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Abstract

We consider the secure transmission in ergodic fast Rayleigh fading multiple-input single-output

single-antenna-eavesdropper (MISOSE) wiretap channels. We assume that the statistics of both the

legitimate and eavesdropper channels are the only available channel state information at the transmitter

(CSIT). By introducing a new secrecy capacity upper bound, we prove that the secrecy capacity is

achieved by the Gaussian input without prefixing. To attain this result, we form another MISOSE

channel for upper-bounding by relaxing the equivocation constraint, and tighten the bound by carefully

selecting correlations between the legitimate and eavesdropper channel gains. The resulting upper bound

is tighter than the others in the literature which are based on modifying the correlation between the

noises at the legitimate receiver and eavesdropper. Next, we fully characterize the secrecy capacity by

showing that the optimal channel input covariance matrix is a scaled identity matrix. The key to solve

such a stochastic optimization problem is by exploiting the completely monotone property of the secrecy

capacity. Finally, we prove that with only statistical CSIT of both channels, the capacity will neither

scale with SNR nor the number of antenna. Our numerical results also match these observations and

further confirm that having the legitimate CSIT (realizations) is very beneficial to increase the secrecy

capacity.

I. I NTRODUCTION

Traditionally, the security of data transmission has been ensured by the key-based enci-

phering. However, for secure communications in wireless networks, the key distributions and
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managements may be challenging tasks [1]. The physical-layer security introduced in [2] [3] is

appealing due to its keyless nature. One of the fundamental problems for physical-layer security

is characterizing the secrecy capacity for wiretap channels. The secrecy capacity is the maximum

achievable secrecy rate between a transmitter and a legitimate receiver, with a perfect secrecy

constraint imposed to make no information be available by an eavesdropper [2] [3]. In the wireless

environments where each node has single antenna, the time-varying characteristics of fading

channels can also be exploited to enhance the secrecy capacity [4] [5]. Further enhancements

are attainable by employing multiple antennas at each node, e.g., in [6] [7] [8]. However, to show

the secrecy capacity results as in [4], [6]–[8], at least the perfect knowledge of the legitimate

receiver’s channel state information at the transmitter (CSIT) is required. Because of the limited

feedback bandwidth and the delay caused by the channel estimation, it may be hard to track

the channel coefficients if they vary rapidly. Thus for fast-fading channels, it is more practical

to consider the case with only partial CSIT of the legitimate channel [5] [9] [10]. In this case,

when the transmitter has multiple antennas, only some lower and upper bounds of the secrecy

capacity are known [9] [10], while the secrecy capacity is unknown. Although the general secrecy

capacity formula was shown in [2], the optimal selection of the auxiliary random variable for

prefixing in this formula isstill unknown.

In this correspondence, we consider one important scenario of partial CSIT, i.e., the transmitter

only knows the statistics of both the legitimate and eavesdropper channels but not the realiza-

tions of them. Under this scenario, we derive the secrecy capacity of the ergodic fast-fading,

multiple-input single-output single-antenna-eavesdropper (MISOSE) wiretap channels, where the

transmitter has multiple antennas while the legitimate receiver and eavesdropper each has a single

antenna. Both the coefficients of the legitimate and eavesdropper channels are Rayleigh fading.

We first propose a new secrecy capacity upper bound, which is tighter than that in [10], to

prove that the transmission scheme in [9] is secrecy-capacity achieving, which is based on [2]

with Gaussian input butwithout prefixing. Then weanalytically solve the optimal channel input

covariance matrix to fully characterize the secrecy capacity, while such an optimization problem

was solvednumericallyin [9] without guaranteeing the optimality. To attain it, we first transform

the secrecy capacity in an equivalent form to exploit the completely monotone property [11] of

it. With this property, we then use the majorization theory [12] and the stochastic ordering theory

[11] to solve this complicated stochastic covariance matrix optimization problem. More detailed
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comparisons between our results and those in [4], [5], [8]–[10] can be found in discussions in

Section III.

