
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Short-Term Traffic Flow Forecasting: An
Experimental Comparison of Time-Series

Analysis and Supervised Learning
Marco Lippi, Matteo Bertini, and Paolo Frasconi

Abstract—The literature on short-term traffic flow forecasting
has undergone great development recently. Many works, describ-
ing a wide variety of different approaches, which very often share
similar features and ideas, have been published. However, publica-
tions presenting new prediction algorithms usually employ differ-
ent settings, data sets, and performance measurements, making it
difficult to infer a clear picture of the advantages and limitations
of each model. The aim of this paper is twofold. First, we review
existing approaches to short-term traffic flow forecasting methods
under the common view of probabilistic graphical models, pre-
senting an extensive experimental comparison, which proposes a
common baseline for their performance analysis and provides the
infrastructure to operate on a publicly available data set. Second,
we present two new support vector regression models, which are
specifically devised to benefit from typical traffic flow seasonality
and are shown to represent an interesting compromise between
prediction accuracy and computational efficiency. The SARIMA
model coupled with a Kalman filter is the most accurate model;
however, the proposed seasonal support vector regressor turns out
to be highly competitive when performing forecasts during the
most congested periods.

Index Terms—Intelligent transportation systems, support vec-
tor machines, traffic forecasting.

I. INTRODUCTION

IN RECENT years, traffic forecasting has become a crucial
task in the area of intelligent transportation systems (ITSs),

playing a fundamental role in the planning and development of
traffic management and control systems. The goal is to predict
traffic conditions in a transportation network based on its past
behavior. Improving predictive accuracy within this context
would be of extreme importance, not only to inform travelers
about traffic conditions but also to design and realize infrastruc-
tures and mobility services and schedule interventions. For this
reason, in recent years, there has been great effort in developing

Manuscript received February 10, 2012; revised July 27, 2012 and
November 25, 2012; accepted January 30, 2013. This work was supported in
part by the Foundation for Research and Innovation, University of Florence,
under Grant SSAMM-2009 and in part by the Italian Ministry of Education,
University, and Research under PRIN project 2009LNP494. The Associate
Editor for this paper was W.-H. Lin.

M. Lippi was with the Department of Systems and Informatics, University of
Florence, Florence 50121, Italy. He is now with the Department of Computer
Engineering and Mathematical Sciences, University of Siena, Siena 53100,
Italy (e-mail: lippi@dii.unisi.it).

M. Bertini and P. Frasconi are with the Department of Information En-
gineering, University of Florence, Florence 50121, Italy (e-mail: mbertini@
dsi.unifi.it; p-f@dsi.unifi.it).

Digital Object Identifier 10.1109/TITS.2013.2247040

sensor instruments supporting traffic control systems [1]. These
detector systems usually provide measurements about flow (or
volume), speed, and lane occupancy within a transportation
network. Prediction problems can therefore be differentiated
according to the observed—and predicted—physical quantities.
Flow prediction and travel time delay estimation are the two
tasks that, throughout the years, have received most of the
attention [2], [3].

Formally, given a sequence {X1, . . . , Xt} of some observed
physical quantity (such as speed or flow) at a given node of
a transportation network, the forecasting problem consists in
predicting Xt+Δ for some prediction horizon Δ. Throughout
the years, a wide variety of methods for this kind of task
has been developed in several different research areas, ranging
from statistics to machine learning and from control systems
to engineering. Some of these methods very often share similar
ideas and face similar problems, but unfortunately, comparisons
are made difficult by the use of a different terminology and
of different experimental settings, due to the heterogeneous
research areas in which many of these approaches originated.

In trying to aggregate these techniques into groups sharing
common characteristics, a first set of methods can be individ-
uated as the family of classical time-series approaches. The
famous work of Box and Jenkins [69] played a fundamental
role in the development of this research area, particularly by
popularizing a specific class of these methods, which comprises
combinations and generalizations of autoregressive moving
average (ARMA) models. Starting from this work, a num-
ber of different models originated. In the application field
of traffic forecasting, we can cite autoregressive integrated
moving average (ARIMA) [4]–[6], which is an integrated
version of ARMA, including stationarity in the model, and
seasonal ARIMA (SARIMA) [7] capturing the periodicity that
is typical of many time-series processes. Throughout the years,
the ARIMA model has been used as the basis for a wide
number of variants. The KARIMA model [8] uses a two-stage
architecture, where a first level performs clustering between
time-series samples, aggregating them using a self-organizing
map (or Kohonen map) [9]. Upon each cluster in this map,
an ARIMA model is finally built. Vector ARMA (VARMA)
[10] and space-time ARIMA (STARIMA) [11] are two models
that have been proposed for short-term traffic flow forecasting
in multiple nodes within a transportation network, employing
multivariate models. Whereas VARMA is a general exten-
sion of ARMA, which captures linear dependence relations

1524-9050/$31.00 © 2013 IEEE

mailto: lippi@dii.unisi.it
mailto: mbertini@dsi.unifi.it
mailto: mbertini@dsi.unifi.it
mailto: p-f@dsi.unifi.it

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

between multiple time series using N ×N parameter matrices
to model dependence relations among the different time series,
STARIMA is capable of working with fewer parameters, and
therefore, it is more suitable for large-scale applications of
traffic flow forecasting. Another class of time-series models
widely used in many contexts, although particularly in financial
forecasting, is given by volatility models, such as autoregressive
conditional heteroskedasticity or generalized autoregressive
conditional heteroskedasticity [12], for which Robert Engle was
awarded the Nobel Prize for Economics in 2003. An application
of GARCH to modeling volatility in urban transportation net-
works is given in [13].

From the point of view of machine learning algorithms,
several methodologies have been applied to the task of traffic
forecasting. The two most-used approaches are certainly artifi-
cial neural networks (ANNs) [14] and support vector regression
(SVR) [15]. They are both supervised learning algorithms
that can be trained to learn a function between some input
features and the output, which is represented by the target to
be predicted. Historically, ANNs are among the first machine
learning methods that have been applied to traffic forecasting.
For this reason, there exists a huge number of publications,
which either propose different ANN-based architectures ap-
plied to this task or use ANNs as a baseline competitor against
diverse classes of methods (e.g., see [16] or [17]). In [18],
SVR with a radial basis function (RBF) kernel has been used
to predict travel time in a transportation network, achieving
good performance in comparison with trivial predictors such
as the seasonal mean (SM) or a random walk (RW). In [15] and
[19], an online version of SVR is employed to solve the same
problem; however, both these works show some limitations in
the experimental setup. Whereas in the first case, the proposed
approach is only compared against ANNs (for which no model
selection procedure is described), in the second case, only a few
days are considered as test set examples, and there is no direct
comparison against classical time-series approaches. The other
machine learning approaches worth mentioning are Bayesian
networks [20], echo-state networks [21], nonparametric regres-
sion [22], [23], and approaches based on the genetic algorithm,
which has been often coupled with ANNs [24], [25]. In [26], a
hybrid layered system made up of a combination of a Kohonen
map with several neural networks is proposed. Even machine
learning has recently tried to extend methodologies toward the
multivariate case, using methodologies coming from statistical
relational learning (SRL), which combines first-order logic
representation and probabilistic graphical models. An example
of application to collective traffic forecasting is given in [27].

In the context of control systems and automation engineer-
ing, Markov chains [28] and, particularly, Kalman filters [29],
[30] are the methods that have shown the best experimental
results.

