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ABSTRACT

This paper considers the problem of distributed multi-hypothesis classification in the context of wireless sensor
networks. The goal is to reliably classify an underlying hypothesis at a fusion center using simple localized
decisions at individual sensors. The fusion-center classification must be performed despite the presence of faults
in both local sensor decisions and transmission channels between the sensors and fusion center. Local sensor
nodes make binary classifications based on their noisy observations and send their decisions to the fusion center
through parallel additive white Gaussian noise channels. The fusion center then uses these noisy versions of
local decisions to perform a global classification. In contrast with other similar approaches for multi-hypothesis
classification based on combined binary decisions, our approach exploits the relationship between the influence
fields of different hypotheses and the accumulated noisy versions of local binary decisions as received by the
fusion center, where the influence field of a hypothesis is defined to be the spatial region in its surrounding in
which it can be sensed using some specific modality. The main contribution of this paper is the formulation of
local and fusion decision rules that maximize the probability of correct global classification at the fusion center,
along with an algorithm for channel-aware global optimization of the local and fusion center decision thresholds.
The performance of the proposed classification system is investigated through practical scenarios. Performance
analysis results show that the proposed approach could simplify decision making at local sensors while achieving
acceptable performance in terms of the global probability of correct classification at the fusion center.

Keywords: Distributed detection and classification, M -ary hypothesis testing, channel-aware classification,
binary local decisions, influence field, fusion center, wireless sensor networks.

1. INTRODUCTION

Wireless sensor networks (WSNs) are generally formed by a large number of densely-deployed sensors with limited
capabilities that cooperate with each other to achieve a common goal. One of the most important applications of
such networks is distributed detection and classification of an object, event, or some phenomenon, also called here
an underlying hypothesis, which is the first step in a wider range of applications such as tracking, identification,
and parameter estimation1. In a WSN performing distributed detection and classification, distributed local
sensors observe the conditions of their surrounding environment, process their local observations, and send their
processed data to a fusion center, which then makes the ultimate global decision. Different aspects of this problem
have attracted a lot of interest in the research community throughout the last three decades. In this paper, we
investigate the problem of classifying an underlying hypothesis at the fusion center of a WSN using local binary
decisions received from geographically distributed sensors through impaired channels. This problem is formulated
and solved based on the differences in the influence fields of different hypotheses, where the influence field of a
hypothesis is defined to be the spatial region in its surrounding in which it can be sensed using some specific
modality2.

In the realm of distributed detection and classification in WSNs, most of the attention has been given to
the binary hypothesis testing problem in which the fusion center is designed to detect the presence or absence
of an underlying hypothesis based on local binary decisions received from distributed sensors. In recent years,
this problem has been considered for a practical case of non-ideal channels between local sensors and the fusion
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center in which the decisions of local sensors are not reliably received at the fusion center. See Chamberland
and Veeravalli3, Chen et al.4, and references therein for a survey on recent developments in this field.

The problem of testing M hypotheses using sensory data in WSNs has been investigated in some capacity
(see, for instance5). In general, decisions made by the local sensors in this case are sent to the fusion center using
at least dlog2Me information bits where M is the number of hypotheses to be classified. However, two main
constraints of WSNs make this approach undesirable: First, the processing power of the local sensors is limited.
Therefore, they may not be able to distinguish between different hypotheses. Second, the bandwidth and energy
resources of WSNs are limited. Therefore, it is desired to send the local sensor decisions to the fusion center
with as few bits as possible. These observations and requirements motivated us to design a distributed M -ary
classification WSN in which the local sensors make binary (rather than M -ary) local decisions and send them to
the fusion center. The fusion center then uses the local decisions collectively and makes a global inference about
the underlying hypothesis based on the known influence fields of different hypotheses.

There has been some recent work in the literature that has investigated distributed M -ary hypothesis testing
in WSNs using local binary decisions. In Wang et al.6, a fault-tolerant distributed multi-hypothesis classification
fusion approach is proposed based on binary error correcting codes. In this approach, an error-correcting code
matrix is designed in which each row forms a codeword that corresponds to one of the M hypotheses to be
classified. Moreover, each column of the code matrix corresponds to the binary decision rule of the corresponding
local sensor. Each local sensor makes its binary decision based on the corresponding column of the designed
code matrix and sends it to the fusion center through parallel channels. More precisely, when sensor i detects
hypothesis Hj , it sends the binary element in the jth row and ith column of the code matrix to the fusion
center. The fusion center then makes a final M -ary decision on the underlying hypothesis based on the binary
received local decisions using the minimum Hamming distance decoding criterion, where the Hamming distance
between two binary vectors is defined as the number of distinct positions between the vectors. The performance
of this multi-hypothesis classification WSN depends on the minimum Hamming distance of the designed code
matrix. Note that in the classification algorithm proposed by Wang et al.6, local sensors still need to make an
M -ary classification. Having made that classification, each sensor sends a binary decision to the fusion center.
Therefore, this approach addresses the constraints of WSNs related to limited bandwidth and energy resources.
However, it does not alleviate the requirement of high processing capability at local sensors.

