
A NEURAL-NET BASED SELF-TUNING FUZZY LOOPER CONTROL
FOR ROLLING MILLS �

F. Janabi-Sharifi
Robotics and Manufacturing Automation Laboratory

Department of Mechanical, Aerospace, and Industrial Engineering, Ryerson University
350 Victoria Street, Toronto, Ontario, Canada M5B 2K3

Abstract

Looper control is one of the challenging problems in
rolling mills. The purpose of the paper is to propose an
intelligent control method using fuzzy logic and neural
network for improved performance of looper control over
conventional loop control methods. The focus of the pa-
per will be on the rule-tuning aspect of the proposed fuzzy
looper control. Simulation reults will also be presented to
verify the performance of the control system.

1 Introduction

Control of the loopers in rolling mills plays an important
role in the quality of the rolled products. The loop con-
trol methods rely on an initial formation of a bar loop
by utilizing looper arms located between each pair of
rolling stands (Fig. 1). In loop control, the height of the
formed loop could serve as a tension indicator. Maintain-
ing a constant desired loop height will be done by ad-
justing the motor speed ratios and will indicate no ten-
sion/compression status. The height of the loop (H) is
measured and compared to reference height (H 0, indicat-
ing zero tension condition) to obtain a correction com-
mand for the motor speed-control unit. Conventional con-
trol techniques, e.g., PD, and PID control laws are com-
mon control methods. The difficulty of looper tension

vv
1 2

stand 1 stand 2

Figure 1: The rolling mill with looper control.

control lies in the varaiation and variety of plant param-
eters. Usually many different passes and schedules will
be required to acheive a given final gauge for different

�0-7803-7087-2/01/$10.00 c
 2001 IEEE

grades and widths of rolled strip. For instance, it is re-
ported that ”about 3000 schedules are available on the
Senszimir mill, rolling various steel strips in widths rang-
ing from 0.6-1.4 m and gauges of 4 down to 0.3 mm.” [8].
Many disturbances are also introduced during each run
[3]. Conventional controllers cannot deal effectively with
unmodeled dynamics and large system variations. The
difficulty of tension control is generally manifested by the
significant amount of scraps runs and damages to machin-
ery. Therefore, many steel makers are not satisfied with
the conventional controllers any more. Despite recent ef-
forts, such as multivariable H1-based method [2], devel-
opment of a robust looper control remains an important
rolling control problem.

The potential advantages of fuzzy looper control and
its design issues were discussed in our previous paper
[4]. Advantages include: robustness to interfering distur-
bances, ease of development, and knowledge extraction.
It was shown that a properly designed fuzzy controller
could outperform conventional controllers. However, tun-
ing of fuzzy control remains a bottleneck in its applica-
tion. Also, the performance may still be unsatisfactory
when the system parameters vary too much. The basic
reason is the lack of the system learning (self-tuning) abil-
ity for dealing with different variations. Multiple tunings
involved (membership functions, rules, operators, and
gains) make the optimum tuning more difficult. One prob-
lem with fixed sets of membership functions and rule-set
is that once they are determined, they will not change and
adapt (by learning) to very different operating conditions.
Therefore, many researchers have recently attempted to
improve the performance of self-organizing mechanisms
and to establish a more systematic method of designing
and tuning fuzzy controller, e.g., [5], [1]. However, these
approaches lack sufficient generalization and expressing
capability for the acquired knowledge. Furthermore, our
experiments indicated long training effort for these ap-
proaches. In [4], we focused on membership functions
tuning and provided a self-tuning scheme for both on-
line and off-line learning. In this paper, the focus will be
on learning rule-base, though the methodology outlined



could be applied for generating fuzzy rules and mem-
bership functions. This is particularly a very important
study for different reasons. First, it provides an automatic
way of tuning rule-base for fuzzy looper control and con-
tributes towards a rapidly tuneable FLC framework for
rolling mills. To the best knowledge of the author, this
is the first attempt for on-line tuning of the rule-base for
FLC framework in rolling mills. Second, it can suggest
guidelines for designing fuzzy rule-base. Third, the effect
of rule-tuning could be compared with membership func-
tion tuning for the ease of tuning focus. Our approach is
based on combining neural networks with fuzzy logic.