All these methods have been used not only in traffic forecast-
ing but also in several other application fields, such as economic
series analysis [31], ecology and environment monitoring [32],
[33], industrial processes control systems [34], and many oth-
ers. However, there are only a few works in the literature in
which a direct comparison between these different categories
of approaches is given [35]. Therefore, the aim of this paper

is twofold. First, we present an extensive review of the most
popular short-term traffic flow forecasting methods, proposing
a common view using the formalism of graphical models and
showing a wide experimental comparison. Second, we intro-
duce a new supervised learning algorithm based on SVR, which
is capable of exploiting the seasonality of traffic data, as models
such as SARIMA do, resulting in an interesting compromise
between predictive accuracy and computational costs.

This paper is structured as follows. In Section II, we present
a unifying view of the many developed approaches to time-
series forecasting, using the formalism of graphical models.
Then, in Section III, we introduce seasonal kernels for SVR. An
extensive experimental comparison ranging over a wide variety
of predictors is given in Section IV. Finally, the conclusion and
future work are presented in Section V.

II. UNIFIED VIEW FOR SHORT-TERM TRAFFIC

FORECASTING METHODS USING GRAPHICAL MODELS

The literature on short-term traffic forecasting covers a broad
spectrum of research areas including statistics, control systems,
and computer science. Unfortunately, too many works in this
field lack comparison with similar methodologies originated in
different research areas, and this is true both for theoretical and
experimental comparisons.

From the statistical point of view, both frequentist and
Bayesian approaches have been extensively studied. In this
paper, we only take the frequentist perspective (for applications
of Bayesian methods to traffic forecasting, see, e.g., [36]–[38]).
In addition, we restrict our focus to univariate time series.

A. Representation

We give a unified view of the most commonly used ap-
proaches to short-term traffic forecasting using the formalism
of graphical models, trying to highlight similarities and differ-
ences between all methods.

A graphical model is a probabilistic model, where nodes
represent random variables, and edges connect nodes that
are conditionally dependent. The two most used categories
of graphical models are given by Bayesian networks (which
employ directed acyclic graphs) and Markov networks (repre-
sented by undirected graphs).

We denote by {X1, . . . , Xt} and {η1, . . . , ηt} two sequences
of random variables representing the observed time series and a
random noise process, respectively. Different models originate
from different assumptions on the class of probability distribu-
tions from which these variables are drawn.

The simplest modeling approach is perhaps the autoregres-
sive structure. For a given integer p, in autoregressive mod-
els, it is assumed that Xt is conditionally independent of
{X1, . . . , Xt−p−1} and of past noise, when {Xt−1, . . . , Xt−p}
are given. The independence structure is illustrated through a
directed graphical model in Fig. 1, where black nodes represent
the observed time series, gray nodes represent the unobserved
noise process, and the white node represents the random
variable that is to be predicted. Under this model, noise vari-
ables ηt are marginally independent (a white process) but

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIPPI et al.: SHORT-TERM TRAFFIC FLOW FORECASTING 3

Fig. 1. Independence relations in an autoregressive model with p = 2. Gray
nodes represent hidden variables, modeling the white noise process ηt. Black
nodes represent the observed past time series. White node represents the target
random variable.

conditionally interdependent given the observed time series.
Model specification is completed by defining a structure for the
conditional probability p(Xt|Xt−1, . . . , Xt−p, ηt). The usual
choice is

Xt ∼ N (f(Xt−1, . . . , Xt−p), σ) (1)

where σ is the noise variance and f is a regression function.
Many of the most-used algorithms in machine learning and
statistical methods in classical time-series analysis can be de-
rived from this formulation. In the simplest case, f is a linear
combination of past observations, i.e.,

f(Xt−1, . . . , Xt−p;ψ) = ψ0 +

p∑
i=1

ψiXt−i (2)

where ψ is a vector of adjustable parameters. This linear model
is typically indicated as AR(p). More complicated models
incorporate nonlinear dependence relations. One possibility is
to represent f as a feedforward neural network (see, e.g., [39]
for an application to traffic problems). In this case

f(Xt−1, . . . , Xt−p;ψ,W)

= ψ0 +
h∑

j=1

ψjφj(Xt−1, . . . , Xt−p;W) (3)

where h is the number of hidden units, W is a weight matrix,
and each “feature” φj is a nonlinear function of past observa-
tions, which depends on further adjustable parameters W, i.e.,

φj(Xt−1, . . . , Xt−p;W) = tanh

(
p∑

i=1

wijXt−i

)
. (4)

A second possibility is to obtain nonlinearity via kernel function
K that measures the similarity between the current sequence of
past p observations and another sequence of p observations, i.e.,

f(Xt−1, . . . , Xt−p;α)

=
∑
τ

ατK ({Xt−1, . . . , Xt−p}, {Xτ−1, . . . , Xτ−p}) (5)

where α are adjustable parameters. The most popular choice
for K is the RBF kernel (see, e.g., [18], [40], and [41] for
applications to traffic problems), i.e.,

K(a, b) = exp
(
γ‖a− b‖2

)
(6)

Fig. 2. Independence relations in ARMA models.

where γ is a parameter controlling the complexity of the
function space from which f is chosen. One more possibility
is to take a nonparametric approach, where the number of
parameters is not fixed but is allowed to grow with data. Popular
methods include nonparametric regression (see, e.g., [22] and
[42]–[44]) and locally weighted regression (see, e.g., [45] and
[46]). A comparison between parametric and nonparametric
approaches is given in [47].

Moving average models capture the dependence relations be-
tween the random variable to be predicted and the unobserved
noise process. More precisely, a moving average model of
order q estimates the continuation of a time series by modeling
conditional probability p(Xt|ηt−1, . . . , ηt−q). Moving average
models are less interpretable than autoregressors, as the error
terms against which the coefficients are fitted are not observ-
able. In the formalism of graphical models, white node Xt is
connected only to gray nodes ηt−q, . . . , ηt so that the moving
average model estimates p(Xt|ηt−q, . . . , ηt).

Within the context of time-series analysis, the ARMA
and ARIMA models [4] are probably the most popular. An
ARMA(p, q) model combines an autoregressive model of order
p with a moving average process of order q, whereas an
ARIMA(p, d, q) model also includes a differentiated compo-
nent of order d, to handle nonstationarity, i.e.,

ψ(B)(1 −B)dXt = ω(B)ηt (7)

where B is the back-shift (or lag) operator (BkXt = Xt−k),
and ψ and ω are the two polynomials for the AR and MA
components, respectively. This class of methods has become
widely used in many contexts (in addition to traffic forecasting),
owing to the study presented by Box and Jenkins [69], which
describes a detailed procedure to perform model selection and
parameter fitting. It is straightforward to also represent ARMA
and ARIMA using graphical models. Fig. 2, for example, shows
the structure of ARMA(p, q), modeling conditional probability
p(Xt|Xt−1, . . . , Xt−p, ηt, . . . , ηt−q).