The approach proposed in Wang et al.6 does not consider the impact of fading channels between distributed
local sensors and the fusion center. In fact, in this approach the channels are assumed to be binary symmetric
channels. This weakness has been addressed in Wang et al.7, which has a similar problem statement, but a
different decoding rule is devised that is robust to flat fading channels with phase coherent reception at the
fusion center. Another proposed enhancement of7 compared to6 is that it allows the local sensors to send
multi-level D-ary (rather than binary) decisions to the fusion center, if needed, while the fusion center still
uses a fixed binary code matrix for all values of D. The fusion center in this architecture uses a soft-decision
decoding rule to measure the distance between the received multi-level local decision vector and the codeword
in the given binary code matrix. It is shown in7 that when more bits of local decision information are sent
to the fusion center, the classification performance can be improved while the total energy output from each
sensor is fixed. In Wang et al.8, the ideas presented in7 for binary code matrix are extended by using a D-
ary code matrix with D > 2 when log2D bits of local decision information are used at the fusion center. In
Pai et al.9, the approach presented in7 is further refined in a multiple-observation scenario while keeping the
sensor complexity low. In this two-dimensional M -ary coded classification scheme, each sensor makes D (rather
than one) independent observations and then sends D bits as the result of its local decisions for D observations
(one bit for each observation rather than D bits for one observation as in7). Each hypothesis is then represented
by a two-dimensional codeword and the binary code matrix becomes three dimensional.

In Zhu et al.10, the problem of M -ary hypothesis classification in WSNs using binary local decisions is solved
through modelling each local sensor by a set of M transition probabilities that specifies the probability that the
sensor sends 1 to the fusion center for different underlying hypotheses. Moreover, the fusion center is modelled
by a set of M conditional misclassification probabilities, given any hypothesis. The authors of10 have developed
conditions for which the average probability of misclassification at the fusion center asymptotically goes to zero



as the number of local sensors goes to infinity. Moreover, they have used a genetic algorithm-based approach to
find the optimum local decision thresholds.

Zhang and Varshney11 have considered the fusion of binary decision tree classifiers in a multi-hypothesis
classification WSN. Binary decision trees make a sequence of binary decisions in a hierarchical manner and are
easier to design. They are also more efficient. In11, this hierarchical tree structure is used to break the complex
M -ary hypothesis testing problem into a set of much simpler binary decision fusion problems. Each sensor uses
a binary decision tree to make its decision and sends it to the fusion center through an ideal communication
channel. The fusion center then combines the local decisions to make the global inference about the underlying
hypothesis. Since each set of received local decisions corresponds to a unique path from the root node to a
terminal node of the binary decision tree, it can be encoded as a sequence of binary decisions made by all the
sensors in the corresponding path. Detailed analysis of designing the binary decision tree for local sensors and
fusion center, designing the decision rules at the internal nodes of sensor binary decision trees, designing the
optimum fusion rule, and designing the system topology including communication structure of the WSN has
been presented in11.

In all of the aforementioned references, the conditional observations at different local sensors, given any un-
derlying hypothesis, are assumed to be independent. In Nguyen et al.12, the problem of decentralized Bayesian
detection in WSNs with M hypotheses is considered when local sensors make conditionally dependent observa-
tions. Each sensor is modelled as a quantizer that makes a D-ary decision based on its observation and sends it to
a fusion center through an ideal communication channel. The fusion center then makes a decision on the actual
hypothesis based on the local decisions it receives from distributed sensors so that the average probability of
misclassification is minimized. It is shown that, due to the conditional dependence between sensor observations,
the threshold based decision rules (or likelihood ratios) at local sensors are no longer optimal. The same problem
has been considered in a more general form in Tang et al.13 with conditionally correlated observations, given any
underlying hypothesis, perfect communication channels between local sensors and fusion center, and D-ary local
decisions. The person-by-person optimization (PBPO) algorithm has been used to optimize the local sensor and
fusion center decision rules iteratively.