Neural networks have a good potential due to their gen-
eralization capabilities [7]. However, training of neu-
ral nets and extraction of knowledge from a trained net
might be problematic. In particular, there is a rich set of
mill operator linguistic knowledge and incorporating this
knowledge into controllers in a systematic way is very
important. The translation of good linguistic rules, how-
ever, depends on the knowledge of the control expert. In
many cases, redundant or insufficient rules might be spec-
ified. Therefore, a rational solution would be to learn
rules (and/or membership functions) by neural networks
and then to apply a fuzzy control based on learned rules
(and/or membership functions). This approach has the
advantage of extracting knowledge from the neural net by
inspecting the weights associated with the fuzzy rules.

The structure of the paper is as follows. Section 2 presents
the system model and Section 3 describes neuro-fuzzy
looper control system. Tuning algorithm is explained in
Section 4. The simulation results and discussions are
given in Section 5. Finally, concluding remarks are pre-
sented in Section 6.

2 System Model

The model used for simulation purposes follows that in
[4]. The plant is a rolling mill with a looper for tension
control (Fig. 1). The speed difference results in the stor-
age of the strip length L(t), which can be obtained from
the integral of speed difference and the looper height is
related to the storage length by:

H(t) =
1

�+ �=
p
L(t)

; L(t) =

Z
t

[v1(t)�v2(t)]dt: (1)

Here � and � depend on the looper parameters and are
determined experimentally. For the simulation purposes,
we adopted experimental results of � = 0.0001955567
and � = 0.028845145 for L(t) in mm. Change of the
looper height is related to the storage length by the Jaco-
bian of the plant, which is given by

J�v1 =
@H(t)

@(�v1)
=

b(v2(t)� v1(t))

2
p
L(t)(�

p
L(t) + �)2 _v1(t)

(2)

3 Control Design

The control structure of the looper system follows the one
in Fig. 2. The process control can be described as follows:

x = [x1(k); x2(k)]
T = [

e(k)

Kin1

;
�e(k)

Kin2

]T ; (3)

e(k) = y(k)� yr(k); �e(k) = e(k)� e(k � 1); (4)

y(k) = H(k); yr(k) = Hr(k); (5)

u(k) = �v1(k) = U [x1(k); x2(k)]: (6)

Here state vector x includes error e(k) and error change
�e(k) as the inputs to the controller, and the controller
output u(k) is generated using U [x1(k); x2(k)], nonlin-
ear mapping implemented using neuro-fuzzy controller.
The input scaling factors are Kin1 and Kin2 respectively.
Also, y(k) and yr(k) are system output and reference
command respectively. In the following, we describe
how U [x1(k); x2(k)] is implemented. The realization of

Fuzzy
Controller

Algorithm

Tuning
J

v v
1 2

yr
y

+

-

+ +

-1z

e(k)
e(k)∆

k

u(k)

δ δ

Process
+ speed control

Figure 2: The structure of the looper control system.

NB

NB

PB

ZE

Σ

N11

N

N ij

n n1 2
N

12
x

x2

1

11

n n1 2

w

w

1

2

wout

wout

12

ij

wout
11

PB

ZE

11
2

wij
1

wn n
1 2

1

wn n
21

out

u

w

K
out

Figure 3: The structure of the neuro-fuzzy control.

the functionU [x1(k); x2(k)] follows the neural-net based
fuzzy system design method of [6] and [4]. It basically
consists of three stages: fuzzification, decision making
fuzzy logic, and defuzzification. The process of fuzzifi-
cation transforms the inputs x1(k) and x2(k) into the set-
ting of linguistic variables which maybe viewed as labels
of a fuzzy set. In this work, different linguistic variables
were used for e, and �e, represented by Lx1 and Lx2 ,
each with n1 and n2 number of membership functions



respectively. Here the meaning of each variable should
be clear from its mnemonic: NB (Negative Big), NM
(Negative Medium), NS (Negative Small), N (Negative),
Z (Zero), P (Positive), PS (Positive Small), PM (Posi-
tive Medium), and PB (Positive Big). The membership
functions of the inputs to the controller (Fig. 4) were all
assumed to be triangular. The fuzzy partitioning of the
Fig. 4 has been based on normalization and choosing
scaling factors by inspecting the operation range. The
scaling factors are based on the expert knowledge and
can be rapidly adjusted by means of a few trials. For
each input xj (j = 1; 2), we assign numbers �Aij

