaction must be taken into consideration.

Assumption - In an area of interest, the importance (value) of interaction between

two players is inversely proportional to their virtual distance, i.e. Ii,j ∝ 1
di,j

.

Thus a player must treat other players according to their virtual distance. A closer

player would get more importance than a distant player. Considering this principle,

a closeness (C) matrix is formed for a group of players.

6.3.5 Message Redirection Procedure

For an interaction space of n players, there are C(n, 2) unique pairs for group com-

munication. Thus, the matrix LM has C(n, 2) non-zero items representing the laten-
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cies of all pairs. Let Pair-Wise-Delay (PWD) be a set that keeps such information.

So,PWD = {Li,j|∀i,ji < j}. This set assumes a symmetric latency relationship for

any two players.

Say player pi and pj introduce the largest latency Lmax = Lij = li + lj +Dp. The

only way to reduce delay is to allow them to exchange messages directly. So, when

Lmax is at a critical stage, i.e. Lmax ≥ Tc, player pi not only forwards update messages

to the server but also to player pj, and vice versa. The procedure can be applied to

the next highest Lmax as long as the degree of the players supports this. The main

intuition is to allow the exchange of game states directly between two players that

cause the largest latency in the system.

6.3.6 Quality Control

For a superior gaming experience, the latency and closeness matrices formed earlier

can be used to identify where a quality improvement is significant. First, we normalize

the latency matrix LM by Tc, NL = LM ./Tc. The closeness matrix is constructed from

the virtual distances among players as explained earlier. Let di,j represents the virtual

distance between player pi and player pj. Say the virtual distance matrix is D and

maxDistance defines the maximum virtual distance for a set of players. As a result,

the closeness matrix becomes

C =
(maxDistance+ 1)−D

maxDistance
(6.3.2)

After normalization, the higher values of both matrices indicate the importance of

quality control in terms of two different ratings. Now based on latency and closeness

significance, wL and wC respectively, the quality precedence matrix Qp = wC ×

C + wL × NL is formed where wL + wC = 1. Thus the game engine can tune Qp

according to its needs. The quality control algorithm is given in Figure 6.10. As

the closeness matrix changes frequently, so does the quality precedence matrix. We

suggest the periodic adjustment of the second part of the quality control algorithm.
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Figure 6.10: The quality control algorithm in MMOGs
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The importance level (IL) determines at what level of importance we should exchange

direct messages. A lower value has a higher significance.

As mentioned earlier, we assume that the closeness of interaction between two

players is inversely proportional to their virtual distance. Based on this principle and

the time constraint for the target application, a quality precedence matrix is formed

to improve the gaming experience. In adverse circumstances, this allows players to

exchange state information directly. The idea is to reduce latency by directly sharing

application states rather than following a comparatively long path through the server.

The benefits are twofold: (1) the delay is reduced for some players, leading to a higher

quality of experience; and (2) the load on the server is likely to drop, or it can make

room for more players with the same resources.



Chapter 7

Evaluation

This chapter evaluates the hybrid MMOG architecture and identifies its pros and

cons. It also covers the analysis of all new algorithms presented in the thesis such as

multilevel multiphase load balancing, dynamic AoIM, expedited state dissemination,

quality improvement and others. In this chapter, the efficiency and suitability of these

ideas are verified for collaborative virtual applications, especially for online games.

As explained, the area of interest or a zone is a logical space containing a small

part of the virtual world. Today, the size of a zone or an AoI is below 100 players

(approximately 30—50). For example, World of Warcraft supports Raid-Groups 1

of up to 40 people. In our simulation, whenever the number of players is used as

a variable in a figure, it refers to the size of an AoI; i.e., it describes the number

of players in that zone. As can be seen, we have run the simulations for up to 500

players in a zone, a figure that is a big improvement over today’s MMOGs, and can

attest to the efficiency of our proposed protocol.

This chapter is organized into several sections. In Section 7.1, the effectiveness of

intra-zone communication is given and compared with the well-known group commu-

nication strategy called NICE. The performance improvement, i.e. stability, due to

1http://www.worldofwarcraft.com/info/basics/raidarea.html

127
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entity typing is illustrated in Section 7.2. The significance and robustness of interest-

driven zone crossing is presented and discussed comprehensively in Section 7.3. The

analysis and ranking of different load balancing algorithms are given in Section 7.4,

while in Section 7.5, the feasibility and performance analysis of the dynamic area of

interest management are presented. The importance of the expedited state dissem-

ination is shown in Section 7.6. The quality improvement of an MMOG because of

proper precedence ranking is illustrated in Section 7.7.

7.1 Effectiveness of Intra-Zone Communication

OPNET 2 modeler provides a modeling and simulation environment for design-

ing communication protocols. It offers tools for creating and testing large network

environments in software. Designer can test and optimize settings and determine net-

work traffic values as required. The modeler comes with tutorials for the beginners

with several introductory modeling projects. OPNET was used to model and simu-

late the architecture described in Section 4.1. We ran the software on Intel Xeon @

3.00 GHz with 2GB of RAM that allows us to run simulations with up to 500 hosts.

Here, 500 hosts represent the size of a zone in terms of players rather than the en-

tire MMOG system. Indeed, depending on the model and value of some parameters,

each host requires 3–6MB of memory. We simulate the behaviour of the intra-zone

architecture of MM-VISA, and compare our proposed DS-ALM and NICE [BBK02]

for 50 to 500 workstations in a zone. In selecting a well-known protocol for com-

parison, the following parameters are considered (based on the taxonomy in chapter

3): degree constraint, tree refinement, deployment level, P2P substrate requirement,

overlay metric, mesh versus tree, and population. As can be seen from Table 7.1,

NICE comes very close to DS-ALM in terms of such requirements.