In some applications involving distributed M -ary hypothesis testing in WSNs, local knowledge of sensors
may not be sufficient for making an M -ary decision or it may be very costly to have sensors capable of doing
such a classification. As an example, consider a surveillance system consisting of a densely-deployed sensor
network whose ultimate goal is to detect and classify an intruder, which can be an armed soldier, a car, or a
tank. Suppose that the sensors are simple magnetometers that can only measure the strength of a magnetic
field in their limited surrounding region. Since all three hypotheses can have the same magnetic field at a local
sensor location, the sensors may not be able to distinguish between these hypotheses based on only their local
observations. In other words, they can only detect the existence of a magnetic field in their surrounding, i.e.
a local binary hypothesis problem. On the other hand, if the fusion center has access to local binary decisions
made at all of the distributed sensors, it can make a global inference about the underlying hypothesis based on,
for example, the number of sensors that have detected a magnetic field of one of the three hypotheses. More
precisely, the number (and possibly location) of sensors that detect the presence of magnetic field of an object
determines the area of coverage of the object’s influence field, and can be considered as a measure of the area
associated with the influence field of the underlying hypothesis. This intuition motivated our work to design a
distributed multi-hypothesis classification strategy for WSNs that uses binary local inferences to make its final
optimal decision based on the knowledge of the influence fields of different underlying hypotheses.

Bapat et al.14 have previously used the idea of influence fields for classification of objects in a large scale
sensor network. The objective of14 was to obtain requirements on the underlying sensor network density to
ensure accurate classification in the presence of false decisions at local sensors, channel fading and channel
contention. On the other hand, the objective of this paper is to obtain conditions on local and fusion center
decision thresholds in the presence of noisy observations that maximize classification accuracy at the fusion
center for a given density of sensor deployment.

The rest of this paper is organized as follows: Section 2 describes the model of the distributed parallel fusion
WSN that we will consider in our analysis. In Section 3, the system is analyzed, and the optimum parameters of
a specifically-defined fusion center decision rule are derived. Moreover, different methods of local versus global
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Figure 1. System model of the proposed multi-hypothesis classification system.

optimization of local decision rules are discussed. Section 4 presents the numerical results of the analytical
performance evaluation of the proposed classification system and studies the effects of different parameters of
the classification network on its performance. Finally, in Section 5 we conclude our discussions and summarize
the main achievements of this work.

2. SYSTEM MODEL

Consider a WSN deployed as a parallel distributed classification system as shown in Fig. 1. The system is formed
by K sensors distributed in an environment covering an area S, and a fusion center. There are M independent
and mutually exclusive hypotheses H0, H1, . . ., and HM−1, M ≥ 2, with the following known prior probabilities:

pj = P [H = Hj ], j = 0, 1, . . . ,M − 1, (1)

where H is a random variable representing the underlying hypothesis. Note that H0 is the null or rejection
hypothesis and its existence means that none of the other M − 1 hypotheses has occurred. Each non-null
hypothesis is associated with a known influence field defined as the spatial region in its surrounding in which it
can be sensed using some specific modality2. As an example, suppose that the sensors are simple magnetometers
and the non-null hypotheses define the presence of a car or a tank. The regions in which the car or tank can
be sensed by the magnetometers are called their influence fields. The influence field of hypothesis Hj is denoted
by Aj , j = 1, 2, . . . ,M − 1. It is assumed that the entire influence field of the underlying hypothesis is inside
the sensing area S. If the sensors are distributed uniformly within the sensing area, the average number of
sensors that can be placed in the influence field of hypothesis Hj will be Kj = bAjS Kc. Throughout this paper,
we assume that the center of the influence field of the underlying hypothesis is known or has been reliably
estimated∗. Assuming that the center of the underlying influence field is known, for each sensor i the set of
hypotheses is divided into two disjoint subsets: the set of hypotheses that sensor i can be inside their influence
fields, denoted by C1i , and the set of hypotheses that sensor i cannot be inside their influence fields, denoted by
C0i . On the other hand, assuming uniform sensor distribution within the sensing environment, for each underlying
hypothesis Hj , on average there are Kj sensors that can be inside its influence field and K −Kj sensors that
cannot.

