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for Noncoherent and Differentially Coherent

Modulations Over Generalized Fading Channels
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Abstract— We present a unified approach to determine the
exact bit error rate (BER) of noncoherent and differentially
coherent modulations with single and multichannel reception over
additive white Gaussian noise and generalized fading channels.
The multichannel reception results assume independent fading in
the channels and are applicable to systems that employ postdetec-
tion equal gain combining. Our approach relies on an alternate
form of the Marcum Q-function and leads to expressions of the
BER involving a single finite-range integral which can be readily
evaluated numerically. Aside from unifying the past results, the
new approach also allows for a more general solution to the
problem in that it includes many situations that in the past
defied a simple solution. The best example of this occurs for
multichannel reception where the fading on each channel need
not be identically distributed nor even distributed according to
the same family of distributions.

Index Terms—Multichannel reception, Nakagami fading, non-
coherent and differentially coherent communications, postdetec-
tion diversity.

I. INTRODUCTION

IN MANY applications, the phase of the received signal
cannot be tracked accurately, and it is therefore not possible

to perform coherent detection. In such scenarios, communica-
tions systems must rely on i) noncoherent detection techniques
such as envelope or square law detection of frequency-shift-
keying (FSK) signals [1, Ch. 5] or on ii) differentially coherent
detection techniques such as differential phase-shift keying
(DPSK) [1, Ch. 7].

There is a large number of papers dealing with the per-
formance of noncoherent and differentially coherent commu-
nication and detection systems over additive white Gaussian
noise (AWGN) as well as fading channels. For example,
Proakis [2] developed a generic expression for evaluating
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the bit-error rate (BER) for multichannel noncoherent and
differentially coherent reception of binary signals over
independent AWGN channels. Further, in [3, Sec. 7.4, p.
725], Proakis provides closed-form expressions for the aver-
age BER of binary orthogonal square-law detected FSK and
binary DPSK with multichannel reception over independent
identically distributed (i.i.d.) Rayleigh fading channels. In [4],
Lindsey derived a general expression for the average BER of
binary correlated FSK with multichannel communication over

independent Rician fading channels in which the strength
of the scattered component is assumed to be constant for
all the channels. In [5], Charash analyzed the average BER
performance of binary orthogonal FSK with multichannel
reception over i.i.d. Nakagami- fading channels. More
recently, Weng and Leung [6] derived a closed form expression
for the average BER of binary DPSK with multichannel re-
ception over i.i.d. Nakagami- fading channels. Patenaude
et al. [7] extended the results of Charash [5] and Weng and
Leung [6] by providing a closed form expression for the
average BER performance of binary orthogonal square-law
detected FSK and binary DPSK with multichannel reception
over independent but not necessarily identically distributed
Nakagami- fading channels. Their derivation is based on
the characteristic function method and the resulting expression
contains order derivatives, which can be found for small

but which become more complicated to find as increases.
In addition, because of its adoption in the most recent North
American and Japanese digital cellular systems standards,
differential quadrature PSK (DQPSK) has also received a lot
of attention in the literature. For instance, Tjhung et al. [8]
and Tanda [9] analyzed the average BER performance of
this particular scheme over Rician and Nakagami- fading
channels, respectively. Further, Tellambura and Bhargava [10]
presented an alternate unified BER analysis of DQPSK over
Rician and Nakagami- fading channels.