NICE consists of layers where each layer is decomposed into clusters. Each cluster

2http://www.opnet.com/
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Table 7.1: Protocol similarity

Points NICE MM-VISA

Degree constraint Yes Yes

Refinement Periodically Periodically (at join)

Deployment level End-system Hybrid

P2P substrate required No No

Exploit IP multicast No No

Metric Delay and Bandwidth Delay and Bandwidth

Mesh-First or Tree First Mesh-First Mesh-First

Population 100s of users 100s of users

may contain K to 3K−1 members, and a leader is elected in each cluster. Each leader

is allowed to access the immediate upper layer, and the root of the complete tree is

finally the leader of the cluster in the highest layer. NICE has one parameter, K, the

value of which has been set to 3 by the NICE designers. By contrast, DS-ALM has a

parameter with which we can experiment: degree. In order to have a fair comparison,

we compare NICE with a 3–7 degree version of DS-ALM. Indeed, most clients in

NICE can only communicate with K to 3K − 1 (3 to 8) hosts. However, when NICE

elects a leader, this leader will communicate with nK to 3nK − n members (where

n is the number of layers to which the leader belongs). That means that for a tree

containing four layers, and considering that the highest layer will only have one host,

the root of the tree will have to send between 9 to 24 messages. Considering that

most of the time the number of members within a cluster will be around 1.5K (since

the clusters are split into two when they reach 3K members), the root will have to

send more than 13 messages. Therefore, electing a bad leader can slow down the

message-forwarding process. On the other hand, since DS-ALM allows its host to set

the number of members to which it can forward messages, there will not be any risk
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of slowing down the forwarding process.

7.1.1 Technical Considerations

Through OPNET, we deployed a random topology and constructed a tree structure

of IP clouds with an average node degree between three and four. Leaves of the

tree are subnetworks representing xDSL users. The tree is based on the real Internet

structure, presenting different tiers (National, Regional, and Local). Considering this,

all leaves are connected to local ISPs, i.e. tier 3. However, we made an exception for

the rendezvous point and connected it to a tier 2 cloud in order to make it accessible

faster. The different IP clouds are connected using PPP DS3 links (@45Mbps). The

same kind of link is used between the routers and the clouds and between the routers

and the xDSL modems. On the other hand, the end hosts (clients and server) are

often connected to their modem/router through 100Mbps Ethernet cable.

All traffic generated by the clients is from the MMOG application only. We

do not consider any background traffic because we want to compare raw results of

the algorithms. Both applications only use UDP as the transport layer, which is

quite logical since the purpose is to minimize the end-to-end delay while transmitting

packets in real time. Moreover, the links in the simulation reflect real links since

OPNET implements the correct behaviour of UDP/IP layers.

7.1.2 Real-world Game Traffic

To measure the performance of MM-VISA in a real gaming situation and to compare

it with NICE, we have targeted simulations for two types of MMOGs: the Massively

Multiplayer Online Role Playing Game (MMORPG) and the First Person Shooter

(FPS). We have chosen to work with real-world measurements of traffic for these

two types of games due to their varying characteristics. In this section, real-world

traces are first introduced. Then, in the next section, we feed these traces into our
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simulation to measure the performance of MM-VISA.

MMORPG and FPS games are somewhat similar as both require low bandwidth

and generate small packets. The bandwidth requirement of an MMORPG is even

lower because of its strategic nature and softer real-time constraints compared to an

FPS. The game traffic of an MMORPG has strong periodicity but sometimes follows

temporal locality.

The pattern of Client traffic is a complex function of different factors, but in most

cases it follows exponential distribution like ShenZhou 3 online [CHHL05]. However,

the packet inter-arrival time is approximately 600ms and varies across game genres. In

Quake, the most computationally expensive part of a cycle is the rendering. It causes

slower hosts to have significantly higher and more variable inter-arrival times, while

the fastest hosts transmit most packets at 14ms intervals[LBA04][Bor00]. Moreover,

the client’s packet inter-arrival time also depends on the current map: some maps

have very regular packet transmission intervals, and in others, packets are sent more

randomly [LBA04]. Thus, the client traffic can be modeled as one extreme [Bor00] or

two extreme distributions [CFSS05]. In our simulation, we considered one extreme

distribution. The client traffic of ShenZhou and Quake are shown in Figure 7.1 and

Figure 7.2, respectively, for an hour long simulation in two scales: w.r.t. seconds

(top figure) and w.r.t. minutes (bottom figure). Observation reveals that on an

average, each client generates more traffic in an FPS compared to in an MMORPG,

as expected.

The aggregate traffic of a player, i.e. inbound traffic due to P2P nature, is shown

in Figure 7.3 and Figure 7.4, for MMORPG and FPS respectively. The peak load

in terms of inbound packets does not follow a linear shape. The variance of inbound

packet for ShenZhou online and Quake are approximately 16.49 packet and 226.45

packet, assuming a player has 10 neighbours in the overlay. Note that the number

10 here is chosen simply to illustrate the traffic pattern. Thus, it is evident that an

3ShenZhou Online. http://www.ewsoft.com.tw/



Chapter 7. Evaluation 132

Figure 7.1: MMORPG client traffic from ShenZhou: exponential distribution, mean

packet inter-arrival time = 550ms

Figure 7.2: FPS client traffic from Quake: extreme distribution, mean packet inter-

arrival time = 40ms
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Figure 7.3: Inbound traffic for a hybrid MMORPG client with 10 neighbors (expo-

nential distribution, mean packet inter-arrival time is 550ms for each neighbor)

Figure 7.4: Inbound traffic for a hybrid FPS client with 10 neighbors (extreme

distribution, mean packet inter-arrival time is 40ms for each neighbor)
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FPS with hybrid MMOG architecture would be exposed to more loads compared to

an MMORPG with the same architecture.

Figure 7.5: The cumulative distribution function (CDF) of the packet size of (a) a

P2P player (b) one player of a client-server model

Due to the P2P component of this hybrid architecture, each player needs to

relay some packets to some other players. Thus, the packet size of a player has a

wide distribution and has a linear dependency on the number of direct neighbours. In

Counter-Strike, the average packet size is 50.4 bytes and 6.15 bytes for each additional

client without the UDP header [CFSS05][FCFW05]. The distribution has also been

considered to have heavy tail behaviour. The extreme distribution with a(n) =

34.5 + 4.2n and b(n) = 9 + 3n, where n is the number of players, is considered a good

approximation for the server packet size. Exploiting that information to this model,

the cumulative distribution function (CDF) of the payload is shown in Figure 7.5,

the top part showing a player having ten neighbours and the bottom part for a single

player. The client packet has an extremely narrow distribution with the mean size of
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40 bytes [FCFW05]. Thus, an extreme distribution, with a = 41 and b = 6, can be a

good choice for client packet size, leading to a packet size that is reasonable to carry

the gaming functionality.