Let x = [x1, x2, . . . , xK ] be the vector of local sensor observations. It is assumed that the conditional
observations of different sensors, given any specific underlying hypothesis, are independent. In other words,

p(x|Hj) =

K∏
i=1

p(xi|Hj), j = 0, 1, . . . ,M − 1. (2)

Throughout this paper, we assume that the conditional observation of each sensor i, given any hypothesis Hj , is
modelled as

Hj : xi =

{
vi, if Hj ∈ C0i
s+ vi, if Hj ∈ C1i

, j = 0, 1, . . . ,M − 1, i = 1, 2, . . . ,K, (3)

∗For more information on distributed estimation in WSNs, an interested reader is referred to15 and references therein.



where vi’s are samples of zero-mean white Gaussian noise with variance σ2
o , i.e. vi ∼ N (0, σ2

o), i = 1, 2, . . . ,K.
Noise samples are independent and identically distributed (i.i.d.). More specifically, if the sensor can be inside the
influence field characterizing hypothesis Hj , it observes a noisy version of the constant strength of the influence
field, s. Otherwise, it observes only noise. Note that this model implies that the strength of the influence field of
all non-null hypotheses is assumed to be the same and constant over the entire influence field. This assumption
makes analysis tractable. Furthermore, it is valid in a lot of applications such as the one mentioned at the
beginning of this section.

Each local sensor makes a binary decision based on its sensory data. To be specific, assume that the local
decision of any sensor, ui, i = 1, 2, . . . ,K, is made based on a local binary decision rule as

ui = γi(xi) =

{
0, if xi < βi

1, if xi > βi
, (4)

where βi is the optimal local decision threshold for sensor i. Note that this decision rule might not be the optimal
local decision rule for our distributed classification system. However, it is very simple and allows us to achieve an
acceptable performance in terms of probability of correct classification at the fusion center without requiring the
sensors to be able to distinguish between different hypotheses. In other words, the sensors are able to distinguish
only the occurrence or not occurrence of the M − 1 non-null hypotheses and it is the fusion center that makes
the final M -ary decision based on the accumulated local binary decisions, from the sensors. This local decision
rule has two main advantages addressing the stringent processing capability and bandwidth limitations of WSNs.
The first advantage is that the sensors do not need to differentiate between M − 1 non-null hypotheses, and
hence their required local processing is very limited. The second advantage is that the transmission of the local
decisions to the fusion center can be done using a binary scheme, and hence the bandwidth required for this
communication will be limited.

Let u = [u1, u2, . . . , uK ] be the vector of binary decisions made by the local sensors. Each ui is communicated
to the fusion center over an additive white Gaussian noise (AWGN) channel resulting in a noisy output yi.
Channels between different sensors and the fusion center are parallel. The input to the fusion center is a vector
of noisy local decisions, y = [y1, y2, . . . , yK ], where each one of its entries,

yi = ui + ni, i = 1, 2, . . . ,K, (5)

is a decision made by sensor i and observed by the fusion center. Additive noise, ni, in each of the K parallel
channels is assumed to be zero-mean independent and identically distributed Gaussian with variance σ2

n, i.e.
ni ∼ N (0, σ2

n), i = 1, 2, . . . ,K.

The fusion center has to make the final M -ary decision, u0, about the underlying hypothesis by using noisy
versions of the local binary decisions from distributed sensors. In other words,

u0 = γ0(y) ∈ {0, 1, . . . ,M − 1} , (6)

where γ0(.) is a multi-variate function. In the next section, we propose a simple yet powerful fusion center
decision rule and analyze the performance of the proposed M -ary classification system.

3. FUSION RULE DERIVATION

Suppose that the receiver at the fusion center is designed to add all received yi’s, i = 1, 2, . . . ,K, and form a
decision metric (or test statistic) S0 =

∑K
i=1 yi based on which the final M -ary decision is made. Note that the

final decision metric is sought in the form of linear combination of noisy local decisions. Other more complicated
decision metrics can be considered but this linear rule has the advantages of being simple and computationally
efficient. It can be observed that S0 is an appropriate yet simple decision metric, which captures differences in
the influence fields of different hypotheses. In other words, it is intuitive that S0 tends to have larger values if
the influence field of the underlying hypothesis is larger, since more sensors are in the underlying influence field,
and therefore have made ui = 1 as their decisions. If the influence fields of different hypotheses have enough



separation and appropriate thresholds are found for the values of S0 associated with different hypotheses, the
system can achieve an acceptable performance in terms of probability of correct classification at the fusion center.