II. SYSTEM MODEL

In the considered MISOSE wiretap channel, as shown in Figure 1, we study the problem

of reliably communicating a secret messagew from the transmitter to the legitimate receiver

subject to a constraint on the information attainable by the eavesdropper (in upcoming (4)). The

received signalsy andz at the legitimate receiver and eavesdropper (each with a single antenna)

from the transmitter (with multiple antennas), can be represented respectively as∗

y = hHx+ny, (1)

z= gHx+nz, (2)

wherex is an NT ×1 complex vector representing the transmitted vector signal withNT being

the number of transmit antennas, whileny and nz are independent and identically distributed

(i.i.d.) circularly symmetric additive white Gaussian noise with zero mean and unit variance at

the legitimate receiver and eavesdropper, respectively. In (1) and (2),h and g are bothNT ×1

complex vectors, and represent the channels from the transmitter to the legitimate receiver and

eavesdropper, respectively.

In this work, the channels are assumed to be fast Rayleigh fading, i.e.,

h∼CN(0,σ2
hI) and g∼CN(0,σ2

gI),

respectively, while the channel coefficients change in each symbol time. We assume thath, g,

ny andnz are independent. We also assume that the legitimate receiver knows the instantaneous

channel state information ofh perfectly, while the eavesdropper knows those ofh andg perfectly.

As for the CSIT, only the distributions ofh and g are known at the transmitter, while the

realizations ofh andg are unknown. In addition, the transmitter is subjected to a power constraint

∗In this correspondence,‖a‖ is the vector norm of vectora. The trace and complex conjugate transpose of matrixA is denoted
by Tr(A) andAH, respectively. Also diag(a) denotes the diagonal matrix formed by vectora and I is the identity matrix. The
zero-mean complex Gaussian random vector with covariance matrixΣ is denoted asCN(0,Σ). For random variables (vectors)A
andB, p(A) is the probability distribution function (p.d.f.) ofA, I(A;B) denotes the mutual information betweenA andB while
h(A|B) denotes the conditional differential entropy. We useA→ B→C to represent thatA,B, andC form a Markov chain. All
the logarithm operations are of base 2 such that the unit of rates is in bit.
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Fig. 1. Fast Rayleigh fading MISOSE wiretap channel with statistical CSIT.

as

Tr(Σx)≤ P, (3)

whereΣx is the covariance matrix ofx in (1) and (2).

The perfect secrecy and secrecy capacity are defined as follows. Consider a(2NR,N)-code

with an encoder that maps the messagew∈WN = {1,2, . . . ,2NR} into a length-N codeword, and

a decoder at the legitimate receiver that maps the received sequenceyN (the collections ofy over

the code lengthN) from the legitimate channel (1) to an estimated messageŵ∈WN. We then

have the following definitions. As [1] [3] [4], the equivocation under perfect secrecy requirement

is measured byI(w;zN,hN,gN)/N, which is based on all the information(zN,hN,gN) that the

eavesdropper can obtain. HerezN, hN, andgN are the collections ofz, h, andg over the code

lengthN, respectively.

Definition 1 (Secrecy Capacity [1] [3] [4]) Perfect secrecy is achievable with rateR if, for any

ε > 0, there exists a sequence of(2NR,N)-codes and an integerN0 such that for anyN > N0

Re = h(w|zN,hN,gN)/N≥ R− ε, (4)

and Pr(ŵ 6= w)≤ ε,

where Re in (4) is the equivocation rate andw is the secret message. Thesecrecy capacityCs

is the supremum of all achievable secrecy rates.