(xj)
using membership functions Aij associated with Lxj

:
�Aij

(xj) = Aij(xj). Each membership function could

NB NS PS PB N PZ

x x1 2
-1 -0.5 0.5 1 -1 -0.5 0.5 1

µ µ
1 2

(a) (b)

Figure 4: An example of membership functions for the
state variables: (a) x1 = e, (b) x2 = �e. The domains
for both variables have been normalized to [-1, 1]. mem-
bership function.

be represented by a (coordinate of the center of triangle)
and b (base length) [4]. A 3-layered neural network is
used to represent the fuzzy controller (Fig. 3). The net-
work directly maps weights of layers into fuzzy rules and
membership functions. The fuzzification process is done
in the first (input) layer, i.e. the outputs of the first layer
will be obtained from: oji = �Aij

(xj), (j = 1; 2). The
rules are represented by the hidden layer. Each rule R

will be represented by a neuron Nij associated with the
ith membership function of x1 and jth membership func-
tion associated with xj . Also, w1

ij andw2

ij are the weights
between the input and hidden layers for N ij . Here, wout

ij

is the weight between the hidden and output layers from
Nij . The inputs represent the antecedent parts of the
rules and the latter weights represent the consequent part.
These weights will indicate the contribution of each rule.
Sample of the rules will be given in the next section. The
rules are singleton type and will have the form of:

Rule k: If x1 is li and x2 is lj , then u = wout
ij .

Here li 2 Lx1 , and lj 2 Lx2 are sets of linguistic terms
attached to x1, and x2 respectively. Also, wout

ij is a real
number associated with the singleton controller which is a
special case of Takagi-Sugeno controller [10] with all co-
efficients of higher order equal to zero. The middle layer
neurons represent the rule-base. Product based neurons

have been used in the middle layer. That is:

nethidij = (w1

ijo
1

i ):(w
2

ijo
2

j ): (7)

Here, linear activation function with the slope of unity is
used. Thus, ohidij = nethidij . Finally, the result of defuzzi-
fication will be calculated from:

u = Koutf(net
hid
ij ) = Kout

X
wout
ij ooutij : (8)

4 Tuning Algorithm

Tuning FLC is not a simple task as it has more parame-
ters to be tuned than its non-fuzzy counterparts. It is pos-
sible to tune rules, operators, and/or membership func-
tions (MFs). Our initial work [4] focused on MF tuning.
In this work, our focus will be on rule tuning for bet-
ter performance. The network represented (Fig. 3) is a
modified version of backpropagation net [9] and follows
that of Khan and Venkatapuram [6]. The network is ca-
pable of learning both rules and membership functions.
In order to learn membership functions, the input layer
can be represented by a layer of neurons. We will only
contempt ourselves to learning and/or evaluating rules in
this paper. The net is initialized with some weight values.
The input-output set are then presented to the system for
weight modification and consequently rule learning. It is
important to select the training set carefully to cover a vast
range of input space. The weight modification algorithm
is as follows.

The equivalent error at the output layer is:

dout = (y � yd)
@y

@u
f 0(net) (9)

because f 0(net) is unity for the hidden and output layer
neurons. net is the input of the output layer neurons, and
@y

@u
is the plant Jacobian. The weights of the output layer

are modified according to:

wout
ij (k + 1) = wout

ij (k) + 
doutooutij (10)

where 
 is the learning rate. The equivalent error at the
hidden layer can be calculated from:

dhidij = f 0(nethidij )doutwout
ij (11)

For the input layer, the equivalent error expression be-
comes

d1ij = f 0(netij)d
hid
ij wout

ij w2

ijo
2

j ;

d2ij = f 0(netij)d
hid
ij wout

ij w1

ijo
1

j : (12)

The inner weights are thus corrected according to:

w1

ij(k + 1) = w1

ij(k) + 
d1ijo
1

i ;

w2

ij(k + 1) = w2

ij(k) + 
d2ijo
2

j : (13)