Assume that Γ = {α1, α2, . . . , αM−1} is the set of decision thresholds based on which the fusion center
classifies the underlying hypothesis using S0 as its decision metric. In other words, assume that the fusion
center’s decision rule is

u0 = j if and only if αj ≤ S0 < αj+1, j = 0, 1, . . . ,M − 1, (7)

where α0 = −∞ and αM = ∞. The optimum values for this set of decision thresholds at the fusion center
are derived in this section so that the maximum probability of correct classification at the fusion center can
be achieved. Moreover, the effect of channel-aware global optimization of local sensor decision thresholds βi,
i = 1, 2, . . . ,K, on the probability of correct classification at the fusion center is examined.

Based on equation (3) as a model for the conditional local observation of sensor i, xi, and equation (4) as
the sensor’s local binary decision rule, it can be shown that the conditional probability density function (pdf) of
the ith local sensor’s decision, ui, given hypothesis Hj , is

fUi|Hj (ui|Hj) =


{

1−Q
(
βi
σO

)}
δ [ui] +Q

(
βi
σO

)
δ [ui − 1] , if Hj ∈ C0i i = 1, 2, . . . ,K{

1−Q
(
βi−s
σO

)}
δ [ui] +Q

(
βi−s
σO

)
δ [ui − 1] , if Hj ∈ C1i j = 0, 1, . . . ,M − 1

(8)

where δ [.] is the discrete Dirac delta function and Q(.) is the complementary distribution function of the standard
Gaussian random variable defined as

Q(x) =

∫ ∞
x

1√
2π
e−

t2

2 dt. (9)

From equation (5), it can be easily observed that, given any decision at sensor i, ui, the corresponding received
signal at the fusion center, yi, has a Gaussian distribution with mean ui and variance σ2

n, i.e. yi|ui ∼ N (ui, σ
2
n),

i = 1, 2, . . . ,K. Therefore, the conditional pdf of the received signal at the fusion center, given the corresponding
decision at the local sensor, is given by

fYi|Ui (yi|ui) =
1√

2πσ2
n

e
− (yi−ui)

2

2σ2n , i = 1, 2, . . . ,K. (10)

Since K parallel channels are independent, yi’s received from different sensors at the fusion center are also
independent.

Then, the conditional pdf of yi, i = 1, 2, . . . ,K, given hypothesis Hj , j = 0, 1, . . . ,M − 1, can be written as

fYi|Hj (yi|Hj) = fYi|Ui (yi|ui) fUi|Hj (ui|Hj) . (11)

Substituting fUi|Hj (ui|Hj) and fYi|Ui (yi|ui) from equations (8) and (10) in equation (11) results in

fYi|Hj (yi|Hj) =


1√
2πσ2

n

{
e
− y2i

2σ2n

[
1−Q

(
βi
σO

)]
+ e
− (yi−1)2

2σ2n Q
(
βi
σO

)}
, if Hj ∈ C0i

1√
2πσ2

n

{
e
− y2i

2σ2n

[
1−Q

(
βi−s
σO

)]
+ e
− (yi−1)2

2σ2n Q
(
βi−s
σO

)}
, if Hj ∈ C1i

. (12)

Using the conditional pdf of the received local decision from each sensor i at the fusion center, yi, under any
underlying hypothesis, Hj , its conditional moment generating function (MGF) can be evaluated as

ΦYi|Hj (ν) = E
[
eνYi

∣∣Hj

]
=

∫ ∞
−∞

eνyifYi|Hj (yi|Hj) dyi = L
{
fYi|Hj (yi|Hj)

} ∣∣∣
−ν

, (13)



where E and L denote the expected value of a random variable and Laplace transform of a function, respectively.
Note that at the last step, the variable of the Laplace transform is changed to −ν. Substituting fYi|Hj (yi|Hj)
from equation (12) into (13) results in

ΦYi|Hj (ν) =


e
σ2nν

2

2

{[
1−Q

(
βi
σO

)]
+Q

(
βi
σO

)
eν
}
, if Hj ∈ C0i

e
σ2nν

2

2

{[
1−Q

(
βi−s
σO

)]
+Q

(
βi−s
σO

)
eν
}
, if Hj ∈ C1i

. (14)

This is the conditional MGF of yi, given the underlying hypothesis Hj .

Using the MGF of yi, i = 1, 2, . . . ,K, conditioned on hypothesis Hj , j = 0, 1, . . . ,M − 1, we can calculate

the conditional MGF of the fusion center’s decision metric, S0 =
∑K
i=1 yi, given hypothesis Hj , as

ΦS0|Hj (ν) = E
[
eνS0

∣∣Hj

]
= E

[
eν

∑K
i=1 Yi

∣∣∣Hj

]
= E

[
K∏
i=1

eνYi
∣∣∣Hj

]
(15)

(a)
=

K∏
i=1

E
[
eνYi |Hj

]
=

K∏
i=1

ΦYi|Hj (ν)

where (a) is due to the independence of yi’s under a given hypothesis Hj .