III. SECRECY CAPACITY OF THEMISOSEFAST RAYLEIGH FADING WIRETAP CHANNEL

In this section, we fully characterize the secrecy capacity of the MISOSE fast Rayleigh fading

channel in the upcoming Theorem 1. Before that, we present the following Lemma 1 which shows
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that transmitting Gaussianx without prefixing as [9] is capacity achieving. By introducing new

bounding techniques, we obtain a tighter secrecy capacity upper bound than that in [10] to

attain the secrecy capacity. To derive the upper bound, we form a degraded MISOSE channel

of (1)(2) with a equivocation constraint less stringent than (4) by hiding the legitimate channel

to the eavesdropper (in the upcoming (6)), and tighten the upper bound by carefully introducing

correlations to the channelsh andg (in the upcoming (8)).

Lemma 1 For the MISOSE fast Rayleigh fading wiretap channel(1)(2) with the statistical CSIT

of h andg, using Gaussianx without prefixing is the optimal transmission strategy, and the non-

zero secrecy capacityCs is obtained only whenσh > σg, which is

Cs =max
Σx

(
Eh

[
log

(
1+hHΣxh

)]−Eg
[
log

(
1+gHΣxg

)])
, (5)

whereΣx is the covariance matrix of the Gaussian channel inputx subject to(3), while h ∼
CN(0,σ2

hI) and g∼CN(0,σ2
gI).

Proof: From [9], we know that the right-hand-side (RHS) of (5) is achievable and serves as

a secrecy capacity lower-bound. Now we present our new secrecy capacity upper bound which

matches the RHS of (5). The key to establish such an upper bound is to form a better MISOSE

channel than (1)(2) in terms of having higher secrecy capacity. First, we consider a better channel

where the eavesdropper does not know the realizations ofh, and the equivocation constraint (4)

becomes

Re = h(w|zN,gN)/N≥ R− ε. (6)

Note that sinceh(w|zN,gN)≥ h(w|zN,hN,gN) [13], we know that the MISOSE under equivocation

constraint (6) will have higher secrecy capacity compared with the MISOSE under original

constraint (4). Now as in [14], equivalently, we can respectively treat the output of the legitimate

channel as(y,h) while that of the eavesdropper channel as (z,g). From [1, Lemma 2.1], the

secrecy capacity under constraint (6) is only related to the marginal distributionsp(y,h|x) and

p(z,g|x). Then two MISOSE channels have the same secrecy capacity under constraint (6) if

the two legitimate channels have the same transition p.d.f.p(y′,h′|x) = p(y,h|x) while the two

eavesdropper channels are identical.
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Here we introduce our same marginal legitimate channelp(y′,h′|x) for (1), which is formed

by replacingh in y with h′ = (σh/σg)g as

y′ = (h′)Hx+ny (7)

= (σh/σg)gHx+ny.

Since x is independent ofh and g due to our CSIT assumption, bothh′ and h have the

same conditional distributions condition onx (which equals toCN(0,σ2
hI)). Then we know

that p(y′,h′|x)=p(y,h|x). From (7), we will focus on the following MISOSE channel under the

equivocation constraint (6)

y′′ = gHx+(σg/σh)ny,

z= gHx+nz. (8)

Again from [1, Lemma 2.1], the secrecy capacityC
′′
s of the above degraded MISOSE channel is

equal to that of the original channel (1)(2) under equivocation constraint (6) withh hidden from

the eavesdropper. And thusC
′′
s serves as an upper-bound of the secrecy capacityCs of the original

channel (1)(2) under equivocation constraint (4), whereh is revealed to the eavesdropper.