Figure 7.6: The worst-case load comparison between NICE and MM-VISA using

MMORPG traffic

7.1.3 Simulations: DS-ALM vs. NICE

The above traffic models above were fed into the simulation system. A zone with 100

players was used for this experiment, where each player had an identical configuration

and resource. After an hour-long simulation, we parsed the results and identified

a node in the MM-VISA system that had the maximum load in terms of packets

handled. A similar node was identified from the NICE configuration. The load of

these nodes is compared and shown in Figures 7.6 and 7.7 (we randomly picked one

minute from one hour to visualize the load variation) for the MMORPG and FPS,

respectively. To present the difference, the MMORPG load is shown in minutes

whereas the FPS load is shown in seconds. It is evident that the worst-case scenario
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Figure 7.7: The worst-case load comparison between NICE and MM-VISA using FPS

traffic

of an MMOG with NICE is more severe than that with MM-VISA. This is due to the

layered feature of NICE where the cluster leaders in upper layers are more loaded for

packet forwarding than the lower layers’ leaders.

We compared the local communication strategy of MM-VISA, i.e. DS-ALM,

against NICE. Both NICE and DS-ALM use different processes to exchange mes-

sages. This allows a certain degree of multitasking and therefore reduces the delays

to forward packets. For NICE, we did not take into account that the leader of a

cluster could change during the creation of the tree (of course, that does not prevent

a new leader being created while splitting one cluster into two when the number of

hosts exceeds 3K − 1). However, this should not have a big impact on the results

since the leader only sends messages to K to 3K − 1 hosts, and all members of a

cluster are the ones that minimized the end-to-end (ETE) delay between them.

The maximum-diameter diagrams, according to Figures 7.8 and 7.9, show that

despite a higher number of hops used in DS-ALM, the end-to-end delay remains
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Figure 7.8: Maximum diameter in terms of delay

Figure 7.9: Maximum diameter in terms of hops
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lower. This is possible because of the nature of each host. In DS-ALM, more nodes

are considered gateway nodes while only the leader of a cluster is a gateway in NICE.

In addition, since DS-ALM uses a greedy heuristic approach to define routing paths

and creates ignore sets for each source, it ensures that, depending on the source, the

gateway used to forward the message will be the one which minimizes the ETE delay.

Concerning the average end-to-end distance in terms of time (Figure 7.10), we can

Figure 7.10: Average ETE distance in terms of time

observe that it is smaller with DS-ALM even if the average distance in terms of hops

(Figure 7.11) is greater than that with NICE. However, the difference between the two

algorithms is lower than that between the diameters and especially for the average

number of hops. This difference concerning the number of hops can be explained by

the fact that the diameter in terms of hops, in the case of DS-ALM, is an isolated

value. The stretch is calculated by the formula s = i/d (where i is the time taken to

send a packet through a path established by the ALM algorithm and d is the time

taken to send a packet in direct unicast). The results show that the average stretch

is better in DS-ALM than in NICE (Figure 7.12). We can see that the two curves are
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Figure 7.11: Average ETE distance in terms of hops

Figure 7.12: The comparison of stretch
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parallel above 200 clients. We can suppose that for 50 to 100 clients, the real curves

could be parallel too, but also that the simplification we made in the implementation

results in larger stretch for NICE. However, the fact that the stretch is smaller in

DS-ALM seems logical. Indeed, the average ETE is lower in DS-ALM, which will

result in lower i values and therefore for the same d values; the stretch will be lower.

Figure 7.13: Comparison of diameter in terms of time (NICE & DS-ALM)

Figure 7.13 illustrates the comparison of NICE and DS-ALM for different degrees

of parameter value. We can see the variation of the diameter in terms of time with the

degree and the number of clients. This graph illustrates two concepts: the increase of

diameter when the number of clients increases and the decrease of diameter for the

same number of clients when the degree increases. We also observe that the diameter

is lower for DS-ALM and can be as low as one half of NICE’s diameter. The decrease

in the diameter with the degree is easily understandable, as it is shown in Figure 7.14.

When the degree increases, the number of connections a node can keep also increases.

Therefore, some nodes will receive messages directly rather than indirectly and the

end-to-end delay will decrease. It will also affect the number of hops, as we can see

in Figure 7.14.
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Figure 7.14: Effect of degree on the number of hops

Figure 7.15: Comparison of diameter in terms of hop with the different degrees
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Figure 7.15 illustrates the comparison between NICE and DS-ALM for different

degree parameter values. We can see the variation of the diameter in terms of hops

with the degree and the number of clients. As explained, the maximum number of

hops decreases with the degree. Nevertheless, even with a degree of 25, NICE still

has a smaller number of hops. This is due to its tree-based algorithm, while DS-ALM

is meshed-based. Therefore, the tree constructed by DS-ALM will depend on the

source and can result in a higher number of hops. However, as mentioned earlier, a

minimum number of hops does not offer a minimum end-to-end delay diameter, as

shown in the previous graphics.

Figure 7.16: Average ETE evolution (NICE & DS-ALM)

Figure 7.16 illustrates the comparison between NICE and DS-ALM for different

degree parameter values. We can see the variation of the average ETE in terms of

time with the degree and the number of clients. We can make the same comments

as we did with the diameter. The evolution of the average ETE with the degree is

following the same curve, and the higher the degree, the higher the difference from

NICE to go until DS-ALM shows an ETE that is half of that figured for NICE.
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Figure 7.17: Average number of hops evolution with the degree (NICE & DS-ALM)

Figure 7.17 illustrates the comparison between NICE and DS-ALM for different

degree parameter values. We can see the variation of the average ETE in terms of

hops with the degree and the number of clients. In terms of average number of hops,

the evolution is interesting. Indeed, when the degree is higher than 10, DS-ALM’s

average number of hops is below that of NICE. In addition, for a degree of 10, the

difference is quite small. This is related to what we explained earlier concerning

the highest isolated values obtained for the diameter. Besides this high diameter

value, DS-ALM finds quite short paths, especially when the degree increases, since

the number of possible paths increases considerably.