As mentioned in Section 2, assuming uniform sensor distribution within the sensing environment, for any
hypothesis Hj , j = 0, 1, . . . ,M − 1, there are on average Kj sensors for which Hj ∈ C1i and K −Kj sensors for
which Hj ∈ C0i . Therefore, substituting ΦYi|Hj (ν) from equation (14) into (15), the conditional MGF of the
fusion center’s decision metric, given hypothesis Hj , can be written as

ΦS0|Hj (ν) = exp

(
Kσ2

nν
2

2

)Kj∏
i=1

{
1−Q

(
βi − s
σO

)}
+Q

(
βi − s
σO

)
eν

 (16)

×

 K∏
i=Kj+1

{
1−Q

(
βi
σO

)}
+Q

(
βi
σO

)
eν

 .
Note that ΦS0|Hj (ν) can be simplified using algebraic manipulations to the final form of

ΦS0|Hj (ν) = exp

(
Kσ2

nν
2

2

) K∑
`=0

a` exp (`ν) , (17)

where a`, ` = 0, 1, . . . ,K, is a function of appropriate subsets of Q
(
βi−s
σO

)
, i = 1, 2, . . . ,Kj , and Q

(
βi
σO

)
,

i = Kj + 1,Kj + 2, . . . ,K.

Based on the result of equation (13), the conditional pdf of the fusion center’s decision metric, S0, given
hypothesis Hj , can be calculated from its MGF as

fS0|Hj (s0|Hj) = L−1
{

ΦS0|Hj (−ν)
}
, j = 0, 1, . . . ,M − 1, (18)

where L−1 is the inverse Laplace transform of a function. Substituting ΦS0|Hj (ν) from equation (17) into (18)
results in the conditional pdf of the fusion center’s decision metric, given hypothesis Hj , as follows:

fS0|Hj (s0|Hj) =
1√

2πKσ2
n

K∑
`=0

a` exp

[
− (s0 − `)2

2Kσ2
n

]
. (19)



Based on Bayesian decision theory, the minimum error probability decision rule for the M -ary classification
of the underlying hypothesis using the fusion center’s decision metric S0 is

Ĥj = arg max
j∈{0,1,...,M−1}

fHj |S0
(Hj |s0) (20)

= arg max
j∈{0,1,...,M−1}

pjfS0|Hj (s0|Hj) .

Therefore, substituting fS0|Hj (s0|Hj) from equation (19) into (20) results in the minimum error probability
decision rule at the fusion center, which achieves the maximum probability of correct classification. Moreover,
the optimum decision thresholds at the fusion center, Γ = {α1, α2, . . . , αM−1}, can be found as the intersection of
different a posteriori pdfs, fHj |S0

(Hj |s0), j = 0, 1, . . . ,M − 1. The fusion center will then classify the underlying

hypothesis based on its decision rule summarized in equation (7) by using its decision metric, S0 =
∑K
i=1 yi.

It can be observed from equation (16) that the coefficients a`, ` = 0, 1, . . . ,K, in fS0|Hj (s0|Hj) are functions
of the local decision thresholds, βi, i = 1, 2, . . . ,K. Based on the Bayesian decision theory, the locally optimal
decision rule of sensor i for a binary decision making on whether a non-null hypothesis has occurred or not is in
the form of

P
[
Hj ∈ C1i |xi

] ui=1

≷
ui=0

P
[
Hj ∈ C0i |xi

]
, (21)

which can be rewritten as

fXi|{Hj∈C1i }
(
xi|Hj ∈ C1i

)
fXi|{Hj∈C0i } (xi|Hj ∈ C0i )

ui=1

≷
ui=0

P
[
Hj ∈ C0i

]
P [Hj ∈ C1i ]

. (22)

Considering the conditional observation model of sensor i, given hypothesis Hj , defined in equation (3), locally
optimal decision rule of sensor i derived in (22) can be simplified as

xi
ui=1

≷
ui=0

s

2
+
σ2
O

s
ln

(
P
[
Hj ∈ C0i

]
P [Hj ∈ C1i ]

)
. (23)

If we compare the above local decision rule with the one defined in equation (4), the locally optimal decision
threshold of sensor i can be defined as

βi,Local =
s

2
+
σ2
O

s
ln

(
P
[
Hj ∈ C0i

]
P [Hj ∈ C1i ]

)
. (24)

It can be observed from (24) that βi,Local depends only on the variance of additive observation noise, σ2
O.