In this paper, we unify and add to the above results
by providing new generalized expressions for the average
BER performance of noncoherent and differentially coher-
ent communication systems with single- and multichannel
reception over AWGN and fading channels. The multichan-
nel reception results are applicable to independent channels
which are not necessarily identically distributed nor even
distributed according to the same family of distributions, and
to systems that employ postdetection equal gain combining
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(EGC) [3, Section 4.4, p. 298], [11, Section 5.5.6, p. 253].
This unified framework relies on a new approach1 which
does not attempt to compute or approximate the probability
density function (PDF) of the signal-to-noise ratio (SNR) at
the output of the combiner and then average the conditional
BER over that PDF. It rather exploits an alternate form of the
Marcum -function [13, Appendix C], [14] and the resulting
alternate integral representation of the conditional BER as
well as some known Laplace transforms and/or Gauss–Hermite
quadrature integration to independently average over the PDF
of each channel that fades. In all cases, this approach leads
to expressions of the average BER that involve a single
finite-range integral whose integrand contains only elemen-
tary functions and which can therefore be easily computed
numerically. Furthermore, this unified approach can easily
be extended to include the performance of noncoherent and
differentially coherent direct sequence code division multiple
access (DS–CDMA) systems, thereby generalizing the results
obtained, for example, by Eng and Milstein [15], Prasad et al.
[16], and Efthymoglou et al. [17]. This particular interesting
subject is reported by the authors in a forthcoming paper [18],
as a part of a general analytical framework for the perfor-
mance evaluation of coherent, noncoherent, and differentially
coherent single carrier and multicarrier DS-CDMA systems. In
addition, since the discussed modulation and fading combina-
tions are far too numerous, numerical results for the error rates
as well as a study of their dependence on the various fading
parameters are omitted here. These numerical results will be
presented in the more comprehensive treatment in preparation
[19] which, in addition, will cover communication systems
with error correction coding and multiple symbol observation.

The remainder of this paper is organized as follows. In
the next section, the multichannel and the various fading
models under consideration are described. Section III provides
the performance of noncoherent and differentially coherent
modulations with single channel reception. Section IV presents
a new product form representation of the BER for multichannel
reception with noncoherent or differentially coherent detection,
and this representation is used to derive the average BER with
multichannel reception. Finally, a summary of all the results
and some concluding remarks are offered in Section V.

II. SYSTEM AND CHANNEL MODELS

A. Transmitted Signals

Let

(1)

denote the generic complex baseband transmitted signal, where
is a constant amplitude related to the average signal power.

1 The approach used in this paper to unify the average BER performance of
noncoherent and differentially coherent communication systems is introduced
and discussed in more generic terms in [12] that also includes coherent
communication systems as well as correlated fading and other forms of
diversity, e.g., maximal ratio combining (MRC). It should be further noted
that [12] is written in the style of a tutorial/survey paper, and as such does
not contain the level of detail presented in this paper.

For differentially coherent modulations, is set equal to
0 and the information is conveyed via the phase

, where is the size
of the transmitted symbol set. The modulator differentially
phase encodesthe transmitted symbols. Hence, if was
the information to be communicated in the th transmission
interval, then the transmitter would first form

modulo and then modulate on the carrier. For
noncoherent modulation, the information is transmitted via
the frequency . For instance, for binary FSK and

.

B. Multilink and Fading Channel Models

The transmitted signal is received over independent
channels, each of them being a slowly varying flat fading
channel, as shown in Fig. 1. In Fig. 1, is the set of
received replicas of the signal, where is the channel index,
and , , and are the random channel
amplitudes, phases, and delays, respectively. The first channel
is assumed to be the reference channel whose delay
and, without loss of generality, we assume that

. Because of the slow-fading assumption, we assume
that the , , and are all constant over a
symbol interval.

The fading amplitude on the th channel, where denotes
the channel index ( ), is assumed to be a
random variable (RV) whose mean square value is denoted
by , and whose PDF is any of the family of distributions
described in detail next. Furthermore, the fading amplitudes

are assumed to be statistically independent RV’s.
We call the multilink channel model under consideration a
generalized fading channelin the sense that it is sufficiently
general to include the case where the different channels are
not necessarily identically distributed nor even distributed
according to the same family of distributions. With such a
general multilink channel model in hand, we are able to handle
a large variety of diversity types such as antenna, frequency,
site, or multipath diversity [11, p. 238].

After passing through the fading channel, each replica of
the signal is perturbed by complex AWGN with a one-sided
power spectral density which is denoted by (W/Hz). The
AWGN is assumed to be statistically independent from channel
to channel, and independent of the fading amplitudes .
Hence, the instantaneous SNR per bit of the th channel is
given by , where is the energy per
bit, and (W/Hz) is the complex AWGN power spectral
density.