Like other parameters (diameter, number of hops, ETE), stretch decreases when

degree increases (Figure 7.18). However, in term of ratio when compared against

NICE (stretch of NICE vs. stretch of DS-ALM), the difference is quite large. The

comparisons of show that DS-ALM is suitable for real time multi-source applications

like MMOGs. Indeed, DS-ALM provides a lower diameter in terms of time as well as

a lower average ETE delay. Even though the mesh is first established using the real
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Figure 7.18: Evolution of stretch with the degree (NICE & DS-ALM)

geographic distances between nodes, the ALM paths are then based on the minimum

ETE delay between the nodes depending on the source. DS-ALM also has better

stretch values, which is a consequence of the lower ETE delay observed previously.

This gets even better when considering a higher degree, the parameter of the DS-

ALM algorithm, which lets each host to determine the number of clients to whom it

can pass messages.

Figure 7.19: Simulation layout
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Figure 7.20: The avatar movement model

7.2 Stability Improvement

A simulation layout was designed to verify improvement due to entity typing, de-

scribed in Sections 4.1 and 4.3. The performance and other related information are

stated with respect to a hexagon, i.e. the center hexagon, which is surrounded by

other six hexagons. The layout is given in Figure 7.19. Initially, players with differ-

ence types of physical characteristics are placed randomly in each zone. They can

move from one zone to another zone. As mentioned earlier, we have tested the con-

cept with respect to four different types of avatars. Each avatar is characterized by

an average velocity with a movement pattern. The movement model is simply based

on direction and coverage angle. The term ”coverage angle” means the largest span

at which an avatar can instantly change movement direction. Let a player’s current

direction, velocity, and coverage angle be θ, v, and ϕ, respectively. Thus, a player can

instantly move within the span of θ − ϕ/2 to θ + ϕ/2. Figure 7.20 shows the object

movement model used here. Some of the related simulation parameters are men-

tioned in Table 7.2. Four types of entities are considered: slow entities (e.g. soldiers

on foot), normal entities (e.g. tanks), fast entities (e.g. jeeps) and very fast entities

(e.g. jet planes). Each entity can be characterized by its velocity. The coverage angle

is inversely related to velocity. Due to the law of inertia, the faster-moving entity
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Table 7.2: The simulation parameters used for stability testing

Parameter Values

Hexagon length 1500 to 5000

Object type Velocity (km/h) Coverage(degree) % of objects

Slow 2 90 40%

Normal 5 45 30%

Fast 10 10 20%

Very Fast 50-350 5 10%

cannot make a sharp turn, but a soldier can. The simulation was carried out with

discrete event simulation approach in the Windows XP platform. Each point of the

following figures was the average of 20 to 25 runs. We present some relevant figures

and analyze them in the following paragraphs. We have tested the advantage of entity

typing for the zone layout presented in Figure 7.19. Performance improvement, i.e.

the decreased number of affected nodes, during zone crossing is presented in Figure

7.21. Each point in the curve presents how many players are suffering with respect to

the central zone in a given minute. It shows that for the same settings there are fewer

affected players when we use the entity typing, i.e. clustering, concept. As entity type

is used to classify the player and to place it into the appropriate cluster, it isolates

different types of objects into different clusters and ultimately moves zone-crossing

penalties from the whole zone to a small cluster. This improves the quality of the

gaming experience.

The performance enhancement of this architecture is also tested against zone-

crossing events. The total number of affected nodes in the general approach (Ag

i.e. no clustering) and the clustering approach (Ac) are counted for an hour-long

simulation. The improvement ratio Ag/Ac is shown in Figure 7.22. It reveals that
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Figure 7.21: The analysis of entity typing concept

Figure 7.22: Improvement ratio with respect to no clustering mechanism
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Figure 7.23: Various zone crossing models & movement patterns

Table 7.3: A comparison of crossing in different approaches

Model tested Number of crossings and relations

[Movement pattern] Naive approach VELVET MM-VISA

(Cn) (Cv) (Cm)

Any movement pattern Cn ≥ Cv Cm ≤ Cv Cm ≤ Cn

around the zone boundaries Cn ≥ Cm Cn ≥ Cv Cm ≤ Cv

there are fewer affected players in the clustering approach compared to the generic

approach. But, the improvement ratio slowly drops because of comparatively lower

Ag values. At the start of the simulation, an overlay is formed for a number of players

in each zone. When players move from one zone to another, they break routing paths

of their descendants. But, the moved players are usually placed at the edge of the

new overlay. So, the value of the affected players drops over time hence the ratio.

7.3 Measurements of Interest-driven Zone-crossing

While it is difficult to define a simulation model to verify the interest-driven zone-

crossing approach introduced in Section 4.5, we have tested the performance of dif-
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Figure 7.24: A random square-step walk

ferent types of zone-crossing approaches, such as simple (Figure 7.23a), overlapped

(Figure 7.23b) and interest-driven, along with dynamic shared regions (Figure 7.23c)

presented earlier. Obviously, performance depends on the size of overlapped regions

and varies with movement pattern of the players like 32–point star (Figure 7.23d), ex-

plosion (Figure 7.23e), sinusoidal wave (Figure 7.23f), random, etc. For all cases, the

simple approach gives the worst result and the interest-driven approach is at least

as good as the overlapped method because it is only applied when the overlapped

method declares it a zone crossing. The improvement over the overlapped method is

a function of a given interest vector and the position of players in the corresponding

zones. The conditional performance improvement is given in Table 7.3.

We mentioned earlier that the performance of the presented zone-crossing ap-

proaches depends on the player’s movement pattern and interest vector. We tested

the presented methods for various movement patterns. Snapshots of two used random

walks are given in Figure 7.24 and Figure 7.25 for 1000 and 12000 steps, respectively.
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Figure 7.25: Another random walk

Many other walk-generating algorithms are used in the simulation.