Now we can upper-bound the secrecy capacityCs by C′′s as follows. As in [15], we treat(y′′,g)

and(z,g) respectively as the outputs of the legitimate and the eavesdropper channels in (8), and

by applying the results in [2],

Cs≤C′′s = max
p(U,x)

I(U ;y′′,g)− I(U ;z,g), (9)

whereU in (9) is an auxiliary random variable for prefixing, which forms the Markov chain

U → x → (y′′,z,g). When σg < σh, the MISOSE channel (8) giveng is degraded [13], i.e.,

x→ y′′→ z. Thus from [7], we can rewrite the RHS of (9) as

Cs≤max
px

I(x;y′′|z,g)

= max
px

I(x;y′′|g)− I(x;z|g). (10)

Note that the covariance matrix ofx does not change with the realization ofg. Then from [6],

we know that Gaussianx is optimal for the upper bound in (10). After substituting Gaussianx
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with covariance matrixΣx into the upper bound (10), we can find that it matches the RHS of (5)

whenσg < σh. Note that whenσg < σh, the RHS of (5) is positive. In contrast, whenσg≥ σh,

the upper bound in (9) is zero from [7] and the fact thatx→ z→ y′′ given g according to (8).

And it concludes the proof.

Remark 1: Note that if we directly consider the original setting in Definition 1, whereh is

revealed to the eavesdropper, then the equivocation constraint corresponding to (7) will become

Re = h(w|zN,(h′)N,gN)/N≥ R− ε, (11)

and [1, Lemma 2.1] may not be applied. To see this, from the proof of [1, Lemma 2.1], two

channels have the same secrecy capacities if both the equivocation rates and error probabili-

ties are the same given that both channels using the same codebooks and encoding schemes.

Thus, one may need to show thatRe in (11) and (4) are the same. From the proof of [1,

Lemma 2.1],h(w|zN,h′N,gN) in (11) depends on conditional probabilityp(zN,(h′)N,gN|xN)

while h(w|zN,hN,gN) in (4) depends onp(zN,hN,gN|xN). Sinceg andh′ = (σh/σg)g are corre-

lated givenx, but g andh are independent,

p(zN,(h′)N,gN|xN) 6= p(zN,hN,gN|xN).

Thus the equivocation ratesRe of the two channels in (11) and (4) may not be the same. We

avoid this problem by hidingh from the eavesdropper. In this case, the equivocation constraints

of the original channel (1) and that corresponding to (7) are the same as (6). Then [1, Lemma

2.1] can be used, and the following derivations based on (7) under secrecy constraint (6) can

serve as the secrecy capacity upper bound forCs.

Our proof of Lemma 1 also shows that for the considered MISOSE channel, revealingh or not

to the eavesdropper in this channel does not change the secrecy capacity. Moreover, besidesCs,

we also prove the secrecy capacity whenh is not revealed to the eavesdropper. This by-product

is also useful to study the more general two-user broadcast channel with confidential messages,

where the wiretap channel can be treated as a special case of when only one user transmits in

this broadcast channel.
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Remark 2: We briefly compare our secrecy capacity results for fast fading channels with those

for two different slow fading channels in [16] and [4], respectively. First, our secrecy capacity in

Lemma 1 can benon-zero. On the contrary, in the setting of the Rayleigh slow fading channel

with statistical CSIT in [16], the secrecy capacityis zero. This is because that in [16], the

channel coefficients do not change within the code lengthN, and the secrecy capacity is limited

by the worst case scenario [1, Section 3.3]. Note that the case that the eavesdropper channel is

better than the legitimate channel always exists (i.e., eavesdropper channel can support higher

rates than the legitimate channel). This worst case forces the secrecy capacity to be zero, since

for any non-zero rate, the perfect secrecy constraint may be violated. And unlike our setting in

Definition 1, it may be better to allow the secrecy outage event as in [16]. As for our fast fading

setting, the perfect secrecy constraint is always satisfied for allN > N0, and the non-zero secrecy

capacity (5) can be achievable. Note that we prove that the additional channel prefixing in [2] is

not necessary, i.e.,U ≡ x in (9) of Lemma 1 is sufficient, and then the secrecy capacity in (5) can

be treated as the difference of the supportable rates of the legitimate and eavesdropper channels.

For theergodicslow fading setting in [4], in contrast to [16], coding over manydifferent slow

fading blocks (each block has many symbols) must be allowed to obtain the non-zero secrecy

capacity. However, in our setting, coding over multiple fast-fading channel states (symbols) is

sufficient. The coding latency in [4] is much longer than ours, and maynot be practical.