We now present the different fading PDF’s considered in
our analyzes and their relation to physical channels. Note
that a more detailed treatment of this particular topic will be
presented in [19, Ch. 2].

1) Multipath Fading: Multipath fading is due to the con-
structive and destructive combination of randomly delayed
reflected, scattered, and diffracted signal components. Depend-
ing on the nature of the radio propagation environment, there
are different models describing the statistical behavior of the
multipath fading envelope.
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Fig. 1. Multilink channel model.

a) Rayleigh: The Rayleigh distribution is frequently used
to model multipath fading with no direct line-of-sight (LOS)
path. In this case, the th channel fading amplitude is
distributed according to

(2)

and hence the instantaneous SNR per bit of the th channel, ,
is distributed according to an exponential distribution given by

(3)

where denotes the average SNR per bit of the
th channel. The Rayleigh distribution typically agrees very

well with experimental data for mobile systems where no LOS
path exists between the transmitter and receiver antennas. It
also applies to the propagation of reflected and refracted paths
through the troposphere [20] and ionosphere [21], [22], and
ship-to-ship [23] radio links.

b) Nakagami- (Hoyt): The Nakagami- distribution, also
referred to as the Hoyt distribution [24], is given in [25, eq.
(52)] by

(4)

where is the zeroth-order modified Bessel function of the
first kind, and is the Nakagami- fading parameter which
ranges from 0 to 1. Using a change of variables, it can be

shown that the SNR per bit of the th channel, , is distributed
according to

(5)

The Nakagami- distribution spans the range from one-sided
Gaussian fading ( ) to Rayleigh fading ( ). It is
typically observed on satellite links subject to strong iono-
spheric scintillation [26], [27]. Note that one-sided Gaussian
fading corresponds to the worst case fading for all multipath
distributions considered in this paper.

c) Nakagami- (Rice): The Nakagami- distribution is
also known as the Rice distribution [28]. It is often used to
model propagation paths consisting of one strong direct LOS
component and many random weaker components. Here the
th channel fading amplitude follows the distribution [25, eq.

(50)]

(6)

where is the Nakagami- fading parameter which ranges
from 0 to and which is related to the Rician factor
by . Here the SNR per bit of the th channel, ,
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is distributed according to a noncentral chi-square distribution
given by

(7)

The Nakagami- distribution spans the range from Rayleigh
fading ( ) to no fading (constant amplitude) ( ).
This type of fading is typically observed in the first resolvable
LOS paths of microcellular urban and suburban land mobile
[29], picocellular indoor [30], and factory [31] environments.
It also applies to the dominant LOS path of satellite [32], [33]
and ship-to-ship [23] radio links.

d) Nakagami- : The Nakagami- PDF is in essence a
central chi-square distribution given by [25, eq. (11)].

(8)

where is the gamma function, and is the Nakagami-
fading parameter which ranges from 1/2 to . In this case,
the SNR per bit, , of the th channel is distributed according
to a gamma distribution given by

(9)

The Nakagami- distribution spans via the parameter
the widest range of fading among all the multipath distri-
butions considered in this paper. For instance, it includes
the one-sided Gaussian distribution ( ) and the
Rayleigh distribution ( ) as special cases. In the limit
as , the Nakagami- fading channel converges
to a nonfading channel. Furthermore, when , a one-to-
one mapping between the parameter and the parameter
allows the Nakagami- distribution to closely approximate
the Nakagami- (Hoyt) distribution [25, eq. (59)]. Similarly,
when , a one-to-one mapping between the parameter
and the parameter (or, equivalently, the Rician factor)
allows the Nakagami- distribution to closely approximate the
Nakagami- (Rice) distribution [25, eq. (56)]. The Nakagami-

distribution often gives the best fit to land-mobile [34]–[36],
indoor-mobile [37] multipath propagation, as well as scintil-
lating ionospheric radio links [22], [38]–[41].