We compared the performance of both VELVET and interest-driven zone-crossing

methods for various buffer region sizes with identical setup and experimental data.

In Figure 7.26, the X–axis presents the width of the buffer region while the Y–axis

shows the number of zone crossings encountered. Each point of each curve is the

average number of zone crossings of a single player for 1000 steps. The importance of

the buffer region is clearly visible in Figure 7.26 as the number of zone crossings drops

for the higher width of a buffer region. For the same settings, it also shows 95% con-

fidence interval (CI) of both approaches. Moreover, the interest-driven zone-crossing

method displays better performance than the exclusive buffer region approach. This

confirms our earlier claim that interest-driven zone-crossing is at least as good as

VELVET’s approach or better. This is because of the delayed decision-making policy

that depends on the interest vector of the concerned player and the density of players

around.
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Figure 7.26: Comparison of zone crossing approaches for a player

Figure 7.27: Message overhead reduction with respect to degrees
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We also tested the message exchange reduction rate according to the section

presented in Section 4.4. The improvement is closely aligned with degree, which is

intuitive. As explained earlier, we can drop forwarding of regular messages when

needed to the non-gateway nodes based on pruned links. Thus, if we have more

non-gateway nodes, improvement will be higher. Figure 7.27 shows the message

exchange reduction rate with respect to average degree. Thus for a moderate case,

the improvement is around 10%.

7.4 Load-Balancing Performance

Extensive simulations were carried out to verify the load-balancing approaches pro-

posed in Chapter 5 and to conduct the performance evaluation. We have targeted

the simulations for two types of MMOGs: MMORPG (Massively Multiplayer Online

Role-Playing Game) and FPS (First Person Shooter) and used the same traffic model

explained earlier in Section 7.1.2.

We have defined load based on message generation rate. This definition is justi-

fied with the help of Figure 7.28 and Figure 7.29. Based on the population and packet

models explained earlier, we have counted the number of players and the number of

packets handled in each zone. Figure 7.28 shows players’ distribution in 210 logical

zones based on the parameters mentioned earlier. We randomly picked a zone, e.g.

“27”, and observed its adjacent zones. The number of players in that zone is shown

using stairs. In Figure 7.29, we present the same scenario but in terms of packets.

If we closely compare the lower curves of Figure 7.28 and Figure 7.29, it is apparent

that the load of a server is not proportional to the number of players. Actually, it

depends on different factors like game theme, type of actions involved in that zone,

etc. Thus, flagging a zone as a hotspot based on the number of players is not entirely

correct; it is ultimately a complex function of different attributes and varies across

game genres.
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Figure 7.28: The load based on player counts

Figure 7.29: The load based on packet counts
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Another interesting observation is related to the load of neighbors. If a zone is

overloaded, it is likely that its surrounding zones are also loaded. Figure 7.30 displays

the density of players in the entire game space (42 zones). A light zone is more heavily

populated than a dark zone. It also shows there are two clusters of hotspots formed

by three (3) adjacent loaded zones.

Figure 7.30: The density of players across zones

The effectiveness of the first phase of MMLB is shown in Figure 7.31 and Figure

7.32. For an hour-long simulation with identical setup, we have observed the system

load at every minute. Figure 7.31 shows the standard deviation of packets being

processed by all servers of an MMORPG system when there is no load-managing

mechanism. It shows the uneven load distribution of the servers. The significance of

the first phase of MMLB is the balanced load among the servers. From Figure 7.32,

it is clear that the standard deviation of packets being handled by the servers has

dropped to a large extent and is a good indication of the balanced load of the system.

We have also compared our algorithm with the generic zoning approach. We ran
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Figure 7.31: The standard deviation of the processed packets by the servers’ overtime

with no load-balancing mechanism

Figure 7.32: The standard deviation of processed packets by the servers’ overtime

using the first phase of MMLB
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the simulation for 12 hours of game-play over 42 zones. Equations 5.2.2 and 5.2.3

are used to define Tm where p was set to 10. The generic load-balancing approach

measures load as a function of the number of players in a zone while the MMLB uses

number of packets processed to calculate load in a zone. We have shown already that

the counting of processed packets is a better way to measure load. So, to be fair in

the comparison, we tuned the generic approach to operate based on packets rather

than player count. Figure 7.33 presents the number of hotspots encountered at every

minute. The difference between the MMLB and the generic approach is clearly visible

in terms of hotspots, as can be seen in Figure 7.33 top. We also plotted the ratio of

hotspots (generic to MMLB) over time. The magnitude of the ratio is significant and

justifies its superiority, as evident from Figure 7.33 bottom.

Figure 7.33: The evaluation of MMLB against the generic load balancing technique

The performance of MMLB depends on the magnitude of load reduced at each

tuning phase. For 12 hours of game-play, we have counted the average number of

hotspots encountered in every minute for a different scale of reduced load. According
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to Figure 7.34, on an average there are 4 hotspots if MMLB releases 3% of the load of

a hotspot zone. It continues to drop until 18%; is released however, interestingly, it

gradually goes up again after that point, creating a U-shaped graph. This reveals that

reducing load at any magnitude does not necessarily improve the gaming experience,

as it adversely affects other zones.

Figure 7.34: The evaluation of MMLB for different load handover magnitude

The presented adaptive zone shaping for load balancing is also evaluated. To

have a fair comparison, we used identical settings in terms of zones, players and

even packets. We then compared the adaptive technique against MMLB, which uses

fixed hexagonal zones. The simulation was conducted for 12 hours (i.e. 12 hours of

game-play). Figure 7.35 shows the number of hotspots encountered in every minute.

We have plotted the scenarios from minute 600 to minute 720 to zoom in and clearly

demonstrate the difference. For identical settings, it is interesting, and perhaps some-

what counter-intuitive, to note that the adaptive technique faces more hotspots than
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Figure 7.35: The comparison of MMLB and adaptive zone shaping with respect to

hotspots

does MMLB. This is because of the restriction of cut movement. The difference is

presented in Figure 7.35 bottom. It shows that there are a few points where the

adaptive approach performs better, but overall MMLB performs much better against

hotspots, especially in case of a series of hotspots, which is very important since, as

mentioned before, the scenario of a series of hotpots is what happens in reality.