5 Simulation Results

The performance of fuzzy control without tuning (FLC)
and with neural-net based tuning (TNFLC) on different
rule sets were compared. Both off-line and on-line learn-
ing were considered but we will present off-line learning
results unless otherwise specified. In off-line learning,
FLC was tuned using the steady state error. Due to its
advantages [4], only linearized Jacobian sign was utilized
for selecting the tuning direction. The simulation param-
eters were chosen to be: v1(0) = 7000 mm/s, v2 = 7000
mm/s, Hr = 200 mm, �H(0) = 50 mm, and �T = 0.05
s. The learning coefficients were determined after exper-
iments: 
 = 0:01 for off-line learning, and 
 = 0:005
for on-line learning, ka = kb = 0:1, kw = 0:01 for MF
tuning using [4]. The scaling factors were chosen to be:
Kin1 = 60, Kin2 = 10, and Kout = 50. The results
are shown in Figs. 5 to 6 and Tables 1 to 4. The solid
and dotted lines represent the responses without and with
neuro-fuzzy tuning respectively.

Effect of n1; n2 (number of MFs) and rule-base size.
Several cases with different numbers of membership
functions and consequently rule-bases were considered.
Only 2 cases will be shown here for the sake of brevity.
Case (1)- (7 � 7) rule-base as in Table 1.
Case (2)- (5 � 3) rule-base as in Table 2.
The weights between input and hidden layer remained 1
in order to tune the rules and not the membership func-
tions. The weights between the hidden layer and out-
put layer were initialized using the initial singleton val-
ues inside the brackets (Tables in 1 and 2). For better
initialization, the numeric values of the centers of MFs
for consequent parts of Mamdani rules have been con-
sidered. In Case (1), the [a, b] parameters of MFs for
e were: NB:[-1.0, 0.7]; NM:[-0.65, 0.7]; NS:[-0.3, 0.7];
ZE:[0.0, 0.6]; PS:[0.3, 0.7]; PM:[0.65, 0.7]; and PB:[1.0,
0.7]. Those for �e were exactly the same. In Case (2),
those for e were: NB:[-1.0, 1.0]; NS:[-0.5, 1.2]; ZE:[0.0,
1.2]; PS:[0.5, 1.2]; and PB:[1.0, 1.0]. The MF parameters
for �e were: N:[-1.0, 2.0]; Z:[0.0, 2.0]; and P:[1.0, 2.0].
The net was trained and the results were compared to ini-
tial values. The results are shown in Fig. 5 and Tables 3
and 4. From the obtained results, the following observa-
tions were made. (1) Introduction of the neural system for
rule tuning could improve the performance of the system
significantly. (2) Higher number of MFs does not neces-
sarily improve the performance of the system, as the per-
formance of the controller for Case (1) is not superior to
those of other cases. For FLC, the largest steady-state er-
ror belongs to Case (1) with 7 � 7 rules. Besides, higher
number of MFs adds to the computational complexity of
the system. The rule-base with 5 � 3 rules, for instance,
seems to be sufficient for practical purposes. (3) One can

use the outputs of the neurons in the hidden layer (Ta-
bles 3 and 4) to cancel the rules represented by very small
numbers, given that a wide operating range has been used
during training. Also, one can additionally inspect the
significance of the rules by examining the weights be-
tween the hidden and output layers. Tables 3 and 4 can be
compared with Tables 1 and 2 for this purpose. This again
indicates that there would be rule redundancy in defining
7 � 7 rule-base.

Table 1: Initialization of rule-base for Case (1). The
singleton values associated with fuzzy terms are: (NB:-
1.00, NM:-0.70, NS:-0.25, ZE:0.10, PS:0.35, PM:0.70,
PB:1.00).
�e j e NB NM NS ZE PS PM PB
NB PB PB PM PM PS PS ZE
NM PM PM PS PS ZE ZE NS
NS PM PS PS ZE ZE NS NS
ZE PS PS ZE ZE ZE NS NS
PS PS PS ZE ZE NS NS NM
PM PS ZE ZE NS NS NM NM
PB ZE NS NS NM NM NB NB

Comparison with PID control. The PID gains were
tuned to give optimum response: KP = KD = 5,
KI = 1. When the plant parameters � and � were
changed by 20% and 40% respectively, PID control be-
came unstable. Similar results to [4] were obtained. The
resulst are not shown here for the sake of brevity. Again,
Fuzzy control demonstrated a steady performance. Self-
tuning was achieved using a Singleton-based control with
on-line tuning. Finally, it was shown that self-tuning
Fuzzy control, in comparison with PID and Fuzzy con-
trols, provided lower steady-state error and stable behav-
ior.