B. Log-Normal Shadowing

In terrestrial and satellite land-mobile systems, the link
quality is also affected by slow variation of the mean signal
level because of the shadowing from terrain, buildings, and
trees. Communication system performance will depend only on
shadowing if the radio receiver is able to average out the fast
multipath fading, or if an efficient “micro”-diversity system is
used to eliminate the effects of multipath. Based on empirical

measurements, there is a general consensus that shadowing
can generally be modeled by a log-normal distribution for
various outdoor and indoor environments [34], [42]–[46], and
the th path SNR per bit has a PDF given by the standard
log-normal expression

(10)

where (dB) and (dB) are the mean and the standard
deviation of , respectively.

C. Composite Multipath/Shadowing

In a multipath/shadowed fading environment, consisting of
multipath fading superimposed on log-normal shadowing, the
receiver does not average out the envelope fading due to
multipath but rather reacts to the instantaneous composite
multipath/shadowed signal [11, Sec. 2.4.2]. This is typically
the scenario in congested downtown areas with slow moving
pedestrians and vehicles [34], [47], [48]. This type of com-
posite fading is also observed in land-mobile satellite systems
subject to vegetative and/or urban [49]–[53] shadowing. There
are two approaches and various combinations suggested in
the literature for obtaining the composite distribution. Here,
as an example, we present the composite gamma/log-normal
PDF introduced by Ho and Stüber [48]. This PDF arises
in Nakagami- shadowed environments and is obtained by
averaging the gamma distributed signal power (or, equiva-
lently, SNR per bit) (9) over the conditional density of the
log-normally distributed mean signal power (or, equivalently,
average SNR per bit) (10) giving the following PDF for the
th channel:

(11)

For the special case where the multipath is Rayleigh distributed
( ), (11) reduces to a composite exponential/log-normal
PDF which was initially proposed by Hansen and Meno [47].

D. Combined (Time-Shared) Shadowed/Unshadowed

From their land-mobile satellite channel characterization
experiments, Lutz et al. [52] and Barts and Stutzman [54]
found that the overall fading process for land-mobile satellite
systems is a convex combination of unshadowed multipath
fading and a composite multipath/shadowed fading. Here, as
an example, we present in more detail the Lutz et al. model
[52]. When no shadowing is present, the fading follows a Rice
(Nakagami- ) PDF. On the other hand, when shadowing is
present, it is assumed that no direct LOS path exists and the
received signal power (or equivalently SNR per bit) is assumed
to be an exponential/log-normal (Hansen–Meno) PDF. The
combination is characterized by the shadowing time-share
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Fig. 2. Differentially coherent postdetection equal-gain combining receiver structure.

factor which is denoted by , , and hence the
resulting combined PDF is given by

(12)

where is the average SNR per bit during the unshadowed
fraction of time, and is the average of during
the shadowed fraction of time. The overall average SNR per
bit, , is then given by

(13)

C. Receiver Model

We consider branch (finger) postdetection EGC receivers,
as shown in Figs. 2 and 3, for differentially coherent and
noncoherent detection, respectively. Both receivers utilize
correlators to detect the maximum a priori transmitted symbol.
Without loss of generality, let us consider the th symbol
correlator. Each of the received signals is first delayed
by , then appropriately demodulated (symbol correlation
followed by integration and dump then baud-rate sampling).
These operations assume that the receiver is correctly time
synchronized at every branch (i.e., perfect time delay
estimates).

For differentially coherent detection (see Fig. 2), the re-
ceiver takes, at every branch , the difference of two adjacent
transmitted phases to arrive at the decision . For nonco-

herent detection (see Fig. 3), no attempt is made to estimate
the phase and the receiver yields the decision based on
the squared envelope (i.e., square-law detection). Using EGC,
the decision outputs are summed to form the
final decision variable

(14)

Last of all, the receiver selects the symbol corresponding to
the maximum decision variable, as shown in Figs. 2 and 3.