7.5 Evaluating Dynamic AoI Management

In this section, different points regarding dynamic area of interest management will

be evaluated.
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Figure 7.36: Two players need to be contacted to adjust AoI

7.5.1 Advantages of the Architecture

The dynamic area interest management technique presented in Section 6.1 incorpo-

rates peer-to-peer communications with the following advantages:

• It can reduce latency by directly sharing application data between participants

rather than following a long path through a remote server;

• The traffic load on servers can be reduced significantly;

• The deployment and maintenance cost can be reduced due to distributed archi-

tecture;

• One-to-one features like instant messaging and voice communication could easily

be included in the system, adding new features to the application.

7.5.2 Minimizing Communication Overhead and Improving

Scalability

One feature of the proposed dynamic interest management method is the low system

overhead. When the movements of a player cause a modification to an AoI (after

satisfying two constraints, safety-edge space and time-span), the situation requires
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Figure 7.37: Distribution of AoI tracking responsibility in a group of 40 players

communication with only two adjacent players in the convex hull, as shown in Figure

7.36. These two players are the members of Sh responsible for interest management

whose identities are known to all members of this AoI. As the architecture is peer-to-

peer in nature, its cooperative design reduces communication and maintenance cost.

This reduces load on the servers, which is required for scalability.

7.5.3 Dynamic AoI for Various Movement Patterns

Due to players’ mobility, the performance of the interest management model is not

static and largely depends on their movement patterns. We tested the presented

methods for various movement patterns. A snapshot of two tested random walks was

given in Figure 7.24 and Figure 7.25 for 1000 and 12000 steps, respectively. Eight

other variant walk-generating algorithms were used in the simulation.

In traditional MMOGs, the group size is between 30–50, approximately. For
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example, World of Warcraft supports Raid-Groups of up to 40 people. For a group

of 40 players, we tested sharing of AoI tracking responsibility. The mobility model

explained earlier was deployed for 10,000 steps for each player. The output is displayed

in Figure 7.37, which shows that some players are more active than others maintaining

the AoI. There are two reasons for this: (1) there is a moderate number of task hand-

offs; and (2) the task is not distributed evenly. As the AoI is designed for peer-to-

peer structure, so too many task hand-offs could be a problem, and thus uneven load

distribution is actually a positive conclusion in this case.

Figure 7.38: Performance of dynamic AoI for different group sizes - 10,000 movement

steps

We also ran the simulation for different group sizes. The group size was changed

from 40 to 85 with a step of 5. We measured how many times the convex hull was

redefined for 10,000 movement steps, as presented in Figure 7.38. An interesting result

for large groups was observed here: the values are incremented quite radically, which
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implies that, for a large group, the convex hull changes quite frequently compared to

a small group. The curve can be best fitted for quadratic and cubic functions, which

are y = 4.1x2 − 23x+ 48 and y = 0.53x3 − 4.7x2 + 18x+ 2.5, respectively.

7.6 Expedited State-Forwarding Improvements

In Section 6.2, a quicker state dissemination mechanism in the context of peer-to-peer

MMOGs was presented. The theory was checked through the measurement of different

timing parameters like the worst-case time required to share the game state among all

players. In the following figures, we compare the expedited approach against the more

commonly followed tree-like method. For measurement, both approaches (speedup

and general) had identical settings in terms of degree, topology, node ordering (the

higher bandwidth to the lower bandwidth), etc., unless otherwise mentioned.

Figure 7.39: Comparing theories by measurement

In Figure 7.39, we have 512 players; each of them is 100ms away from each other

(this scenario is unreal, its purpose being to verify the theory with the numerical val-

ues obtained through simulation) and has a degree of 2. The maximum time attribute
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Figure 7.40: The measurement of average time to share state information

in Figure 7.39 clearly shows that the expedited approach accomplishes the task well

ahead of the traditional approach. The average time found in Figure 7.39 also indi-

cates that the expedited approach satisfies more players than general approach at a

particular instant of time.

In Figure 7.40, we have tried to come close to real scenarios. The end-to-end

delay between any two players is between 30ms and 100ms. The degree of each player

is not identical: 20% of players have degree 4, 30% of players have degree 3 and the

remaining 50% of players have degree 2. The key objective of such measurement is

to check the significance of the proposed concept. Figure 7.40 votes for the expedited

approach in terms of average time required for state dissemination for each different

number of players. Figure 7.41 justifies the speedup approach in terms of maximum

time required for state dissemination for different numbers of players.
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Figure 7.41: The measurement of maximum time required to share state information

Figure 7.42: The drop-off of the maximum latency
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Figure 7.43: The maximum latency improvement for various group sizes

Figure 7.44: The average latency with 95% confidence interval for difference group

sizes
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7.7 MMOG Quality Improvement

We have verified the algorithmic improvement in terms of different timing parameters.

For different group sizes (20–100 players), players were placed randomly and the

server was approximated at the middle. For these settings, the presented quality

control algorithm was applied to check its performance-the worst-case latency. The

drop-off of maximum latency has been observed, as can be seen in Figure 7.42. Thus,

it is clear that the time-constraint compliance procedure (first part of the algorithm)

shortens time limit and players are likely to have a higher-quality gaming experience.

On the other hand, we also checked how many additional players can comply with

the timing constraint for various group sizes if the proposed concept is practiced. As

performance and improvement is tightly coupled with players’ distribution across the

Internet, the real picture is hard to determine. But the improvement is apparent,

according to Figure 7.43. For the same setup and different group sizes, the average

latency and 95% confidence interval (CI) were calculated, as shown in Figure 7.44.
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Validation

In this chapter, we measure the performance of the system for different proposed

algorithms and concepts, using prototype implementation and real-world networks.

The hybrid MMOG architecture achieves scalability because of peers’ participation.

Unlike file-sharing applications, meeting a time constraint is a key requirement here.