Remark 3: The secrecy capacity in [10] is wrong, since the secrecy capacity lower bound in

[10] is not achievable for the MISOSE channel (1)(2). There are two reasons. First, the lower

bound in [10] is based on the variable-rate coding in [4], where the full CSIT of the legitimate

channelh must be used to vary the transmission rate in each slow fading channel state. This can

not be done with only statistical CSIT ofh as in our setting. Second, the variable-rate coding

in [4] only works in the ergodic slow fading wiretap channel but not in the fast fading channel.

On the contrary, our lower bound in (5) (equals to the secrecy capacity) is based on the results

in [9] and is achievable in the fast fading MISOSE channel (1)(2).

For the secrecy capacity upper bound in [10], it is based on a channel where a correlation is

introduced tony andnz in (1) and (2). And the derivations of [10] follow directly from those in

[4]. In contrast to [4] [10], our upper bound (9) is based on the channel (8) which can be treated

by introducing a correlation betweenh andg in (1)(2). Our results show that whenh = (σh/σg)g,
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the resulted upper bound in (9) matches the lower bound in (5), and thus is tighter than the upper

bound in [10]. Although one may also introduce a correlation tony and nz in (8), our results

indicate that this will not further tighten the bound (9). As a final note, our upper-bounding

technique can not be applied when the transmitter additionally knows the realizations ofh as

[4]. In such a setting, the legitimate channel (7) is not a same marginal channel for (1). With

perfect CSIT ofh, the transmitted signalx is a function ofh. Given x, h may not be Gaussian

but h′ = (σh/σg)g is, and thusp(y′,h′|x) from (7) may not equal top(y,h|x) from (1). Our

CSIT assumption makesx independent ofh and g, and then the legitimate channel in (7) has

the same marginal as that in (1). Therefore, we can get rids of the unrealistic ergodicslow fading

assumption in [4], and be able to find the secrecy capacity of thefast fadingchannel.

For fast fading channels with multiple transmit antennas and perfect legitimate receiver’s

CSIT, the upper and lower bounds were presented in [8]. The upper bound in [8] follows from

[4] as described above, while the lower bound uses the artificial-noise (AN) prefixing [17]

which utilizes the legitimate channel’s direction to transmit the additional AN to disrupt the

eavesdropper’s reception. In contrast to our secrecy capacity results, the upper and lower bounds

for fast fading channels in [8] only coincide asymptotically when the number of transmit antenna

NT and the transmit signal-to-noise ratio (SNR) are both large. It is also interesting to consider a

multi-antenna system with estimated CSIT which includes our results and those in [8] as special

cases. Partial results were reported in [5]. In [5], the secrecy capacity is only found under the

assumptions that the transmitter has single antenna (NT = 1), σ2
h = σ2

g, and the statistical CSIT

is known. This setting in [5] is included in our more general MISOSE modal. Also as discussed

in Remark 1, our proof for Lemma 1 includes a step which hidesh from the eavesdropper.

However, this proof step is neglected in [5].

Now we show that the optimalΣx of the stochastic optimization problem (5) is

diag{P/NT , . . . ,P/NT},

and fully characterize the secrecy capacity as follows. Note that such optimization problem does

not exist for the single transmit antenna system considered in [5].

Theorem 1 For the MISOSE fast Rayleigh fading wiretap channel(1)(2) with the statistical
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CSIT ofh and g, under power constraintP, the non-zero secrecy capacityCs is obtained only

whenσh > σg, which is

Cs = Eh

[
log

(
1+P

||h||2
NT

)]
−Eg

[
log

(
1+P

||g||2
NT

)]
, (12)

whereh∼CN(0,σ2
hI), g∼CN(0,σ2

gI), and NT is the number of transmit antennas.