For equally likely transmitted symbols, the total conditional
SNR per bit, , at the output of the postdetection EGC
combiner, is given by [3, p. 300, eq. (4.4.11)] and [3, p. 300,
eq. (4.4.17)] as

(15)

III. BER WITH SINGLE CHANNEL RECEPTION ( )

A. Desired Representation of the Conditional BER

A generic expression for the BER of differentially coherent
and noncoherent modulations, , over AWGN is
given by [3, eq. (4B.21)]

(16)
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Fig. 3. Noncoherent postdetection equal-gain combining receiver structure.

where is the SNR per bit, and is the first-order
Marcum -function traditionally defined by

(17)

In (16) the parameters and are modulation-dependent and
are defined in [3, eq. (4B.22)], and , with the
parameters , defined in [3, eq. (4B.6)]. A number of
special cases are of particular importance. For noncoherent
detection of equal energy, equiprobable, correlated binary
signals, and

(18)

where is the magnitude of the cross-correlation
coefficient between the two signals, and in this case (16)
reduces to [3, eq. (4.3.15)]. The special case corresponds
to orthogonal binary FSK for which and . Note
that using the relation [55, eq. (9)]

(19)

along with , we see that (16) reduces in this particular
case to the well-known expression reported by Proakis in [3,
eq. (4.3.19)], namely,

(20)

Furthermore, in the case of binary DPSK, , , and
, whereupon using again (19) along with , we

see that (16) reduces to [3, eq. (4.2.117)]

(21)

Finally, , , and correspond
to DQPSK with Gray coding and in this case (16) reduces to
[3, eq. (4.2.118)].

To evaluate the average BER one must average the BER
expression (16) (considered to be the conditional BER) over
the statistics of the fading. Since the second argument of the
function (which is proportional to the square-root of the SNR)
appears in the lower limit of the integral in the traditional
definition of the Marcum -function as given in (17), it
is analytically difficult to perform such averages. We now
introduce an alternate form of the Marcum -function, which
leads to a desirable representation of the conditional BER.
We then show in the next section how this representation
circumvents this difficulty.

In virtually all applications of (16) to communication system
performance analysis, the parameters and are typically
independent of SNR, and furthermore . Let us introduce
the parameter which depends on the particular appli-
cation, e.g., noncoherent detection of nonorthogonal signals,
differential detection of PSK signals, etc., but is independent
of SNR. With this in mind, an alternate integral form of
the Marcum -function was presented in [14] which focused
on having finite integration limits and an integrand with an
exponential behavior in the argument or . In particular, it
was shown in [13, eqs. (C-26) and (C-27)] or equivalently in
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[14, eqs. (8) and (11)] that the first-order Marcum -function
is given by

(22)

Furthermore, using the integral representation of the zeroth-
order modified Bessel function of the first kind [56], namely,

(23)

it is straightforward to show that

(24)

Substituting (22) and (24) in (16), the conditional BER (16)
can be put in the desired representation given by

(25)

This form of the conditional BER (25) is more desirable since
we can first integrate over a statistical distribution for and
then perform the integral over , as described in more detail
below. It should be noted that the specific form of the result in
(25) with can be obtained via the work of Pawula [57]
who used certain relations between the Marcum -function
and the Rice -function which is defined by

(26)

In particular, combining (2a) and (2d) of Pawula [57] and
making the substitutions , , and

in these same equations, one arrives
at the result

(27)

which in view of the symmetry properties of the trigonometric
functions over the interval and can be shown
to be identically equivalent to (25) with . Also as a
check, again setting , , and ( )
in (25), it is straightforward to see that (25) reduces to (20)
and (21) for orthogonal binary FSK (binary DPSK). Another
special case of interest is DQPSK where and

. In this particular case, making the change
of variable in (25) and using the symmetry
properties of the cosine function over the interval and

, it can be shown that (25) reduces to the expression
reported in [10, eq. (3)], namely,

(28)

B. Average BER

Recall that the conditional BER, conditioned on the SNR
per bit , is given by (25). Since the fading is assumed
to be independent of the AWGN, the unconditional BER,

, is obtained by averaging (25) over the
underlying fading RV giving

(29)

where is the fading parameter associated with the distribution
, and is hence denoted by ,

and for the Rayleigh, Nakagami- (Hoyt), Nakagami-
(Rice), Nakagami- , log-normal shadowing, composite

multipath/shadowing, and combined (time-shared) shad-
owed/unshadowed PDF’s, respectively. Substituting (25) into
(29) then interchanging the order of integration yields