A key feature early introduced in ARIMA models to improve
predictive accuracy consists in taking into account the periodic
nature of traffic data. This is the case with the SARIMA,
which was first introduced by Box and Jenkins and has been
successfully applied to short-term traffic forecasting in [7].
The SARIMA approach includes weekly dependence relations
within the standard autoregressive model, by proving that the
time series obtained as the difference between the observations
in two subsequent weeks is weakly stationary. The core of
the idea is that similar conditions typically hold at the same

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 3. Independence relations in a SARIMA (1, 0, 1)(0, 1, 1)S model.

hour of the day and within the same weekdays. The resulting
SARIMA(p, d, q)× (P,D,Q)S model adds to the standard
ARIMA a seasonal autoregressive, a seasonal moving average,
and a seasonal differential component, i.e.,

ψ(B)Ψ(BS)(1 −B)d(1 −BS)DXt = ω(B)Ω(BS)ηt (8)

where Ψ and Ω are the two polynomials for the seasonal
components. In this case, the graphical model has simply to be
adapted to include the differentiated component, as it happens
for the ARIMA case, and to represent the dependence with
the past period. Fig. 3 shows the graphical model for the case
of SARIMA(1, 0, 1)(0, 1, 1)S , which is one of the most used
versions of this method. The conditional probability, which is
estimated in this case, is

p(Xt|Xt−1, Xt−S , Xt−S−1, ηt, ηt−S , ηt−S−1). (9)

Classic SARIMA is a linear model; therefore, regression func-
tion f is computed as

f(Xt−1, Xt−S , Xt−S−1, ηt, ηt−1, ηt−S , ηt−S−1;ψ, ω)

= ψ0 + ψ1Xt−1 +Xt−S + ψ1Xt−S−1 + ηt

+ ω1ηt−1 + ωSηt−S + ω1ωSηt−S−1. (10)

The SARIMA model can be considered a state of the art
within the category of classical time-series approaches.

B. Learning

In the frequentist setting, fitting a model to data involves op-
timizing a suitable objective function with respect to unknown
parameters θ, i.e.,

θ̂=argmin
θ

∑
t

L (f(Xt−1, . . . , Xt−p; θ), Xt)+λR(θ). (11)

Loss function L measures the discrepancy between the pre-
dicted and the observed physical quantity, whereas R(θ) is a
regularization term that is used to avoid ill-conditioned prob-
lems and prevent overfitting.

A common choice for loss function L [see (2), (3), and (5)]
is the square loss L(a, b) = (a− b)2. In this case, (11) essen-
tially implements the maximum-likelihood principle (assuming
Gaussian data). Many commonly used regularization terms may
be interpreted as log priors on the parameters. This corresponds
to the maximum a posteriori approach to parameter fitting.

For example, the L2 regularizer λR(θ) = λ‖θ‖2 may be inter-
preted as a Gaussian prior with zero mean and variance 1/2λ.

In the case of SVR, the objective function is defined by using
the ε-insensitive loss [48], i.e.,

L(a, b) =

{
0, if |a− b| ≤ ε
|a− b| − ε, otherwise

(12)

where ε is a given error tolerance. The name originates from
the fact that support vectors are generated only when the error is
above ε. Compared with the squared loss, this has the advantage
of producing a sparse solution where many ατ = 0 in (5). The
associated optimization problem is convex [48].

It must be underlined that in ARMA and (S)ARIMA models
with moving average components, observations are regressed
on unobserved (hidden) variables. This is an important char-
acteristic, which distinguishes these models from machine
learning approaches such as neural networks, local weighted
regression, or SVRs. Nevertheless, it is worth mentioning that
Bayesian inference is also capable of capturing dependence
relations with unobserved random variables.

Recently, SARIMA has been also used in combination with
Kalman filter [49], which is employed to estimate the unob-
served random variables, that is, the components of the moving
average process. In this case, it is convenient to rewrite the
SARIMA model in state space. Following [49], with reference
to (10), we can define state vector at as:

at = [ψ0 ψ1 ω1 ωS] (13)

and observation vector zt as

zt = [1 Yt−1 − ηt−1 − ηt−S] (14)

where Yt is the differenced time series (Yt = Xt −Xt−S).
The Kalman filter is a recursive estimator of a discrete-time
controlled process, which, for the problem considered, can
be described by the following linear stochastic difference
equation:

at = at−1 + νt−1 (15)

using a measurement

Yt = zta
T
t + ω1ωSηt−S−1 + ηt (16)

where νt−1 is the transition error, having covariance matrix Q.
The update procedure of Kalman filter computes both the

state, employing (15), and the a priori estimated error co-
variance, which is computed following a random-walk update
rule. After updating state at, an a posteriori computation is
performed, both for the state and the error covariance, which
will be used in the subsequent a priori computation. The
Kalman filter is known to be an optimal estimator for linear
system models with additive independent white noise. In [49],
the Kalman filter has been shown to be the best adaptive
estimator when compared against adaptive filters such as the re-
cursive least squares and the least mean squares filter, although
only weekly seasonality is considered within the experimental
evaluation. It is worth saying that, while learning algorithms

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIPPI et al.: SHORT-TERM TRAFFIC FLOW FORECASTING 5

such as SVR or neural networks assume independent and identi-
cally distributed (i.i.d.) examples, ARMA processes or Kalman
filters are capable of modeling interdependence relations in the
time series.

C. Algorithmic Issues

Although presenting several analogies, all these approaches
belonging to heterogeneous research areas differ in many as-
pects. In the following, we present some of these differences,
highlighting advantages and disadvantages of some of the ap-
proaches previously described, and discussing several algorith-
mic issues.

1) On-Sample versus Out-of-Sample Model Selection: One
of the main differences between classic time-series analysis and
machine learning algorithms exists in the adopted procedure for
model selection during the training phase. In many cases, time-
series-based algorithms work in-sample, which means that they
validate the models directly on the data used during parameter
fitting [50]; on the other hand, the typical machine learning
practice relies on out-of-sample model selection. In-sample
procedures suggest using some tools, such as the autoregressive
correlation function or the partial autoregressive correlation
function plots, to select a reasonable set of parameter config-
urations [e.g., ARMA(1,0,0) or ARMA(0,1,1)], then fitting the
model using all the available data, and finally picking the best
model using some criterion, such as the Akaike information
criterion [51] or the Bayesian information criterion [52], [53].
Nowadays, however, employing an out-of-sample procedure
has become commonplace, by simply splitting the available
data in two sets: the samples to be used for model fitting
and the samples to be used for model evaluation. Several
studies have analyzed the advantages of this kind of criterion
for parameter selection [54], [55], despite a greater computa-
tional cost during the training phase. By employing an out-
of-sample procedure, data are split into a training set and a
validation set. Given a set of possible parameter configurations,
different models are fitted on the training set and evaluated on
the validation set to choose the best parameter configuration.
Finally, performance is estimated on a third test set containing
new cases, unseen during the training phase. These differences
are mostly historical, as recent work has been done to better
analyze the statistical properties of out-of-sample model se-
lection [56] and to propose cross-validation as the preferred
way of measuring the predictive performance of a statistical
model.

2) On-Line versus Off-Line Algorithms: An algorithm is off-
line if it is designed to have access to all the samples (even
multiple times) and to fit the parameter in one shot. An on-line
algorithm is designed to have access to every sample only once
and to update the fitted parameters incrementally. Moreover,
potentially any on-line algorithm can forecast, have the true
value as feedback, and update the parameters. Examples of this
are online SVR in [15] and [19] and variations of standard
Kalman filters as in [29].

3) Forecasting Phase: The forecasting phase differences
are strictly related to the correlated/independent example
hypothesis. For example, in the case of plain autoregressive

models, neural networks, or SVRs, if the examples are i.i.d.,
the forecasting machine operates as a mapping function. Given
an input, it will calculate the output, and the output will be the
same for any equal input window. This is not true, for example,
when a Kalman filter is employed to estimate the state of the
model. In the latter case, the forecast will depend both on the
input and on the state of the model.