Proof: Subjecting to (3), after substitutingh∼CN(0,σ2
hI) andg∼CN(0,σ2

gI) into the RHS

of (5), the optimization problem becomes

max
Σx

(
Eg

[
log

σ2
g/σ2

h +gHΣxg

σ2
g/σ2

h

]
−Eg

[
log(1+gHΣxg)

]
)

. (13)

By using the eigenvalue decompositionΣx = UDUH , where U is unitary andD is diagonal,

finding the optimalΣx of (13) is equivalent to solving

max
U,D

(
Eg

[
log

(
σ2

g/σ2
h +gHUDUHg

)]

−Eg
[
log(1+gHUDUHg)

])
,

=max
D

(
Eg

[
log

(
σ2

g/σ2
h +gHDg

)]−Eg
[
log(1+gHDg)

])
, (14)

where the equality comes from the fact that the distribution ofg∼CN(0,σ2
gI) is unchanged by

the rotation of unitaryU, and we can setΣx = D (U = I ) without loss of optimality.

In the following, we show that subjecting toTr(D)≤ P, the optimalD for (14) is

D∗ = diag{P/NT ,P/NT , · · · ,P/NT}. (15)

First of all, from [9, Section V], the optimalD for (14) satisfiesTr(D) = P. Then for any

D = [d1,d2, · · · ,dNT ] where∑NT
i=1di = P anddi ≥ 0,∀i, we want to prove that forD∗ defined in

(15)

Eg
[
log

(
a+gHDg

)]−Eg
[
log

(
1+gHDg

)]

≤Eg
[
log

(
a+gHD∗g

)]−Eg
[
log

(
1+gHD∗g

)]
, (16)

where we denoteσ2
g/σ2

h by a, which belongs to[0,1) since we only need to consider the case

where σh > σg. Here we introduce some results from the stochastic ordering theory [11] to
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proceed.

Definition 2 [11, p.234] A functionψ(x) : [0,∞)→R is completely monotone if for allx > 0

and n = 0,1,2, · · · , its derivativeψ(n) exists and(−1)nψ(n)(x)≥ 0.

Definition 3 [11, (5.A.1)] Let B1 and B2 be two nonnegative random variables such that

E[e−sB1]≥E[e−sB2], for all s> 0. ThenB1 is said to be smaller thanB2 in the Laplace transform

order, denoted asB1≤LT B2.

Lemma 2 [11, Th. 5.A.4] LetB1 and B2 be two nonnegative random variables. IfB1 ≤LT B2

thenE[ f (B1)] ≤ E[ f (B2)], where the first derivative of a differentiable functionf on [0,∞) is

completely monotone, provided that the expectations exist.

To prove (16), we letB1 = gHDg, B2 = gHD∗g, and f (x) = log(a+x)− log(1+x) to invoke

Lemma 2. It can be easily verified thatψ(x), the first derivative off (x), satisfies Definition 2.

More specifically, thenth derivative ofψ meets

ψ(n)(x) =





n!
(a+x)n+1 − n!

(1+x)n+1 > 0, if n is even,

−n!
(a+x)n+1 + n!

(1+x)n+1 < 0, if n is odd,
(17)

whenx > 0, sincea∈ [0,1). Now from Lemma 2 and Definition 3, we know that to prove (16)

is equivalent to provingE[e−sB1]≥ E[e−sB2] or

log(E[e−sB1]/E[e−sB2])≥ 0, ∀s> 0.