(30)

where

(31)

is in the form of a Laplace transform. The form of the average
BER in (30) is interesting in that the integrals ;
can either be obtained in closed-form with the help of classical
Laplace transform,s or can alternatively be efficiently com-
puted by using Gauss–Hermite quadrature integration [58, p.
890, eq. (25.4.46)] for all previously mentioned fading channel
models. We now evaluate these integrals for each of the fading
models described in Section II-B. These integrals will also be
useful to obtain the average BER with multichannel reception
as described in Section IV-C.
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1) Multipath Fading:
a) Rayleigh Fading:Substituting (3) into (31) then using

the Laplace transform [56, (1), p. 1178]

(32)

yields2

(33)

Inserting (33) in (30), we obtain the average BER performance
over Rayleigh fading. For the special case of , one
can proceed further to obtain a closed form expression for
the average BER. Performing a partial fraction expansion on
(30) with (33), then using the standard integral identity [56,
eq.(3.661.4), p. 425]

(34)

it can be shown that the average BER in Rayleigh fading is
given by

(35)

Letting and in (35), it easy to see that checks,
as expected, with the expression reported by Proakis in [3,
(7.3.12), p. 718], namely,

(36)

for orthogonal binary FSK. Similarly, letting and
in (35), it is easy to see that checks, as expected,

with the expression reported by Proakis in [3, eq. (7.3.10), p.
717], namely,

(37)

for binary DPSK. Another special case of interest is that for
and . In this case, (35) reduces to

(38)

2 Note that for the Rayleigh fading case, the PDF has no dependency on
the fading parameter, r. Hence, for simplicity of notations, we omit it in the
argument sequence of the function Jr(�; �; �; �)

which is equivalent to the expression of for DQPSK with
Gray coding reported in [8, eq. (18)], [9, eq. (13)], namely,

(39)

or the one reported in [10, eq. (8)], namely,

(40)

b) Nakagami- (Hoyt) Fading: Substituting (5) into (31),
then using the Laplace transform [56, eq. (109), p. 1182]

(41)

yields

(42)

For , (42) becomes

(43)

which when inserted in (30) gives the BER performance over
one-sided Gaussian fading. On the other hand, letting
in (42), it is easy to show that ; ; reduces to

; ; as given by (33) and which corresponds to the
Rayleigh fading case, as expected.

Letting and ( ) in (42) yields the average
BER performance of orthogonal binary FSK (DPSK) over a
Nakagami- (Hoyt) fading channel as

(44)
where for orthogonal binary FSK and for
DPSK.

c) Nakagami- (Rice) Fading: Substituting (7) into (31)
then using the Laplace transform [58, eq. (29.3.81), p. 1026]

(45)

yields

(46)
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For , (46) reduces, as expected, to as
given by (33), corresponding to the Rayleigh fading case.
Furthermore, as ,

which when substituted in (30) yields, as expected, the BER
performance over the nonfading (i.e., AWGN) channel as
given by (25).

Letting and ( ) in (46) yields the average
BER performance of orthogonal binary FSK (DPSK) over a
Nakagami- (Rice) fading channel as

(47)

where for orthogonal binary FSK and for
DPSK. Further, setting and , it
can be easily shown that ;
is equivalent to the expression for DQPSK with Gray coding
given in [10, eq. (6)], namely,

(48)

d) Nakagami- Fading: Substituting (9) into (31) then
using the Laplace transform [56,eq. (3), p. 1178]

(49)

yields

(50)

Note that for , ; ; ; ;
which corresponds to the case of one-sided Gaussian fading.

Further, for , ; ; ; ;
which corresponds to the Rayleigh fading case. Finally, as

, accounting for the identity

we see that

which when substituted in (30) yields, as expected, the BER
performance over the nonfading (i.e., AWGN) channel as
given by (25).

