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Molecular Communication in Fluid Media: The
Additive Inverse Gaussian Noise Channel

K. V. Srinivas, Andrew W. Eckford, Member, IEEE, and Raviraj S. Adve, Senior Member, IEEE

Abstract—In this paper, we consider molecular communication,
with information conveyed in the time of release of molecules.
These molecules propagate to the transmitter through a fluid
medium, propelled by a positive drift velocity and Brownian
motion. The main contribution of this paper is the development
of a theoretical foundation for such a communication system;
specifically, the additive inverse Gaussian noise (AIGN) channel
model. In such a channel, the information is corrupted by noise
that follows an IG distribution. We show that such a channel
model is appropriate for molecular communication in fluid media.
Taking advantage of the available literature on the IG distribution,
upper and lower bounds on channel capacity are developed, and
a maximum likelihood receiver is derived. Results are presented
which suggest that this channel does not have a single quality
measure analogous to signal-to-noise ratio in the additive white
Gaussian noise channel. It is also shown that the use of multiple
molecules leads to reduced error rate in a manner akin to diversity
order in wireless communications. Finally, some open problems
are discussed that arise from the IG channel model.

Index Terms—Molecular communication, mutual information,
nanobiotechnology.

I. INTRODUCTION

M ODERN communication systems are almost exclu-
sively based on the propagation of electromagnetic

(or acoustic) waves. Of growing recent interest, nanoscale
networks, or nanonetworks, are systems of communicating
devices, where both the devices themselves and the gaps
between them are measured in nanometers [1]. Due to the
limitations on the available size, energy, and processing power,
it is difficult for these devices to communicate through conven-
tional means. Thus, communication between nanoscale devices
will substantially differ from the well-known wired/wireless
communication scenarios.
In this paper, we address communication in a nanonetwork

operating in an aqueous environment; more precisely, we con-
sider communication between two nanomachines connected
through a fluid medium, where molecules are used as the
information carriers. In such a communication system, the
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transmitter encodes the information onto the molecules and
releases them into the fluid medium; the molecules propagate
through the fluid medium and the receiver, upon receiving
the molecules, decodes the information by processing or re-
acting with the molecules. This approach, known as molecular
communication [2], is inspired by biological micro-organisms
which exchange information through molecules. Information
can be encoded onto the molecules in different ways, such as
using timing, concentration, or the identities of the molecules
themselves.
Molecular communication has recently become a rapidly

growing discipline within communications and information
theory. The existing literature can be divided into two broad
categories: in the first category, components and designs to
implement molecular communication systems are described;
for example, communications based on calcium ion exchange
[3] and liposomes [4] have been proposed. These are commonly
used by living cells to communicate. Other work (e.g., [5] and
[6]) has explored the use of molecular motors to actively trans-
port information-bearing molecules. A considerable amount
of work has been done in related directions, much of which is
beyond the scope of this paper; a good review is found in [7].
In the second category, channel models are proposed and

information-theoretic limits have been studied, largely via
simulations. Our own prior work falls in this category: in [8],
idealized models and mutual information bounds were pre-
sented for a Wiener process model of Brownian motion without
drift; while in [9] and [10], a net positive drift was added to the
Brownian motion and mutual information between transmitter
and receiver calculated using simulations. Mutual information
has been calculated for simplified transmission models (e.g.,
on-off keying) in [11] and [12], while communication channel
models for molecular concentration have been presented in
[13], and mutual information is calculated in [14]. Less closely
related to the current paper, information-theoretic analysis has
been done to evaluate multiuser molecular communication
channels [15], and to evaluate the capacity of calcium-signaling
relay channels [16]. Related work also includes informa-
tion-theoretic literature on the trapdoor channel [17], [18], and
the queue-timing channel [19], [20].
As in [10], in this paper we consider molecular communi-