From [18, p.40], we know that

log

(
E[e−sB1]
E[e−sB2]

)
=

NT

∑
k=1

log(1+σ2
gd∗ks)−

NT

∑
k=1

log(1+σ2
gdks). (18)

To show that the above is nonnegative, we resort to the majorization theory. Note that∑NT
k=1 log(1+

σ2
gďks) is a Schur-concave function [12] in(ď1, . . . , ďNT ), ∀s> 0, and by definition of majorization

[12],

(d∗1, · · · ,d∗NT
) = (P/NT , P/NT , · · · , P/NT)

≺ (d1, d2, · · ·dNT ), (19)

January 10, 2013 DRAFT



12

whereb ≺ a means thatb is majorized bya. Thus from [12], we know that the RHS of (18)

is nonnegative,∀s> 0. Then (16) is valid, andD∗ is optimal for (14). Note thatD∗ is also the

optimal Σx of (5) sinceU in (14) is selected asI . SubstitutingD∗ in (15) as the optimalΣx into

the target function of (5), we have (12).

Remark 4: In [9, Sec. VII], the channel input covariance matrixΣx for (5) is solved by an

iterative algorithmnumerically. Although the MISO legitimate channel in [9] can be correlated,

even in our i.i.d. fading cases, the algorithm in [9] cannot guarantee the optimality. In contrast,

the contribution of our Theorem 1 is that weanalytically solve the optimalΣx, which equals to

the diagonalD∗ in (15). Finally, as discussed in Remark 2, the secrecy capacity lower bound

in [10] is not achievable. Thus the conclusion in [10], which claims that the uniform power

allocation among transmit antennas is not secrecy capacity achieving, iswrong.

Remark 5: One can immediately generalize our results in Lemma 1 to the case where the

legitimate receiver and eavesdropper with multiple antennas. Specifically, if the legitimate user

and eavesdropper have the same number of antenna and the two channelsH andG (corresponding

to h and g in (1), respectively) are i.i.d. Rayleigh fading, then the fast fading secrecy capacity

with only statistical CSIT is

Cs = max
px

I(x,y|H)− I(x,y|G)

= max
Σx

(
EH

[
log

∣∣I +HHΣxH
∣∣]−EG

[
log

∣∣I +GHΣxG
∣∣]) ,

where the second equality corresponds to (5). However, extending our proof of Theorem 1 to

this case is not trivial. Thus whether the optimal covariance matrix for the above optimization

problem is still a scaled identity matrix or not is still unknown.

Based on our secrecy capacity results in Theorem 1, we have the following asymptotic results.

Unfortunately, with only statistical CSIT, the secrecy capacity scales with neither the transmitter

power constraintP nor the number of antennasNT for the considered MISOSE channel (1) (2).

Corollary 1 With only statistical CSIT ofh andg, whenP→∞, the secrecy capacityCs in (12)

converges to2log(σh/σg) whenσh > σg > 0.
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Proof: Note that we only consider the scenarioσh > σg, since from our results the secrecy

capacity is zero whenσh ≤ σg. Whenσh > σg,

Cs =Eh

[
log

(
1+P

||h||2
NT

)]
−Eg

[
log

(
1+P

||g||2
NT

)]

(a)
=Eg

[
log

(
1+

σ2
h

σ2
g

P||g||2
NT

)]
−Eg

[
log

(
1+

P||g||2
NT

)]

=Eg


log




1
P + σ2

h
σ2

g

||g||2
NT

1
P + ||g||2

NT







=
∫

log




1
P + σ2

h
σ2

g

||g||2
NT

1
P + ||g||2

NT


 fgdg, (20)

where (a) uses the fact thath and (σh/σg)g has the same distributions, andfg in (20) is the

p.d.f. of g. Then we have the following two facts,∀ P, whenσh > σg > 0,
∣∣∣∣∣∣∣
log




1
P + σ2

h
σ2

g

||g||2
NT

1
P + ||g||2

NT




∣∣∣∣∣∣∣
≤ log




σ2
h

σ2
g

||g||2
NT

||g||2
NT


 ,

and

∫
log




σ2
h

σ2
g

||g||2
NT

||g||2
NT


 fgdg =

∫
log

(
σ2

h
σ2

g

)
fgdg

= 2log

(
σh

σg

)
< ∞.