For the special case of and restricted to positive
integers values, one can proceed further to obtain a closed
from expression for the average BER. Performing a partial
fraction expansion on (30) with (50), then using the standard
integral identity [56, eq. (3.661.4), p. 425]

(51)

where is the Legendre polynomial of order [56, eq.
(8.911.1), p. 1044], it can be shown that the average BER in
Nakagami- fading is given by (52), shown at the bottom
of the page, where and are shown in (53) at the
bottom of the page. Note that when , which corresponds
to Rayleigh fading, (52) reduces, as expected, to (35) since

.
Letting and ( ) in (50), it easy to see

that checks, as expected, with the expression attributed to
Barrow [59] and reported in [60, eq. (11)] and in [61, eq. (B1)]
for orthogonal binary FSK (binary DPSK), namely,

(54)

(52)

(53)



1634 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 12, DECEMBER 1998

for orthogonal binary FSK and for DPSK.
The other special case of interest is that for
and . In this case, it can be easily shown
that ; is equivalent to the
expression for DQPSK with Gray coding given in [10, eq.
(7)], namely,

(55)

2) Log-Normal Shadowing:If the channel statistics fol-
low a log-normal distribution, it is straightforward to show
that can be accurately approximated by
Gauss–Hermite integration yielding

(56)

where is the order of the Hermite polynomial, .
Setting to 20 is typically sufficient for excellent accuracy.
In (56), are the zeros of the -order Hermite polynomial,
and are the weight factors of the -order Hermite
polynomial and are given by

(57)

Both the zeros and the weights factors of the Hermite poly-
nomial are tabulated in [58, Table (25.10), p. 924] for various
polynomial orders .

3) Composite Multipath/Shadowing:If the channel statis-
tics follow a gamma/log-normal distribution, it is straightfor-
ward to show that ; ; can be accurately
evaluated by using (49) followed by a Gauss–Hermite inte-
gration yielding

(58)

4) Combined (Time-Shared) Shadowed/Unshadowed:If the
channel statistics follow a combined Lutz et al. distribution,
it is straightforward to show that ; ;

can be broken into two terms, one which can be evalu-
ated in closed-form and the other which can be accurately
approximated by Gauss–Hermite integration yielding

(59)

with in and in
.

IV. BER WITH MULTICHANNEL RECEPTION ( )

A. Desired Product Form Representation of
the Conditional BER (General Case)

Many problems dealing with the BER performance of mul-
tichannel reception of differentially coherent and noncoherent
detection of PSK and FSK signals in AWGN channels have a
decision variable which is a quadratic form in complex-valued
Gaussian random variables. Almost three decades ago, Proakis
[2] developed a general expression for evaluating the BER
when the decision variable is in that particular form. Indeed,
the development and results originally obtained in [2] later
appeared in [3, Appendix 4B] and have become a classic in
the annals of communication system performance literature.
The most general form of the BER expression, i.e., [3, eq.
(4B.21)] obtained by Proakis was given in terms of the first-
order Marcum -function and modified Bessel functions of
the first kind. Although implied but not explicitly given in [2]
and [3], this general form can be rewritten in terms of the
generalized Marcum -function, , as

(60)

where

denotes the binomial coefficient, and where all the modulation-
dependent parameters have already been defined previously.
As a check for , the latter two summations in (60) do not
contribute, and hence one immediately obtains the result (16),
as expected. Note that although the form in (60) does not give
the appearance of being much simpler than [3, eq. (4B.21)],
we shall see shortly that it does have particular advantage
for obtaining the average BER performance over generalized
fading channels.

As in the single channel reception case, the parameters and
in (60) are typically independent of SNR, and furthermore

. Let us introduce again the modulation dependent
parameter which is independent of SNR. With this in
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mind, we now show how the alternate integral representation
of the generalized Marcum -function yields a desired product
form representation of the conditional BER. In particular, it
was shown in [13], or equivalently in [14], that

(61)

with the special case of being given in (22). Now,
using (22), (24), and (61) in (60), it can be shown after te-
dious manipulations that the entire conditional BER expression
(60) can be written as a single integral with an integrand
that contains a single exponential factor in of the form

, namely,

(62)

where

with

(63)

As a check, for the special case of , we obtain

(64)

and hence (62) reduces to (25), as expected.