4) Multiple Information Sources: Machine learning algo-
rithms can easily integrate, within a single model, information
coming from different sources. In the case of traffic forecasting
at a certain location, knowledge of the flow conditions in the
surrounding nodes of the transportation network and the trend
in some correlated time series can supply crucial information
to improve the predictor. To integrate the benefits of these
two different directions of research, several hybrid methods
have been recently introduced, combining aspects and ideas
from both perspectives. The KARIMA model [8], for example,
first learns a Kohonen map [9] as an initial classifier and then
builds an ARIMA model for each class individuated by the
self-organizing map. In the direction of SRL [57], VARMA
and STARIMA [11] and Markov logic network [27] models
try to incorporate, in a single model, information coming from
interrelated time series to perform joint forecasts at multiple
nodes in the transportation network. Another recent approach
in this sense, in the context of Bayesian approaches, is given by
the multiregression dynamic model proposed in [58].

5) Training Set Dimension and Distribution Drift: Typi-
cally, machine learning algorithms take advantage of large
amounts of data [59], their prediction errors usually being re-
duced as the dimension of the training set grows. Nevertheless,
it is worth saying that, in time-series forecasting, the use of
larger training sets does not necessarily imply the achievement
of higher levels of accuracy. If the training set contains samples
too far in the past, for example, the phenomenon of covariate
shift can occur [60], and the distribution of the training data
can differ too much from the distribution of the test data, pro-
ducing a discrepancy that can overall degrade the performance
of the predictor. As reported in Section IV, the performance
of ARIMA and SARIMA is typically less dependent on the
availability of large training sets.

6) Local Minima and Overfitting: Different from SVR,
which solves a convex optimization problem, the learning al-
gorithm for neural networks (the backpropagation algorithm
[61] is usually employed) suffers the problem of local minima.
Typically, a validation set is employed to measure the prediction
error during training to stop the learning phase. This validation
set, in fact, measures the generalization error of the neural
network, since it is not used for gradient computation, which is
employed to update the weights. In this way, the phenomenon
of overfitting can be avoided [62], preventing the neural net-
work from learning a set of weights, which has adapted too
much to the training data but has weak predictive accuracy on
unseen examples.

III. SEASONAL KERNELS

To exploit the seasonality of the traffic flow time series,
following the SARIMA approach, we introduce a seasonal

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

kernel for SVR. The underlying idea is that, for example, to
predict a time-series continuation at 3 P.M. using an SVR, past
examples in the training set that were observed at 8 A.M. or
10 A.M. should be less informative than those registered be-
tween 2 P.M. and 4 P.M., because similar behaviors in the
transportation network are more likely to happen within the
same part of the day. We show here that this similarity criterion
can be easily plugged into a kernel function, which can be used
to weigh the contributions of the training samples, according to
the observation timestamps. This seasonal kernel can be seen as
an interesting compromise between the predictive accuracy of
SARIMA and the computational efficiency of SVR.

A. RBF Seasonal Kernel

When using kernel machines to build a predictor, the choice
of the proper kernel function is a crucial element to enhancing
the overall accuracy. A common choice is to employ the RBF
kernel, i.e.,

K(xi, xj) = exp
(
−γ‖xi − xj‖2

)
(17)

or a polynomial kernel, i.e.,

K(xi, xj) = (xi · xj + 1)d (18)

which are both able to capture nonlinear dependence relations
between features. However, it is often the case that an ad
hoc kernel designed for a specific application achieves better
performance, being able to measure similarity between objects
in the domain in a more appropriate way.

In the case of time-series forecasting, the desired kernel
should be able to capture the periodic nature of data, so that
two examples are more similar if they describe events (i.e., time
series) that happened in similar temporal situations, e.g., within
the same part of the day. Following the idea of seasonality
as in the SARIMA model, we substituted the RBF kernel
with a newly designed similarity function Ks((xi, ti), (xj , tj)),
where xi and xj are two objects representing the time series
at absolute timestamps ti and tj , respectively. Assuming S as
the seasonal period of the time series, we designed this new
function as

Ks ((xi, ti), (xj , tj)) = exp
(
−γ‖xi − xj‖2

)
× exp

(
−γSdp(ti, tj)

2
)

(19)

where dp(ti, tj), which is defined as

dp(ti, tj) = min {ds(ti, tj), S − ds(ti, tj)}with (20)

ds(ti, tj) = |(ti − tj) mod S| (21)

represents the temporal distance from samples xi and xj .

B. Linear Seasonal Kernel

A similar result can be obtained by combining the seasonal
kernel with a linear kernel, in place of an RBF. The advantage
of using a linear kernel is the possibility of exploiting fast
training algorithms, such as stochastic gradient descent [63],

which can solve the SVM optimization problem in primal
space, by updating the model parameters after computing the
loss function for each training example. In this framework, we
used the following objective function:

f(x)=

S∑
p=1

{(
n∑

i=1

σ (p, π(i))·L (〈xi, wp〉, yi)
)
+
λ

2
‖wp‖2

}

(22)

where S is the period, L is the ε-insensitive loss, yi is the
prediction target for example xi, w is a matrix w ∈ R

S×m (m
being the number of features), λ is a regularization coefficient,
and σ(p, π(i)) is a scaling factor incorporating the seasonality
of the model. Basically, each row wp in matrix w represents
a different set of parameters for each interval p within period
S. For each training example i, the loss function is rescaled
according to the similarity σ(p, π(i)), where π(i) is the position
of example i within period S. Function σ(·) simulates Gaussian
smoothing according to the following equation:

σ (p, π(i)) = exp
(
−κ‖p− π(i)‖2

)
(23)

where κ is a tunable parameter. The key idea is that closer
periods within a day typically share more similar behaviors
than more distant periods, and their contribution in computing
predictive function f should therefore be more significant. For
example, a time-series window sampled at 4 P.M. should be
more similar to another window sampled at 3 P.M. rather than a
third window sampled at 7 A.M.

IV. EXPERIMENTS

A. Data

The data used for our experiments are taken from the
California Freeway Performance Measurement System (PeMS)
[64], which is a very large database of measurements col-
lected by over 30 000 sensors and detectors placed around
nine districts in California. The whole system covers 164
freeways, with a total number of 6328 mainline vehicle detector
stations and 3470 ramp detectors. Most of the sensors are
single detectors, that is, one loop per lane per detector station,
and typically measure raw vehicle count (traffic flow) and
occupancy (amount of time the loop detector is active). Only
in some cases can double-loop detectors directly measure in-
stantaneous speed, which is otherwise artificially reconstructed.
We collected nine months (January–September 2009) of flow
data from a set of 16 stations1 randomly selected from the
whole California District 7 (LA/Ventura). The time series was
smoothed by aggregating flow data into nonoverlapping 15-min
intervals (15 min is an interval typically used in the literature as
a reasonable tradeoff between signal and noise [39], [47], [49]).
This results in 96 samples per day per station.

For each station, the first four months (January–April 2009)
are used as a training period, the following two months
(May–June 2009) are used as a validation period for model

1A station is an aggregation of detectors from different lanes in the same
location.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIPPI et al.: SHORT-TERM TRAFFIC FLOW FORECASTING 7

TABLE I
SET OF 16 STATIONS USED IN OUR EXPERIMENTS: STATIONS

USED FOR MODEL SELECTION (SHOWN IN BOLD)

selection and parameter tuning, and the remaining three months
(July–September) are used as a test period. Only 5 of these
16 stations were used to perform model selection (see Table I).