Note that we exclude the caseσg = 0 since it is a trivial case corresponding to the communication

without secrecy. From the above two facts, we can invoke the dominated convergence theorem

[19, Th. 16.4] to exchange the order of the limit operation and the integral to computelimP→∞Cs
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Fig. 2. Comparison of the secrecy capacities of fast Rayleigh fading MISOSE wiretap channels under different eavesdropper-
to-legitimate-channel qualitiesσg/σh.

from (20) as

lim
P→∞

Cs = lim
P→∞

∫
log




1
P + σ2

h
σ2

g

||g||2
NT

1
P + ||g||2

NT


 fgdg

=
∫

lim
P→∞

log




1
P + σ2

h
σ2

g

||g||2
NT

1
P + ||g||2

NT


 fgdg

= 2log
σh

σg
.

Corollary 2 With only statistical CSIT ofh and g, the secrecy capacityCs in (12) converges to

log
(
1+Pσ2

h
)− log

(
1+Pσ2

g
)
,

whenNT → ∞.

Proof: By law of large numbers, asNT → ∞, ||h||2/NT → σ2
h and ||g||2/NT → σ2

g, respec-

tively. Applying these facts to (12), our corollary is proved.
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Fig. 3. Comparison of the secrecy capacities of fast Rayleigh fading MISOSE wiretap channels under different numbers of
transmit antennasNT .
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Fig. 4. Comparison of rates/capacities in different fast fading channel settings: MISOSE channel with statistical CSIT ofh and
g, MISOSE channel with perfect CSIT of legitimate channelh and statistical CSIT of the eavesdropper channelg, and MISO
channel with statistical CSIT but without secrecy constraint.

IV. N UMERICAL RESULTS

In this section we compare the secrecy capacities under different channel conditions, and

without loss of generality we setσg = 1 in all figures. The transmit SNR is defined asP in

dB scale since bothny andnz have unit variances. In Fig. 2 we compare the secrecy capacities

with NT = 2 under differentσg/σh, and find that the secrecy capacity increases whileσg/σh
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decreases. Also the secrecy capacity converges to2 log(σh/σg) when the SNR is high, which

is consistent with Corollary 1. In Fig. 3, withσ2
h = 4, we compare the secrecy capacities under

different numbers of transmit antennasNT . We can also find that the secrecy capacity converges

when NT is large enough, which is consistent with Corollary 2. Moreover, when the SNR

P increases, the secrecy capacity under largeNT will approach 2 bit/channel use, which is

from limP→∞ log
(
1+Pσ2

h

)− log
(
1+Pσ2

g
)

= log
(
σ2

h/σ2
g
)

with σ2
h = 4 and σ2

g = 1. Finally, we

compare our results with achievable secrecy rates/capacities of other channel settings in Fig.

4, where we setNT = 2 and σg/σh = 0.5. The fast fading MISOSE channel in [8] [15] [17]

is used in comparison, where the transmitter has perfect CSIT of the legitimate channelh but

only statistical CSIT ofg. In contrast to the results in Lemma 1, the secrecy capacity of such

a channel is unknown and the AN prefixing [8] [15] [17] is useful to increase the secrecy rate.

Moreover, unlike results in Corollary 1, with additional perfect CSIT ofh, the achievable secrecy

rates using AN prefixing scale withP. The capacity of the MISO channel with statistical CSIT

but without secrecy constraint is also compared in Fig. 4. As expected, the capacity of such a

channel [20], which scales withP, is much larger than the secrecy capacity in Theorem 1.

V. CONCLUSION

In this paper, we derived the secrecy capacity of the MISOSE ergodic fast Rayleigh fading

wiretap channel, where only the statistical CSIT of the legitimate and eavesdropper channels is

known. By introducing a new secrecy capacity upper bound, we first showed that the Gaussian

input without prefixing is secrecy capacity achieving. Then we analytically found the optimal

channel input covariance matrix, and fully characterized the secrecy capacity.
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