However, this decision threshold might not result in the globally optimized probability of correct classification
at the fusion center. In this paper, our goal is to find the globally optimal local decision thresholds that result
in the maximum probability of correct classification at the fusion center. It should be noted that these globally
optimal local decision thresholds depend on variances of both observation noise and channel noise, σ2

O and σ2
n.

In the next section, we present the results of our analysis using a numerical scenario and discuss the effects of
such a global optimization compared to a local optimization of the local decision thresholds in the performance
of the M -ary classification system.

4. NUMERICAL ANALYSIS

In this section, the performance of the proposed channel-aware multi-hypothesis classification WSN architecture
is evaluated for a typical numerical scenario. First, the parameters of the WSN under analysis are specified. Then,
the effects of observation signal-to-noise ratio (SNR) and channel SNR on the performance of the classification
system are investigated. Moreover, the performance enhancement that can be achieved by optimizing local
sensors’ decision thresholds globally rather than locally is discussed. Finally, the effects of the number of
distributed local sensors on the performance of the proposed classification system are evaluated.



4.1 Parameter Specification of Analyzed WSN

The performance of the proposed multi-hypothesis classification system is analyzed for a typical WSN. Suppose
that a WSN is formed by K = 15 sensors distributed over an area with size S = 15. The goal is to classify
the distributed observed data as being generated by M = 3 hypotheses, H0, H1, and H2, with known prior
probabilities p0 = P [H = H0] = 0.6, p1 = P [H = H1] = 0.3, and p2 = P [H = H2] = 0.1. The influence fields
of the non-null hypotheses are of size A1 = 5 and A2 = 15. Therefore, assuming uniform distribution of local
sensors within the observation environment, K1 = 5 and K2 = 15 are the average number of sensors that are in
the influence field of H1 and H2, respectively. Assume that s = 1 is the normalized strength of the observable
influence field of non-null hypotheses.

Since there are two non-null hypotheses, H1 and H2, in this example, local sensors are divided into two
disjoint groups. The first group is composed of K1 = 5 sensors that can be inside the influence field of either of
the non-null hypotheses. The second group is formed by the other K −K1 = 10 sensors that can only be inside
the influence field of hypothesis H2. It is intuitive to assume that the decision thresholds of the sensors in each
one of these two groups are the same. Therefore, the set of local decision thresholds is composed of 15 elements
each one of them is associated with one sensor. The first five elements of this set are all equal. Similarly, the last
ten elements of this set are all equal. In the rest of this section, we refer to these two local decision thresholds
as β1 and β2, respectively.

4.2 Effects of Observation and Channel SNR on Classification Performance

The average optimized probability of correct classification at the fusion center, Pc, versus observation SNR
(SNRO) is shown in Fig. 2 for different values of channel SNR (SNRC). SNRO and SNRC are defined as

SNRO =
1

2σ2
O

and SNRN =
1

2σ2
n

,

where σ2
O and σ2

n are variances of observation noise and channel noise, respectively. Fig. 3 shows the opti-
mized average probability of correct classification at the fusion center versus channel SNR for different values
of observation SNR. SNR values are given in dB. Solid lines show Pc when the local decision thresholds are
optimized globally through an exhaustive search over all possible local threshold values between zero and two
with step 0.05. Dotted lines show Pc when the local decision thresholds are optimized locally and derived based
on equation (24). For the WSN under consideration, β1,Local and β2,Local can be written as

β1,Local =
1

2
+ σ2

O ln

(
p0

p1 + p2

)
(25)

β2,Local =
1

2
+ σ2

O ln

(
p0 + p1
p2

)
.