We only included workdays in our data set. This is a quite
common scenario in the literature (e.g., see [10], [11], [21],
[23], and [26]). In addition, since the distribution of traffic flow
during holidays is largely different with respect to workdays, by
including only workdays, we had the opportunity of comparing
daily and weekly seasonality. (Otherwise, daily seasonality
would have been less significant when comparing a workday
with a holiday.)

B. Experimental Setup

Our task consisted in predicting traffic flow 15 min ahead of
a given timestamp. The set of tested competitors consists of the
following algorithms:

1) RW, which is a simple baseline that predicts traffic in the
future as equal to current conditions (Xt = Xt+1);

2) SM, which predicts for a given time of the day the average
in the training set;

3) ARIMA model with Kalman filter (ARIMAKal);
4) SARIMA model with maximum-likelihood fitting

(SARIMAML);
5) SARIMA model with Kalman filter (SARIMAKal);
6) ANNs;
7) SVR with RBF kernel (SVRRBF);
8) SVR with RBF kernel multiplied by a seasonal kernel

(SVRS
RBF);

9) SVR with linear seasonal kernel (SVRS
lin).

As for the two SARIMA approaches, they differ both in
the forecasting phase and in the parameter-fitting algorithm.
Concerning forecasts, SARIMAKal uses a Kalman filter as in
[49], whereas SARIMAML solves a simple recursive equation
as in [7]. As for the learning phase, SARIMAML minimizes
the negative of the likelihood, whereas in SARIMAKal, we
followed the two approaches described in [65] and [66], to fit
the Kalman state-space model. The first algorithm is used to
compute the covariance matrix associated with the initial value
of the state vector, whereas the second algorithm is used within
the forecasting phase. Different from [49], covariance matrix

TABLE II
PARAMETERS OBTAINED BY MODEL SELECTION FOR THE MACHINE

LEARNING ALGORITHMS. C, ε, AND γ ARE SVR PARAMETERS; γS IS

THE SEASONAL KERNEL PARAMETER; NH IS THE NUMBER OF HIDDEN

UNITS FOR ANNS; ρ IS THE LEARNING RATE; T IS THE NUMBER OF

ITERATIONS; AND w IS THE FEATURE WINDOW SIZE

FOR ALL ALGORITHMS

Q is estimated at each step, rather than estimated once and kept
unchanged (see [65] and [66] for details). A modified version of
the auto.arima procedure in R [67] was employed in our ex-
periments. As presented in [68], the algorithm AS 154 proposed
in [65] has a storage requirement of O(r4/8), where r is, in this
case, r = S + 1, S being the seasonality of the model. A model
with a weekly seasonality has a period of S = 96 × 5 = 480
(we consider a five-working-day week), which results in a huge
storage requirement. The modified implementation computes
the estimated covariance matrix Pt iteratively as the solution
of Pt = Pt−1 +Q, using a fraction of the required memory.
Another possibility that can be tackled to restrict memory
requirements is to split the data in five different partitions, that
is, one for each weekday. This setting allows training a different
model for each weekday with a daily seasonality, therefore
reducing spatial complexity. This partitioning trick produces
results comparable with the weekly periodic approach, and
therefore, due to the computational requirements, it has been
employed for SARIMAKal model fitting. The same procedure
can be followed for all the other methods, which were therefore
trained using either 1) a single data set containing all five
working days (weekly seasonality); 2) five different data sets,
that is, one for each weekday, producing five different models
with daily seasonality; or 3) a single data set with all working
days but trained considering a daily seasonality. After running
model selection, solution 1 was chosen for SVRRBF, solution 2
was chosen for SVRS

lin and ANNs, and solution 3 was chosen
for SVRS

RBF.
The available features are: 1) the past flow time series,

from which window w of the most recent samples is usually
extracted; 2) the SM at the current timestamp; and 3) the SM
at 15 min ahead. For all the tested versions of SVR and ANN
algorithms, some parameters for feature selection were tuned
during the validation phase. In particular, windows w of 3, 6,
or 12 samples were tested, corresponding to 45, 90, or 180 min
before the current time of the day. Moreover, all the algorithms
were also tried with or without the SM at current and future
timestamps in feature space. In all the models, such features
improved prediction accuracy and were therefore included in
the final models.

For SVRRBF, we performed model selection on C [C =
1/2λ referring to (11)] and γ (γ being the tuning parameter for
the smoothness of the decision boundary in the RBF kernel),
whereas for SVRS

RBF, we also had to choose γS . SVRS
lin needs

model selection on λ [see (22)], whereas for the ANN, the
number of hidden neurons and the learning rate were tuned
in the validation phase as well. Table II shows the choice

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE III
MAPE100 ERROR WITH COMMON OR SPECIFIC

PARAMETER CONFIGURATIONS

of parameters obtained by model selection for these machine
learning algorithms.

The model selected for SARIMA is (1, 0, 1)(0, 1, 1)S , as
proposed in [7], and the best setting is that with five different
models (one for each weekday) for the Kalman state-space
model and that with a single weekly period for SARIMAML.
The model selected for ARIMA is the model proposed by the
auto.arima procedure in R [67] with a single model for all
weekdays.

All tests were run on a 3-GHz processor with 4-MB cache
and 16 GB of RAM.

C. Results and Discussion

We ran a first experiment with the aim of comparing plain
RBF kernels with seasonal kernels and, at the same time, testing
the robustness of kernel parameters over multiple stations in our
data set. In all our experiments, we measured MAPE100 as in
[49], where MAPE is the mean absolute percentage error, which
is measured as follows:

MAPE =
1
n

n∑
t=1

∣∣∣∣∣Xt − X̂t

Xt

∣∣∣∣∣ (24)

where X̂t is the predicted flow. In MAPE100, the sum is com-
puted only over the terms where Xt > 100 vehicles/hour, there-
fore considering in the error measurement only those periods
where traffic flow is significant. MAPExx is typically used in
traffic forecasting to avoid the problem that few examples with
low traffic flow might greatly affect error measurement. This
would happen, for example, at nighttime when few vehicles per
hour are detected.

Table III shows that SVR with a seasonal kernel achieves
higher accuracy than plain SVR with an RBF kernel. The choice
of a common parameter configuration has a slight effect on the
performance of the resulting classifier. It is worth mentioning
that using a single common parameter configuration, the time-
consuming model selection phase can be skipped when train-
ing on new stations, dramatically reducing the computational
requirements. When comparing the seasonal kernel against the
RBF kernel on a larger test set (see Table V), the advantage is
statistically significant according to a Wilcoxon paired test with
a p value of < 0.01.

To measure the impact of the training set dimension on the
different algorithms, we built a learning curve by measuring
the performance of each classifier as a function of the number
of training months. Fig. 4 shows the learning curve of each
algorithm, whereas Table IV gives all the details on these

Fig. 4. Learning curves of the compared algorithms, reporting prediction error
(MAPE100) as a function of the number of months used in the training set.
(Left) All algorithms. (Right) Zoom on best performing algorithms.

experiments. SARIMAKal is the best model in terms of accu-
racy; however, its performance does not improve when includ-
ing in the training set more than two months; SVRS

RBF is the
second best model and can take advantage of a larger training
set. Nevertheless, after three months of training, none of the
algorithms showed a statistically significant improvement, and
therefore, in all the subsequent experiments, we adopted a train-
ing set of three months, which is a good compromise between
predictive accuracy and training time. The fact that adding more
examples in the training set does not yield an improvement in
prediction accuracy is possibly due to the covariate shift [60]
already cited in Section II. This is confirmed by the behavior
of the SM predictor, which quickly degrades its performance
both employing larger training sets (as shown in Fig. 4) and
in the case of wider horizon lags. When performing forecasts
at further prediction horizons (i.e., predicting at K months
ahead, keeping the training set fixed), in fact, the worsening
in performance of the SM predictor is extremely marked. For
example, on station 716933, MAPE100 grows from 8.7, when
forecasting at one month ahead, to 11.1, when the lag grows
to five months. A deeper analysis of this covariate shift will
be the subject of further investigations in future works, as
understanding this phenomenon might play a crucial role in
adapting the predictors to the dynamics of the transportation
network. Table V reports the results of each algorithm, detailed
per station. It should be noticed that SARIMAML performs
worse than both SARIMAKal and SVR with an RBF kernel. In
addition, ANNs are consistently less accurate than plain SVR.