Thus, the length of a path in a tree cannot be too long; in fact, it has a limit. On

the other hand, high dynamics of players can make a tree unstable. Maintaining

a backup parent can improve the overall stability of the system. Challenges such

as frequent movement at the zone boundaries and the hidden node problem were

taken into consideration when implementing the system to ensure transparent users’

experience. Many other points will be discussed in the following subsections.

8.1 End-to-end Delay Measurement

One simple scenario was set up where a node had to choose between two parents.

The home internet users had cable Internet access (Rogers R© ISP). These workstations

calculated end-to-end delay 10 times. The average end-to-end delay for this case is

shown in Table 8.1. Another workstation was set up in Dhaka, Bangladesh. This

167
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Table 8.1: Reflecting the end-to-end delay on the ALM overlay network

Attribute Case 1 Case 2

Average end-to-end Delay (ms) 20 28

station got a large end-to-end delay, 60ms. Sometimes some packets were even lost.

This indicates the necessity of forming realms considering the geographic positions of

the players.

Figure 8.1: A scenario to measure overlay stabilization time

8.2 Overlay Stabilization Time Measurement

As mentioned earlier, introducing zones into the simulation map creates a problem

of nodes having to disconnect from one overlay network and join another as they

switch zones. This is called a graceful node departure, and it happens often in a

simulation as players can move from one zone to another in the game world. Such

a departure destabilizes the tree and causes it to reconstruct, with peers having

to reconnect to resume exchanging state updates. Such reconstruction entails two

events: the departing node has to join the new overlay network, and the orphaned
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Table 8.2: The overlay stabilization time

Attribute LAN WAN

Overlay stabilization time (ms) 41 93

descendants have to rejoin their overlay network. A scenario was set up to measure

the overlay stabilization process. This gives an idea of how bad it could be for a

tree when nodes switch zone. In Figure 8.1, the black node is the departing node.

The triangle represents a sub-tree of the original overlay connected to the master

node. The descendent of the departing node has to reconnect to the tree. So, the

descendent rejoins the tree as in a regular node-joining scenario. The interval between

the node’s departure and the time at which the descendent resumes receiving state

update messages is recorded as Overlay Stabilization Time. The above scenario was

run 10 times in a LAN environment, and 10 times in a WAN (Rogers R© internet home

users-same ISP) environment. The average times are shown in Table 8.2. However,

our understanding is that the times could be higher when we have multiple IPSs

involved. The results show that in a LAN environment, the Overlay Stabilization

Time is 41ms, which can be easily tolerated in the simulation, taking 200ms as a

threshold. In a WAN environment, however, the time is 93ms and can easily exceed

the 200ms threshold. This negatively affects the performance of all of the descendants

of the departing node.

8.3 Impact of Buffer Zone Size

We study how the size of the common area affects the number of disconnections

and connections. Three random traversals were conducted at the boundary of two

adjacent zones, as shown in Figure 8.2, where the black, white, and dotted curves

represent random traversals. The height of the common area was then varied as a
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Figure 8.2: The common area between two zones with three random paths

percentage of the hexagonal zone’s height. Figure 8.3 summarizes the results. The

graph clearly demonstrates how the buffer zone significantly decreases the number of

times the user has to disconnect from one zone and connect to another as it moves

across the boundary of two adjacent zones. Also, the greater the height of the buffer

zone (10% of the zone’s height in our case), the fewer disconnections/connections

happen.

8.4 Number of Tree-level

In case of players under the same ISP, a three-level tree can easily be supported and

the expected delay from the master node to that third level could be about 120-

140ms. A fourth level might also be supported with a slight violation of the 200ms

threshold. But for players under different ISPs, the master would be able to support

the third level with the maximum average delay around the threshold (200ms) or less.

However, the fourth level would be difficult to support as players on the same ISP

show a relatively small end-to-end delay. In reality, each player can support more
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Figure 8.3: Performance improvement due to the use of common area

than one player, and thus the system expands exponentially. Thus, the incorporation

of players in a system relaying game states has a clear advantage.

8.5 Validating Expedited State Forwarding Con-

cept

To validate the expedited state-forwarding concept and to check peer-to-peer potential

for MMOGs, we have planned to construct an overlay network over the Internet. The

end-to-end delay was measured between two regions – the summary is given in Table

8.3. The table shows that there is a somewhat higher end-to-end delay between the

Home PC (placed outside of the campus) and the Lab workstation (a workstation in

’Discover Lab’), even in the same region – Ottawa, Canada – than there is between

the others. This is because of SSH tunneling, which was required to access Discover

Lab’s workstation outside the campus.
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Figure 8.4: The path used for quality measurement due to expedited state forwarding

We ran multiple instances of the same program both at Home and Lab, and

constructed a simple overlay path where each segment represents an overlay hop. The

layout is given in Figure 8.4. Due to the P2P component of this hybrid architecture,

each player needs to relay packets to others. Thus, the packet size of a given player

has a wide distribution and has a linear dependency on the number of players. Here,

the average packet size was 50 bytes and 6 bytes for each additional player without

the protocol header.

The total time required to forward a game state through this P2P setup was

180-210ms. This reveals that we can build multiplayer online games over hybrid

architecture, at least in considering players from a particular continent. According

to the above experiment, it is evident that the performance can be improved using

the Expedited State-Forwarding mechanism. But this performance depends on the

number of hops in a path as well as their idle periods. In this setup, assuming that
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Table 8.3: The measured end-to-end delay between regions

Region Region End-to-end delay (ms)

A B Minimum Maximum Mean

Home PC Lab PC 41 45.5 41.5

Home PC Dallas 27 31 29

Home PC California 50 59 51.5

Home PC Germany 68 79 73

each player gets a chance in every four packets to accelerate state forwarding, then

the time required to forward a game state becomes 115.25ms. This clearly shows that

the quality of the gaming experience can be enhanced, but that such enhancement

depends on many factors like bandwidth, game type, etc.
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Conclusion and Future Directions

The term Peer-to-Peer (P2P) has become a common phrase referring to a combination

of software applications, network technologies, and ethics of content sharing. In the

years ahead, the evolution of the P2P concept will be spread across many applications.