As it can be observed from Figs. 2 and 3, the average probability of correct classification approaches one
as SNR increases. Moreover, under all SNR regimes, channel-aware classification system, which is based on
the globally optimal local decision thresholds, outperforms conventional classification system, which is based on
locally optimal local decision thresholds. This crucial point is further demonstrated in detail in Table 1. In this
table, the values of local decision thresholds derived from both local optimization and global optimization are
shown in different columns. Moreover, the corresponding optimized average probability of correct classification
at the fusion center is shown for each case. When the observation SNR is fixed, the locally optimum decision
thresholds are also fixed based on equation (25). However, globally optimum decision thresholds change with
both observation SNR and channel SNR. In the last column of the table, the percentage improvement in average
probability of correct classification at the fusion center due to the global optimization of decision thresholds is
shown. Note that as SNR increases, the achievable percentage improvement decreases. In other words, global
optimization of decision thresholds does not improve the average probability of correct classification at high
SNRs. A justification for this observation is that for high SNRs, the probability of correct classification at the
fusion center is very high (near one) by itself and it cannot be increased further.
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Figure 2. Optimized average probability of correct classification at the fusion center versus observation SNR (SNRO) for
different values of channel SNR (SNRC). The local decision thresholds are optimized either globally (solid lines) or locally
(dotted lines).
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Figure 3. Optimized average probability of correct classification at the fusion center versus channel SNR (SNRC) for
different values of observation SNR (SNRO). The local decision thresholds are optimized either globally (solid lines) or
locally (dotted lines).

4.3 Effect of the Number of Sensors K on Classification Performance

The performance of the proposed multi-hypothesis classification system is a function of the number of distributed
sensors in the observation environment. In Fig. 4, the optimized average probability of correct classification at the
fusion center versus the number of distributed sensors in the observation environment, K, is shown for different
values of observation and channel SNR. Solid lines are used to indicate that the local decision thresholds are
optimized globally through an exhaustive search over all possible threshold values between zero and two with
step 0.05. Dotted lines show Pc when the local decision thresholds are optimized locally and derived based



Table 1. Performance improvement due to globally optimizing local decision thresholds.

SNRO SNRC
β = {β1, β2} Pc Percentage

Local Global Local Global Improvement

0

0

{0.70, 1.6}

{0.55, 0.65} 0.647 0.672 3.82%
5 {0.55, 0.75} 0.719 0.740 2.92%
10 {0.5, 1.15} 0.787 0.803 1.97%
15 {0.4, 1.3} 0.824 0.837 1.59%

5

0

{0.56, 0.85}

{0.5, 0.6} 0.757 0.767 1.33%
5 {0.5, 0.8} 0.876 0.878 0.27%
10 {0.5, 0.9} 0.949 0.951 0.16%
15 {0.5, 0.85} 0.972 0.973 0.11%

10

0

{0.52, 0.61}

{0.5, 0.55} 0.831 0.832 0.06%
5 {0.5, 0.65} 0.948 0.949 0.03%
10 {0.5, 0.75} 0.995 0.996 0.06%
15 {0.5, 0.8} 0.9996 0.9997 0.02%

15

0

{0.51, 0.54}

{0.5, 0.5} 0.840 0.841 ' 0%
5 {0.5, 0.55} 0.955 0.956 ' 0%
10 {0.5, 0.65} 0.997 0.998 ' 0%
15 {0.5, 0.7} 0.999 0.999 ' 0%

on equation (25). As it can be seen in Fig. 4, as the number of local sensors increases, the optimized average
probability of correct classification at the fusion center also increases. Furthermore, our classification system
shows an acceptable performance in terms of average probability of correct classification for moderate number of
local sensors. Notice that since the proposed classification system works based on the number of sensors that are
in the influence field of each hypothesis, if the number of sensors is very small, the number of sensors that can
be in the influence field of different hypotheses is almost the same. Therefore, the value of conditional decision
metric under different hypotheses is not distinct enough for the fusion center to be able to distinguish between
them. This problem is more important for low SNR regimes.
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Figure 4. Optimized average probability of correct classification at the fusion center versus the number of distributed
sensors in the observation environment (K) for different values of observation and channel SNR. The local decision
thresholds are optimized either globally (solid lines) or locally (dotted lines).



5. CONCLUSIONS

In this paper, we designed a method to optimize the performance of a decentralized WSN deployed as a multi-
hypothesis classification system. Local sensors employ a simple binary decision rule and make decisions based on
their noisy observations. These binary decisions are sent to the fusion center through parallel AWGN channels.
The fusion center then forms a decision metric as the linear combination of these noisy local decisions, which
will be used to perform a global multi-hypothesis classification based on the known influence fields of different
hypotheses. Fusion decision rule was formulated and numerical performance analysis of an example WSN was
presented to investigate the effects of the observation and channel SNR, and the number of local distributed
sensors, on the classification performance. Numerical analysis results showed that the proposed approach could
simplify decision making at the local sensors while achieving an acceptable performance in terms of the global
average probability of correct classification at the fusion center. Furthermore, it was shown that a global opti-
mization of the local decision thresholds can improve the probability of correct classification at the fusion center
compared to the case in which local thresholds are only locally optimized.
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