We also analyzed the performance of each algorithm during
periods that typically present high levels of congestion. We
chose the morning peak between 7 A.M. and 8 A.M. and mea-
sured the prediction error for each test station, which is reported
in Table VI. The very high values of MAPE of the RW and
SM predictors indicate difficulty of the task. It is interesting to
notice that in this case, SARIMAKal is not consistently the best
predictor for each station, as for some locations, SVRs achieve
better performance. These results suggest that the development
of an ITS might take advantage of the combination of different
predictors into a hybrid system.

Even if prediction accuracy is certainly a crucial feature of
a forecasting model, computational time should be also taken
into account when building a large-scale traffic monitoring
system, considering both training time and prediction time. In
Table VII, we summarize these computational costs for all the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIPPI et al.: SHORT-TERM TRAFFIC FLOW FORECASTING 9

TABLE IV
LEARNING CURVE FOR ALL THE COMPARED ALGORITHMS, USING ONE TO SIX MONTHS OF TRAINING SET AND ALWAYS EMPLOYING

THE SAME THREE MONTHS FOR TEST. RESULTS ARE AVERAGED ON 16 STATIONS. MAPE100 IS REPORTED

TABLE V
DETAILED RESULTS FOR ALL 16 TEST STATIONS, USING THREE MONTHS FOR TRAINING SET AND THREE MONTHS FOR TEST. MAPE100 IS REPORTED

algorithms, considering the setting with three months for train-
ing and three months for test. For prediction time, results are
averaged on the number of forecasts (i.e., the number of time
instants for which each model is asked a prediction), whereas
for training time, the average is computed on the number of
trained models. We report both prediction time, which has
to be taken into account for real-time forecasts, and training
time, which can become a bottleneck if the goal is to build a
large-scale ITS. (For example, the PeMS data set contains over
6000 detector stations, and therefore, training a different model
even for a subset of them can become hardly affordable.)

SARIMAKal is the algorithm requiring the largest training
time, more than twice that for SVRS

RBF, owing to the expensive
fitting of the Kalman state-space model and the computation
of the covariance matrix. SARIMAML is in fact much faster,
employing a more naive optimization algorithm. Moreover, it
is interesting to notice that SVRS

lin, despite achieving a slightly
lower prediction accuracy, is much faster than SARIMAKal and
SVRRBF models, taking advantage of the stochastic gradient
optimization algorithm, and might therefore represent an inter-
esting tradeoff solution between computational expenses and
forecasting precision.

V. CONCLUSION AND FUTURE WORK

We have presented an extensive experimental review of many
statistical and machine learning approaches to short-term traffic
flow forecasting. Following the approach in SARIMA, we have
also proposed two new SVR models, employing a seasonal
kernel to measure similarity between time-series examples. The

presented results confirm that seasonality is a key feature in
achieving high accuracy; however, the most accurate models
often require high computational resources both during the
training phase and at prediction time. For this reason, the
presented seasonal kernel approach might be a reasonable
compromise between forecasting accuracy and computational
complexity issues. In particular, while SARIMA employed in
combination with the Kalman filter ends up being the best
model on average, the proposed approach is particularly com-
petitive when considering predictions during highly congested
periods. The SARIMA version that does not include a Kalman
filter and the ANNs perform consistently worse than SVR with
an RBF kernel, which, in turn, is less accurate than the seasonal-
kernel variant.

As a future direction of research, we conjecture that a signif-
icant improvement in time-series forecasting may come from
relational learning, where interrelations between different time
series are taken into account. In a road network, for example,
the traffic conditions in neighboring nodes are inherently in-
terdependent, and exploiting this interdependence should be
crucial in improving the prediction accuracy of related time
series. Moreover, different from classical statistical approaches,
relational learning algorithms can easily deal with multiple
sources of information, which might become a crucial feature
in the forthcoming years, where huge data sets might become
available from wireless sensors, Global Positioning System,
and floating-car data.

Another very interesting direction of research, which has
been indicated by the experimental results presented in this
paper, consists of investigating the covariate shift in traffic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE VI
RESULTS DURING THE MORNING PEAK (7 A.M.–8 A.M.), DETAILED PER STATION. MAPE100 IS REPORTED

TABLE VII
TRAINING AND PREDICTION TIME FOR ALL THE ALGORITHMS,
AVERAGED ON THE 16 NODES CONSIDERED IN THE TEST SET

time-series data. Our results, in fact, show that the accuracy of
the SM predictor starts degrading when the temporal distance
between training and test set grows too much, and for the other
predictors, no further improvement is observed when using
larger training sets including past months, which are too distant
from prediction time. It would certainly be very interesting and
challenging to better analyze this phenomenon, which might
affect periodical retraining of the models.

REFERENCES

[1] L. A. Klein, M. K. Mills, and D. R. P. Gibson, Traffic Detector Handbook
[Electronic Resource], 3rd ed. Washington, DC, USA: U.S. Dept. of
Transportation, 2006.

[2] J. Wohlers, A. Mertins, and N. Fliege, “Time-delay estimation for com-
pound point-processes using hidden Markov models,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 1996, vol. 5, pp. 2817–2820.

[3] R. Li, G. Rose, and M. Sarvi, “Evaluation of speed-based travel time
estimation models,” J. Transp. Eng., vol. 132, no. 7, pp. 540–547,
Jul. 2006.

[4] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis: Fore-
casting & Control, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall,
Feb. 1994.

[5] C. Moorthy and B. Ratcliffe, “Short term traffic forecasting using time
series methods,” Transp. Plan. Technol., vol. 12, no. 1, pp. 45–56,
Jul. 1988.

[6] S. Lee and D. B. Fambro, “Application of subset autoregressive integrated
moving average model for short-term freeway traffic volume forecasting,”
J. Transp. Res. Board, vol. 1678, pp. 179–188, Jan. 1999.

[7] B. M. Williams and L. A. Hoel, “Modeling and forecasting vehicular
traffic flow as a seasonal arima process: Theoretical basis and empirical
results,” J. Transp. Eng., vol. 129, no. 6, pp. 664–672, Nov. 2003.

[8] M. Van Der Voort, M. Dougherty, and S. Watson, “Combining Kohonen
maps with arima time series models to forecast traffic flow,” Transp. Res.
C, Emerg. Technol., vol. 4, no. 12, pp. 307–318, Oct. 1996.

[9] T. Kohonen, “The self-organizing map,” Neurocomputing, vol. 21,
no. 1–3, pp. 1–6, Nov. 1998.

[10] Y. Kamarianakis and P. Prastacos, “Forecasting traffic flow conditions
in an urban network: Comparison of multivariate and univariate ap-
proaches,” Transp. Res. Rec., vol. 1857, no. 2, pp. 74–84, Jan. 2003.