cation with timing modulation; i.e., information is encoded in
the release times of molecules into the fluid medium. We also
assume that molecules propagate via Brownian motion with a
net drift from transmitter to receiver, generally called positive
drift. Brownian motion is physically realistic for nanodevices,
since these devices have dimensions broadly on the same scale
as individual molecules. Further, we choose positive drift since
it arises in our applications of interest (e.g., communications
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that take advantage of the bloodstream). Our focus here is on
the channel; we assume that the transmitter and receiver work
perfectly. We further assume that the receiver has infinite time
to guarantee that all transmitted molecules will arrive and that
there are no “stray” particles in the environment. Therefore, in
our system, communication is corrupted only by the inherent
randomness due to Brownian motion.
The key contributions of this paper are as follows.
1) We show that molecular communication with timing mod-
ulation can be abstracted as an additive noise channel with
the noise having inverse Gaussian (IG) distribution (see
Section II); thus, the molecular communication is modeled
as communication over an additive inverse Gaussian noise
(AIGN) channel. This forms the basis of the theoretical de-
velopments that follow.

2) Using the AIGN framework, we obtain upper and lower
bounds on the information theoretic capacity of a molec-
ular communication system with timing modulation (see
Theorem 1).

3) We investigate receiver design for molecular communica-
tion and present a maximum likelihood estimator (MLE)
(see Theorem 2), and an upper bound on the symbol error
probability (SEP) (see Theorem 3). We also show an ef-
fect similar to diversity order in wireless communications
when multiple molecules are released simultaneously (see
Theorem 4).

While the work in [10] is based largely on simulations, the
AIGN framework developed here allows us to place molec-
ular communications on a theoretical footing. However, we em-
phasize that this paper remains an initial investigation into the
theory of molecular communications with timing modulation in
fluid media.
This paper is organized as follows. Section II presents the

system and channel model under consideration. Section III then
uses this channel model to develop capacity bounds for this
system. Section IV then develops a maximum likelihood (ML)
receiver. Section V presents extensive discussion and few open
problems and, finally, Section VI concludes this paper.

A. Notation

denotes the differential entropy of the random variable
. implies that is an exponentially distributed

random variable with mean ; i.e., .
denotes the Laplace transform of the the probability den-

sity function (pdf) of the random variable . denotes the
real part of . Throughout this paper, refers to the natural
logarithm; hence, information is measured in nats. repre-
sents the set of nonnegative real numbers.

II. SYSTEM AND CHANNEL MODEL

The main components of a molecular communication system
are the transmitter, receiver, molecules that convey the informa-
tion and the environment or the medium in which the molecules
propagate from the transmitter to the receiver. Fig. 1 illustrates
the system under consideration.
The transmitter is a point source of identical molecules. It

conveys a message , where is a random variable
with alphabet having a finite cardinality , by releasing

Fig. 1. System model with transmitter at and receiver at .

molecules into the fluid medium. Information can be encoded
onto the molecules in different ways: in the release time of the
molecules (timing modulation) [8], in the concentration of the
molecules (number of molecules per unit area) [13], or in the
number of molecules (amplitude modulation). We consider en-
coding the message in the release time of the molecule(s). The
transmitter does not affect the propagation of the molecules
once they are released into the medium.
The medium is an aqueous solution and the molecules (re-

leased by the transmitter) propagate by Brownian motion from
the transmitter to the receiver. Brownian motion can be char-
acterized by two physical parameters of the fluid medium: the
drift velocity and the diffusion coefficient [21].
Throughout this paper, concerning the emission and reception

process of molecules, we use the ideal channel model assump-
tions.
1) The transmitter perfectly controls the release time and
number of molecules released to represent a particular
message.

2) The receiver perfectly measures the arrival times of the
molecules. There is perfect synchronization between the
transmitter and the receiver.

3) Once a molecule arrives at the receiver, it is absorbed and
does not return to the medium.

4) The propagation environment is unlimited and that, other
than the receiving boundary, nothing interferes with the
free propagation of the molecule.

5) The trajectories of individual information carrying
molecules are independent.