The networking industry will launch a wider range of peer-to-peer applications that

should compete with traditional client/server systems for interest. The standard P2P

protocol will undoubtedly gain wider approval. Finally, through the process of public

debate, the consequences of free P2P applications (information sharing) on intellectual

property law and copyright will slowly be resolved. There are several advantages to

a P2P system, such as effective real-time collaboration and scalability. By contrast,

a server cannot scale well with an increasing number of clients that require strong

computing power and high-speed communications.

Distributed entertainment and interactive applications have become increasingly

popular. The spread of broadband access among home users is also fueling the growth

of online interactive applications. Besides file sharing, companies are also interested

in content distribution, e-marketplaces, distributed search engines, distributing com-

puting via P2P networks, and other applications. On the other hand, P2P nicely sets

off social bonds known as social virtual worlds – worlds like Second Life, a digital

174
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representation of the real world where human-controlled avatars evolve and interact

in social activities.

9.1 Contributions

In this thesis, I presented a hybrid MMOG architecture, Massively Multiuser VIrtual

Simulation Architecture (MM-VISA), that provides the properties of a centralized

architecture, while exploiting P2P communication to achieve scalability. Different

challenges of MMOGs in the context of peer-to-peer system are identified and their

solutions are presented. The key objective of this virtual simulation model is to form a

robust and scalable communication system for collaborative applications. The model

integrates some of the benefits of centralized architecture and scalable distributed

system. The P2P portion of the architecture has two main advantages. First, it has

the potential to reduce latency by directly sharing game states between peers rather

than following a comparatively long path through a remote server. Second, traffic

load on servers can significantly be reduced. The latter will lead to a cost reduction

in the deployment and maintenance of MMOGs.

The presented zone-based peer-to-peer multiuser simulation model and its as-

sociated algorithms can largely improve the quality of gaming. As the game world

is divided into smaller manageable zones, over time a player usually moves from

one zone to another zone, which requires the overlay network to be restructured.

The restructuring changes the P2P overlay network causing routing problems. To

control this problem, the proposed architecture uses players’ gaming characteristics,

such as their speed, to group them into clusters. As a result, a leaving player can

only break routing paths within its own cluster keeping other clusters untouched,

i.e. the routing problem is limited to a single cluster. Thus, player clustering can

better stabilize the overlay network used in the zonal MMOGs. Many measures are

taken for synchronous communication, such as intelligent interest-driven zone cross-
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ing, state-sharing, etc. The thesis also gives several load-balancing methods for both

uniform and non-uniform zonal MMOGs. The proposed load-balancing schemes iden-

tify a loaded server in terms of either packets processed per unit time or the number of

players, and then move the load to other servers considering communication overhead

and P2P overlay restructuring. The proposed multilevel multiphase load-balancing

(MMLB) method is designed for fixed-size zones, works in multi-phases, and can be

employed based on load-scale, in sequence or independently. MMLB reduces load in

a step-by-step manner, and avoids problems associated with current load balancing

schemes. We also present a novel load balancing scheme for non-uniform zones using

a bisection procedure that does not adhere to any predefined zone size; i.e., zone sizes

are flexible and can be determined dynamically.

An area of interest management technique for a peer-to-peer architecture is also

outlined in this thesis. This technique assigns interest management duties to a subset

of players for each AoI. The players who are inside the convex hull do not require

regular interactions with the server because the peer-to-peer architecture is already

managing the intra-zone communication. The presented concept can reduce commu-

nication load of the server not only due to the peer-to-peer nature but also due to the

confined area of interest. Moreover, several effective solutions are given, including

expedited state dissemination, opportunistic state forwarding to comply with time

constraints, and others, in the context of improving the performance of peer-to-peer

MMOGs.

9.2 Future Work

Application Layer Multicasting (ALM) has emerged as a serious alternative to IP

multicast. While the transfer of multicast functions from routers to hosts addresses

any problems associated with IP multicast, it also introduces problems in synchro-

nization and stability. There is a need to analyze the stability problem in depth
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considering the frequency of players leaving, the scope of players leaving and the time

to reform the ALM tree. A stable ALM tree with low impact on node departure is

an open research area that needs to be further explored.

An open issue for all ALM protocols is tree refinement: the reorganization or

shuffling of the nodes in the tree. This is generally carried out to improve performance.

In ALM, the quality of the path between any pair of members is comparable to the

quality of the unicast path between that pair of members. Typically, a lower-diameter

tree performs better than a higher-diameter tree. Hence, refinement is a way to

improve the quality of an ALM structure once it is already constructed. The key

point is that, if a node with zero out-degree joins a multicast session, the tree cannot

be extended beyond that point which ultimately increases the height of the tree. An

ALM protocol that is flexible to refinement has a clear advantage in this regard which

is very much needed.

There are many challenges and unsolved problems in MMOGs. As players are

given responsibility for relaying game states, there is greater opportunity to cheat.

Since a cheater owns the machine on which he or she plays, such a player can eas-

ily tamper with the operating system and eventually the game, and can even evade

anti-cheat algorithms. If cheating players succeed in gaining unfair advantages, the

game quickly loses its appeal to other, honest players. This has a negative effect on

subscription-oriented competitive commercial multiplayer games. This is an interest-

ing and challenging research topic that needs to be further investigated and worked

out with effective solutions.

It is important to devise a P2P framework that can survive even in a faulty

network environment where peers dynamically join and disappear. It would be in-

teresting constructing a multi-path communication framework for each pair of nodes

considering network latency and processing delay. This is challenging especially in a

gaming context, because games typically impose time-constraints on the communica-

tion layer that must be satisfied to ensure the quality of the applications.
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In client-server architecture, the server pool performs the game operations and

offers a consistent game world. In a hybrid P2P model, a player also depends on

other players for the games states. So, consistency depends on both the serer pool

architecture and the P2P system. The peer coordination and routing policy are

important and its effective exploitation is challenging for the target application.

For cost-effective hybrid P2P applications like MMOGs, the appropriate incen-

tive mechanism is a key element that promotes participants to share their resources.

Game the ory tries to mathematically capture a strategic situation where one person’s

achievement in making choices depends upon the choices of others. This ideology can

be applied for resource-provisioning purposes and for rationalizing output.
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