[11] Y. Kamarianakis and P. Prastacos, “Space–time modeling of traffic flow,”
in Proc. ERSA, Aug. 2002, pp. 1–21.

[12] R. Engle, “GARCH 101: The Use of ARCH/GARCH Models in ap-
plied econometrics,” J. Econ. Perspect., vol. 15, no. 4, pp. 157–168,
Fall 2001.

[13] Y. Kamarianakis, A. Kanas, and P. Prastacos, “Modeling traffic volatility
dynamics in an urban network,” Transp. Res. Rec., vol. 1923, no. 1,
pp. 18–27, Dec. 2005.

[14] M. Jun and M. Ying, “Research of traffic flow forecasting based on neural
network,” in Proc. Workshop Intell. Inf. Technol. Appl., 2008, vol. 2,
pp. 104–108.

[15] H. Su, L. Zhang, and S. Yu, “Short-term traffic flow prediction based
on incremental support vector regression,” in Proc. Int. Conf. Natural
Comput., 2007, vol. 1, pp. 640–645.

[16] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural
networks: The state of the art,” Int. J. Forecast., vol. 14, no. 1, pp. 35–62,
Mar. 1998.

[17] M. S. Dougherty and M. R. Cobbett, “Short-term inter-urban traffic fore-
casts using neural networks,” Int. J. Forecast., vol. 13, no. 1, pp. 21–31,
Mar. 1997.

[18] C.-H. Wu, J.-M. Ho, and D.-T. Lee, “Travel-time prediction with
support vector regression,” IEEE Trans. Intell. Transp. Syst., vol. 5, no. 4,
pp. 276–281, Dec. 2004.

[19] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-
SVR for short-term traffic flow prediction under typical and atypical
traffic conditions,” Exp. Syst. Appl., vol. 36, pt. 2, no. 3, pp. 6164–6173,
Apr. 2009.

[20] S. Sun, C. Zhang, and G. Yu, “A Bayesian network approach to traffic flow
forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 7, no. 1, pp. 124–132,
Mar. 2006.

[21] Y. An, Q. Song, and X. Zhao, “Short-term traffic flow forecasting via
echo state neural networks,” in Proc. 7th ICNC, Y. Ding, H. Wang,
N. Xiong, K. Hao, and L. Wang, Eds., Shanghai, China, Jul. 26–28, 2011,
pp. 844–847.

[22] G. A. Davis and N. L. Nihan, “Nonparametric regression and short-term
freeway traffic forecasting,” J. Transp. Eng., vol. 117, no. 2, pp. 178–188,
Mar./Apr. 1991.

[23] H. Sun, H. X. Liu, H. Xiao, and B. Ran, “Short Term Traffic Forecasting
Using the Local Linear Regression Model,” Univ. of California, Irvine,
Irvine, CA, USA, UCI-ITS-WP-02-2, 2002.

[24] P. Lingras and P. Mountford, “Time delay neural networks designed using
genetic algorithms for short term inter-city traffic forecasting,” in Engi-
neering of Intelligent Systems, L. Monostori, J. Váncza, and M. Ali, Eds.
Berlin, Germany: Springer-Verlag, 2001, ser. Lecture Notes in Computer
Science, pp. 290–299.

[25] E. I. Vlahogianni, M. G. Karlaftis, and J. C. Golias, “Optimized and meta-
optimized neural networks for short-term traffic flow prediction: A genetic
approach,” Transp. Res. C, Emerg. Technol., vol. 13, no. 3, pp. 211–234,
Jun. 2005.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIPPI et al.: SHORT-TERM TRAFFIC FLOW FORECASTING 11

[26] J. Zhu and T. Zhang, “A layered neural network competitive algorithm
for short-term traffic forecasting,” in Proc. CORD Conf., Dec. 2009,
pp. 1–4.

[27] M. Lippi, M. Bertini, and P. Frasconi, “Collective traffic forecasting,” in
Proc. ECML/PKDD, 2010, pp. 259–273.

[28] J. G. Yu, C. Zhang, L. Zhuang, and J. Song, “Short-term traffic flow
forecasting based on Markov chain model,” in Proc. IEEE Intell. Veh.
Symp., 2003, pp. 208–212.

[29] I. Okutani and Y. J. Stephanedes, “Dynamic prediction of traffic volume
through Kalman filtering theory,” Transp. Res. B, Methodol., vol. 18,
no. 1, pp. 1–11, Feb. 1984.

[30] Y. Xie, Y. Zhang, and Z. Ye, “Short-term traffic volume forecasting using
Kalman filter with discrete wavelet decomposition,” Comput.-Aided Civil
Infrastruct. Eng., vol. 22, no. 5, pp. 326–334, Jul. 2007.

[31] K. Leong, Book review: Periodicity and Stochastic Trends in Economic
Time Series. Oxford, U.K.: Oxford Univ. Press, 1998.

[32] Y. Li, E. P. Campbell, D. Haswell, R. J. Sneeuwjagt, and W. N. Venables,
“Statistical forecasting of soil dryness index in the southwest of West-
ern Australia,” Forest Ecol. Manage., vol. 183, no. 1–3, pp. 147–157,
Sep. 2003.

[33] E. Cadenas and W. Rivera, “Wind speed forecasting in the south coast
of Oaxaca, México,” Renew. Energy, vol. 32, no. 12, pp. 2116–2128,
Oct. 2007.

[34] F.-M. Tseng and G.-H. Tzeng, “A fuzzy seasonal arima model
for forecasting,” Fuzzy Sets Syst., vol. 126, no. 3, pp. 367–376,
Mar. 2002.

[35] L. Xuemei, D. Lixing, D. Yuyuan, and L. Lanlan, “Hybrid support vector
machine and arima model in building cooling prediction,” in Proc. Int.
Symp. Comput. Commun. Control Autom., May 2010, vol. 1, pp. 533–536.

[36] J. Whittaker, S. Garside, and K. Lindveld, “Tracking and predicting a
network traffic process,” Int. J. Forecast., vol. 13, no. 1, pp. 51–61,
Mar. 1997.

[37] B. Ghosh, B. Basu, and M. O’Mahony, “Bayesian time-series model
for short-term traffic flow forecasting,” J. Transp. Eng., vol. 133, no. 3,
pp. 180–189, Mar. 2007.

[38] E. Horvitz, J. Apacible, R. Sarin, and L. Liao, “Prediction, expectation,
and surprise: Methods, designs, and study of a deployed traffic forecasting
service,” CoRR, vol. abs/1207.1352, Jul. 2012.

[39] B. L. Smith and M. J. Demetsky, “Traffic flow forecasting: Comparison
of modeling approaches,” J. Transp. Eng., vol. 123, no. 4, pp. 261–266,
Jul. 1997.

[40] S. Sun and Q. Chen, “Kernel regression with a Mahalanobis metric
for short-term traffic flow forecasting,” in Intelligent Data Engineering
and Automated Learning (IDEAL), C. Fyfe, D. Kim, S.-Y. Lee, and
H. Yin, Eds. Berlin, Germany: Springer-Verlag, 2008, ser. Lecture
Notes in Computer Science, pp. 9–16.

[41] F. Wang, G. Tan, and Y. Fang, “Multiscale wavelet support vector re-
gression for traffic flow prediction,” in Proc. 3rd Int. Conf. IITA, 2009,
pp. 319–322.

[42] J. Fan and Q. Yao, Nonlinear Time Series: Nonparametric and Parametric
Methods. New York, NY, USA: Springer-Verlag, 2005, ser. Series in
Statistics.