Comparison with MF tuning. It was practically impor-
tant to compare the effects of MF tuning [4] and rule tun-
ing (TNFLC). Similar initial conditions were considered:
on-line, singleton, Jacobian sign, learning rate of 0.005, 4
� 3 rule-base (Table 5). The MF parameters for e were:
NB:[-1.0, 1.0]; NS:[-0.5, 1.2]; PS:[0.5, 1.2]; and PB:[1.0,
1.0]. Those for �e were: N:[-1.0, 2.0]; Z:[0.0, 2.0]; and

Table 2: Initialization of rule-base for Case (2). The
singleton values associated with fuzzy terms are: (NB:-
1.00, NM:-0.70, NS:-0.25, ZE:0.10, PS:0.35, PM:0.70,
PB:1.00).
�e j e NB NS ZE PS PB
N PB PM PS ZE NS
ZE PM PS ZE NS NM
P PS ZE NS NM NB



Table 3: The weights between the hidden and output lay-
ers (or the outputs of neurons in the hidden layer) for Case
(1).
�e j e NB NM NS ZE PS PM PB
NB 1.00 1.00 0.70 0.63 0.32 0.35 0.10

(0) (0) (0) (0) (0) (0) (0)
NM 0.70 0.70 0.35 0.28 0.07 0.10 -0.25

(0) (0) (0) (0) (0) (0) (0)
NS 0.70 0.35 0.35 0.03 0.02 -0.26 -0.25

(0) (0) (0.09) (0.18) (0.06) (0) (0)
ZE 0.70 0.35 0.35 0.03 -0.29 -0.34 -0.25

(0) (0) (0.54) (0.98) (0.42) (0) (0)
PS 0.35 0.35 0.10 0.03 -0.33 -0.26 -0.70

(0) (0) (0.08) (0.30) (0.10) (0) (0)
PM 0.35 0.10 0.10 -0.32 -0.28 -0.70 -0.70

(0) (0) (0) (0) (0) (0) (0)
PB 0.10 -0.25 -0.25 -0.77 -0.70 -1.00 -1.00

(0) (0) (0) (0) (0) (0) (0)

Table 4: The weights between the hidden and output lay-
ers (or the outputs of neurons in the hidden layer) for Case
(2).
�e j e NB NS ZE PS PB
N 1.00 0.70 0.34 0.09 -0.25

(0) (0.00) (0.01) (0.00) (0)
ZE 0.70 0.35 -0.01 -0.29 -0.70

(0) (0.17) (1.00) (0.17) (0)
P 0.35 0.10 -0.26 -0.70 -1.0

(0) (0.00) (0.00) (0.00) (0)

P:[1.0, 2.0]. The step responses of both training meth-
ods were compared with FLC with no tuning (Fig. 6).
As it can be seen, the steady-state errors of both training
methods are very close and both of them improve steady-
state error of FLC. However, neural based rule-tuning in-
dicates lower undershoot than MF tuning. The effect of
rule tuning can be also observed by comparing the control
surfaces (Fig. 7).

Table 5: Rule-base for comparison with MF tuning.
�e j e NB NS PS PB
N 1.00 0.30 0.55 -0.35
Z 0.70 -0.10 0.30 -0.70
P 0.55 -0.35 -0.10 -1.00

Effect of rule tuning combined with MF tuning. The
same 4 � 3 rule-base (Table 5) and MF parameters were
used and two additional cases were considered:
Case (3)- The membership functions of neuro-fuzzy con-
troller were initialized by normal values.
Case (4)- The membership functions of the antecedent

0 0.5 1 1.5 2 2.5
−20

0

20

40

60

Time (s)

Lo
op

er
 h

ei
gh

t e
rr

or
 (

m
m

)

0 0.5 1 1.5 2 2.5
−20

0

20

40

60

Time (s)

Lo
op

er
 h

ei
gh

t e
rr

or
 (

m
m

)

Figure 5: Comparison of step responses for FLC (solid)
and TNFLC (dotted) under Case(1) (top), and under
Case(2) (bottom).

parts were first tuned by MF tuning [4]. The resultant
MFs were then used to initialize neuro-fuzzy controller.
The results are shown in Fig. 6 which indicates that there
is not any significant difference between two responses.
Therefore, as far as rule-tuning is concerned, the initial
tuning of the antecedent MFs might not affect the perfor-
mance of the controller significantly.