The form of the conditional BER in (62) has the advantage
of being a single finite-range integral with limits independent
of the conditional SNR and an integrand which can be written
in a product form,such as

(65)

Furthermore, the form of (65) is desirable since we can first in-
dependently average over the individual statistical distributions
of the ’s, and then perform the integral over , as described
in more detail below (Section IV-C). Before showing this,
however, we first offer some simplifications of (60) and (62)
for some special cases of interest.

B. Desired Product Form Representation of the
Conditional BER (Special Case ( ))

For , and any , which corresponds to the case
of multichannel detection of equal energy correlated binary
signals, the conditional BER expression (60) becomes

(66)

where we have added back the term in the sums of (60)
since they have zero value anyway. However, comparing eqs.
(40) and (42) of [62],

(67)

Thus, combining (66) and (67) gives the simplified expression

(68)
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which appears not to be given in [2] and [3]. Setting and
( ) in (68), then using the relations [55, eq. (9)]

along with the identity , it can be
shown that (68) reduces to the well-known expression reported
by Proakis for multichannel binary orthogonal FSK (binary
DPSK) given by [3, eq. (4.4.13), p. 301], namely,

(69)

where

for orthogonal binary FSK, and for binary
DPSK. Note that an alternate (equivalent) form to (69), involv-
ing the confluent hypergeometric function, , and
given by Charash [5, eq. (32)] as

(70)

has also been used in the literature for the BER of multichannel
binary orthogonal FSK and binary DPSK [15], [17].

The conditional BER expression (66) for the special case
of and any , can also be put in the desired
product form. Indeed, it can be shown that in this particular
case , and hence (62) reduces to

(71)

where the functions is now given by

(72)

Again, as a check for , we obtain

(73)

which when substituted in (71) gives an expression for the
BER which agrees with (25) for , as expected. Note also

that as , (71) assumes an indeterminate form and thus
an analytical expression for the limit is more easily obtained
from (69) with replaced by . We further point out that the
limit of (71) as converges smoothly to the exact BER
expression of (69). For example, numerical evaluation of (71)
setting ( , ) gives an accuracy of 5
digits when compared with numerical evaluation of (69) for the
same system parameters. The representation (71) is therefore
useful even in this specific case. This is particularly true for
the performance of binary orthogonal FSK and binary DPSK
which cannot be obtained via the classical representation of
(69) in the most general fading case, but which can be solved
using the desirable conditional BER expression (71) as we
will show next.

C. Average BER

To obtain the unconditional BER, , ;
, we must average the conditional BER, ;
, over the joint PDF of the instantaneous SNR sequence
, namely . Since the RV’s

are assumed to be statistically independent, then
; , and the

averaging procedure results in

-

(74)

If the classical representation of , as given
by [3, eq. (4B.21)] or equivalently (60), were to be used, (74)
would result in an -fold integral with infinite limits (one
of these integrals comes from the classical definition of the
generalized Marcum -function in ), and an
adequately efficient numerical integration method would not
be available.

Using the desired product form representation of ;
, namely (65) in (74) yields

-

(75)

The integrand in (75) is absolutely integrable, and the order
of integration can therefore be interchanged. Thus, grouping
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like terms we have

(76)

where ; ; is given above for the various
channel models associated with path . Note that if the fading
is identically distributed with the same fading parameter and
the same average SNR per bit for all channels, then (76)
reduces to

(77)

Hence, this approach reduces the -fold integral with
infinite limits of (74) to a single finite-range integral (76)
whose integrand contains only elementary functions (i.e., no
special functions) and which can therefore be easily evaluated
numerically.

V. CONCLUSION

The myriad of results obtained by the cited authors for the
error probability performance of noncoherent and differentially
coherent modulations over generalized fading channels can
now all be obtained as special cases of a unified approach
to the problem. Aside from unifying the past results, the
new approach also allows for a more general solution to the
problem in that it includes many situations that in the past
defied a simple solution. The best example of this occurs for
multichannel reception where the fading on each channel need
not be identically distributed nor even distributed according
to the same family of distributions. It is now possible to
obtain results for this case corresponding to a wide variety
of modulation/fading channel combinations. Other situations
of comparable complexity are also now solvable in the form
of simple and elegant solutions.
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