[43] S. Clark, “Traffic prediction using multivariate nonparametric regression,”
J. Transp. Eng., vol. 129, no. 2, pp. 161–168, 2003.

[44] T. Zhang, L. Hu, Z. Liu, and Y. Zhang, “Nonparametric regression for the
short-term traffic flow forecasting,” in Proc. Int. Conf. MACE, Jun. 2010,
pp. 2850–2853.

[45] H. Sun, H. X. Liu, H. Xiao, and B. Ran, “Use of local linear regression
model for short-term traffic forecasting,” Transp. Res. Rec., J. Transp. Res.
Board, vol. 1838, no. 1, pp. 143–150, Jan. 2003.

[46] D. Nikovski, N. Nishiuma, Y. Goto, and H. Kumazawa, “Univariate short-
term prediction of road travel times,” in Proc. IEEE Intell. Transp. Syst.
Conf., Vienna, Austria, 2005, pp. 1074–1079.

[47] B. L. Smith, B. M. Williams, and R. K. Oswald, “Comparison of paramet-
ric and nonparametric models for traffic flow forecasting,” Transp. Res. C,
Emerg. Technol., vol. 10, no. 4, pp. 303–321, Aug. 2002.

[48] H. Drucker, C. J. C. Burges, L. Kaufman, A. J. Smola, and V. Vapnik,
“Support vector regression machines,” in Advances in Neural Information
Processing Systems 9, NIPS, M. Mozer, M. I. Jordan, and T. Petsche, Eds.
Denver, CO, USA: MIT Press, Dec. 2–5, 1996, pp. 155–161.

[49] S. Shekhar and B. M. Williams, “Adaptive seasonal time series models
for forecasting short-term traffic flow,” Transp. Res. Rec., no. 2024,
pp. 116–125, Jan. 2007.

[50] C. Chatfield, The Analysis of Time Series: An Introduction, 6th ed.
London, U.K.: Chapman & Hall, Jul. 2003.

[51] H. Akaike, “A new look at the statistical model identification,” IEEE
Trans. Autom. Control, vol. AC-19, no. 6, pp. 716–723, Dec. 1974.

[52] H. Akaike, “On entropy maximization principle,” in Applications
of Statistics. Amsterdam, The Netherlands: North Holland, 1977,
pp. 27–41.

[53] G. Schwarz, “Estimating the dimension of a model,” Ann. Stat., vol. 6,
no. 2, pp. 461–464, Mar. 1978.

[54] P. N. Pant and W. H. Starbuck, “Innocents in the forest: Forecast-
ing and research methods,” J. Manage., vol. 16, no. 2, pp. 433–460,
Jun. 1990.

[55] L. J. Tashman, “Out-of-sample tests of forecasting accuracy: An anal-
ysis and review,” Int. J. Forecast., vol. 16, no. 4, pp. 437–450,
Oct.–Dec. 2000.

[56] S. Arlot and A. Celisse, “A survey of cross-validation procedures for
model selection,” Stat. Surv., vol. 4, pp. 40–79, 2010.

[57] L. Getoor and B. Taskar, Introduction to Statistical Relational Learning
(Adaptive Computation and Machine Learning). Cambridge, MA, USA:
MIT Press, 2007.

[58] C. M. Queen and C. J. Albers, “Intervention and causality: Forecasting
traffic flows using a dynamic Bayesian network,” J. Amer. Stat. Assoc.,
vol. 104, no. 486, pp. 669–681, Jun. 2009.

[59] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley,
1998.

[60] H. Shimodaira, T. Akae, M. Nakai, and S. Sagayama, “Jacobian adapta-
tion of HMM with initial model selection for noisy speech recognition,”
in Proc. ICSLP, Oct. 2000, pp. 1003–1006.

[61] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” in Neurocomputing: Foundations of
Research, J. A. Anderson and E. Rosenfeld, Eds. Cambridge, MA, USA:
MIT Press, 1988, pp. 696–699.

[62] C. M. Bishop, Neural Networks for Pattern Recognition. New York, NY,
USA: Oxford Univ. Press, Jan. 1996.

[63] L. Bottou and Y. LeCun, “Large scale online learning,” in Advances
in Neural Information Processing Systems 16, S. Thrun, L. Saul, and
B. Schölkopf, Eds. Cambridge, MA, USA: MIT Press, 2004.

[64] P. Varaiya, “Freeway performance measurement system: Final report,”
Univ. of California Berkeley, Berkeley, CA, USA, Tech. Rep. UCB-ITS-
PWP-2001-1, 2001.

[65] G. Gardner, A. C. Harvey, and G. D. A. Phillips, “Algorithm as 154:
An algorithm for exact maximum likelihood estimation of autoregressive-
moving average models by means of Kalman filtering,” J. Roy. Stat. Soc.
C, Appl. Stat., vol. 29, no. 3, pp. 311–322, 1980.

[66] R. H. Jones, “Maximum likelihood fitting of ARMA models to time series
with missing observations,” Technometrics, vol. 22, no. 3, pp. 389–395,
Aug. 1980.

[67] “R: A language and environment for statistical computing,” Vienna
Austria R Foundation for Statistical Computing, vol. 1, no. 10, p. 2673,
Sep. 2009.

[68] G. Melard, “Algorithm as 197: A fast algorithm for the exact likelihood of
autoregressive-moving average models,” J. Roy. Stat. Soc. C, Appl. Stat.,
vol. 33, no. 1, pp. 104–114, 1984.

[69] G. E. P. Box and G. M. Jenkins, “Time series analysis,” Forecasting and
Control, 1970.

Marco Lippi received the Bachelor’s degree in
computer engineering, the Doctoral degree in com-
puter engineering, and the Ph.D. degree in computer
and automation engineering from the University of
Florence, Florence, Italy, in 2004, 2006, and 2010,
respectively.

He is currently a Postdoctoral Fellow with the
Department of Computer Engineering and Mathe-
matical Sciences, University of Siena, Siena, Italy.
His work focuses on machine learning and artificial
intelligence, with specific interests in statistical re-

lational learning and applications to the fields of bioinformatics, time-series
forecasting, and computer vision.

Dr. Lippi received the “E. Caianiello” Award for the best Italian Ph.D. thesis
in the field of neural networks in 2012.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Matteo Bertini received the M. Sc. degree in infor-
matics engineering and the Ph.D. degree from the
University of Florence, Florence, Italy, in 2006 and
2010, respectively.

He is currently a Software Developer with Develer
S.r.l., Florence.

Paolo Frasconi received the M. Sc. degree in elec-
tronic engineering and the Ph.D. degree in computer
science from the University of Florence, Florence,
Italy, in 1990 and 1994, respectively.

He is a Professor of computer science with the
Department of Information Engineering, University
of Florence, Florence, Italy. His research interests in-
clude machine learning, with particular emphasis on
algorithms for structured and relational data, learn-
ing with logical representations, and applications to
bioinformatics.

Mr. Frasconi is an Associate Editor of the Artificial Intelligence Journal
and an Action Editor of the Machine Learning Journal. He co-chaired the
International Conference on Prestigious Applications of Artificial Intelligence
(PAIS 2012), the Association for the Advancement of Artificial Intelligence
Special Track on Artificial Intelligence and Bioinformatics (AAAI 2010), the
20th International Conference on Inductive Logic Programming (ILP 2010),
and the Fifth International Workshop on Mining and Learning with Graphs
(MLG 2007).