6 Conclusions

A neuro-fuzzy controller has been proposed for looper
control in rolling mills. The proposed system is capable
of generating, tuning, and/or evaluating the fuzzy rules
(and membership functions) by neural-net learning. Since
the fuzzy inference and defuzzification are combined, and
because less number of calculations are involved, the sys-
tem cycle time is reduced. Therefore, it provides a way
of reducing the number of rules and hence improving the
computational cost and processor response time. More-
over, the shown technique facilitates the evaluation of the
rules and membership functions often generated heuris-
tically. The effectiveness of the method was verfied by
the simulation results. Several cases were compared and
practical conclusions were made regarding: the size of
the rule-base, pre-tuning using MF tuning methods [4],
and effectiveness of the proposed method in comparison
with conventional PID control for looper control in rolling
mills.



0 0.5 1 1.5 2 2.5
-20

0

20

40

60
Lo

op
er

 h
ei

gh
t e

rr
or

 (
m

m
)

Time (s)

Fuzzy control without tuning
Rule tuning
Membership function tuning

0 0.5 1 1.5 2 2.5
-20

0

20

40

60

Lo
op

er
 h

ei
gh

t e
rr

or
 (

m
m

)

Time (s)

Case 3
Case 4

Figure 6: Comparison of the effects of rule-tuning (TN-
FLC) and MF tuning: individual (top) and combined (bot-
tom).

Acknowledgments

This research was financially supported by Quad Engi-
neering Inc., Natural Sciences and Engineering Research
Council of Canada (NSERC) under CRDPJ234028-99.
The author wishes to thank the useful discussions and
assistance of Jian Fan, Leon Winitsky, Jalal Biglou, and
Mark Pinkus from Quad Engineering, Inc.

References

[1] I. Hayashi, H. Nomura and N. Wakami, “Artifi-
cial neural network driven Fuzzy control and its
application to the learning of onverted pendulum
system,” Proc. 3rd IFSA Congress, pp. 610-613,
1989.

[2] G. Hearns, M.R. Katebi, and M.J. Grimble, “Ro-
bust control of a hot strip mill looper,” Proc. 1996
IFAC World Cong., pp. 445-450.

[3] H. Imanari, Y. Morimatsu, K. Sekiguchi, H.
Ezure, R. Matuoka, A. Tokuda, and H. Otobe,
“Looper H-infinity control of hot-strip mills,”
IEEE Trans. Ind. Appl., vol. 33, no. 3, pp. 790-
796, May 1997.

[4] F. Janabi-Sharifi and J. Fan, “Self-tuning fuzzy
looper control for rolling mills,” Proc. IEEE Conf.
Decision and Control, Sydney, Australia, Dec.
2000, pp. 376-381.

[5] R. Jang, “Self-learning fuzzy controllers based on
temporal back propagation,” IEEE Trans. Neural
Networks, vol. 3, pp. 714-723, Sep. 1992.

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

O
ut

pu
t y

Input x1
Input x2

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

O
ut

pu
t y

Input x1
Input x2

Figure 7: Control surface of initial FLC (top) and TNFLC
(bottom).

[6] E. Khan and P. Venkatapuram, “Neufuz: neu-
ral network based fuzzy logic design algorithms,”
Proc. IEEE Int. Conf. Fuzzy Systems, San Fran-
cisco, CA, pp. 647-654, 1993.

[7] K.S. Narendra and K. Parthasarathy, “Identifica-
tion and control of dynamical systems using neu-
ral networks,” IEEE Trans. Neural Networks, vol.
1, no. 1, pp. 4-27, 1990.

[8] J. V. Ringwood, “Shape control systems for
Sendzimir steel mills,” IEEE Trans. Control
Tech., vol. 8, no. 1, Jan. 2000, pp. 70-86.

[9] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagation
errors,” in Parallel Distributed Processing: Ex-
plorations in the Microstructure of Cognition.
Foundations, D. E. Rumelhart and J. L. McClel-
land, Eds., vol. 1, MIT Press, Cambridge, MA,
1986.

[10] T. Takagi and M. Sugeno, “Fuzzy identification
of systems and its applications to modeling and
control,” IEEE Trans. Systems, Man, and Cyber-
netics, vol. 15, no. 1, 1985, pp. 116-132.