Using these assumptions, we are able to abstract away the phys-
ical details of molecular transmission and molecular reception.
Further, in [8], it was shown that these assumptions are ideal in
an information-theoretic sense, in that eliminating any of them
results in a channel with lower capacity. Thus, capacity results
obtained using these assumptions are as good as any molecular
communication system can do. We consider only 1-D propaga-
tion of the molecules.
The Wiener process is an appropriate model for physical

Brownian motion if friction is negligible [22]. Let be a
continuous-time random process which represents the position
at time of a molecule propagating via Brownian motion. Let

represent a sequence of time instants,
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and let represent the increments of the
random process for . Then is a Wiener
process if the increments are independent Gaussian random
variables with variance . The Wiener process has
drift if , where is the drift velocity.
Consider a fluid medium with positive drift velocity and

diffusion coefficient1 , where the Wiener process variance is
given by . A molecule is released into this fluid at
time at position . Under the Wiener process, the
probability density of the particle’s position at time is
given by [21]

(1)

That is, treating the time as a parameter, the pdf of the position
is Gaussian with mean and variance .
Since the receiver acts as a perfectly absorbing boundary, we

are only concerned with the first arrival time at the boundary.
We assume that the transmitter is located at the origin, and in the
axis of interest, the receiver is located at position . In this
case, the first arrival time is given by

(2)

The key observation here is that if , the pdf of , denoted
by , is given by the IG distribution [24]

(3)

where

(4)

(5)

The mean and the variance of are given by and
, respectively. We will use as shorthand

for this distribution; i.e., implies (3). It is impor-
tant to note that if , the distribution of is not IG. Further-
more, if , there is a nonzero probability that the particle
never arrives at the receiving boundary. Throughout this paper,
we will assume that .
Since the trajectories of the molecules are assumed to be mu-

tually independent, the processes for different molecules
are also independent. As the information to be transmitted is en-
coded in the transmit time of eachmolecule, the message (or, the
symbol) alphabet is ; further, the symbol rep-
resents a release of a single molecule at time . This molecule
has initial condition ; the molecule propagates via a
Wiener process with drift velocity , and Wiener process
variance . This process continues until arrival at the receiver,
which occurs at time . Under our assumptions, for a
single molecule released at time

(6)

1In [23], diffusion coefficient values between 1 and 10 were consid-
ered realistic for signaling molecules.

where is the first arrival time of the Wiener process. The
probability density of observing channel output given
channel input is given by

.
(7)

It is apparent that the channel is affected by additive noise, in
the form of the random propagation time ; furthermore, by
assumption, this is the only source of uncertainty or distortion
in the system. As the additive noise has the IG distribution,
we refer to the channel defined by (6)–(7) as an AIGN channel.
Note that we assume that the receiver can wait for infinite time
to ensure that the molecule does arrive.
As an example of a molecular communication system with

timing modulation, assume that the transmitter needs to convey
one of the messages; the message alphabet would be

with . With , the transmitter
could convey up to nats per channel use. Corresponding
to the message, , the transmitter releases a mole-
cule into the fluid medium at time . For the receiver, the trans-
mitted message is a discrete random variable with alphabet
and it observes where is the time taken by

the molecule to arrive at the receiver. The receiver computes an
estimate of the transmitted message from , making use of
other information such as the pdf of and the a priori prob-
abilities of the messages . The transmission is
successful when , andwe declare an error when .

III. CAPACITY BOUNDS

A. Main Result

Equation (6) is reminiscent of the popular additive white
Gaussian noise (AWGN) channel, a crucial parameter of which
is the channel capacity. As in the AWGN case, the mutual
information between the input and the output of the channel is
given by

(8)

since and are independent. The capacity of the channel
is the maximum mutual information, optimized over all pos-
sible input distributions . The set of all possible input dis-
tributions is determined by the constraints on the input signal
. With the information being encoded in the release time of

the molecule, there is no immediate analog to input power for
the AWGN channel; the constraints are application dependent;
e.g., both peak-constrained and mean-constrained inputs appear
reasonable. So far, peak constraints have not been analytically
tractable; in this paper, we constrain the mean of the input signal
such that

(9)
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That is, on average we are only willing to wait seconds to
transmit our signal. (Throughout this paper, we also assume that
the random variable is nonnegative.)
We define capacity as follows.
Definition 1: The capacity of the AIGN channel with input
and mean constraint is defined as

(10)

From the receiver’s perspective, is finite as long as
, so (9) ensures that the expected time of arrival of the molecule
at the receiver is constrained; i.e.,

. Note that peak constraints are not possible at the
receiver, since the support of the pdf of is .
Our main result in this section is an upper and lower bound

on the capacity of the AIGN channel. Before stating this result,
we need the following two properties of the IG distribution.
Property 1 (Differential Entropy of the IG Distribution): Let

represent the differential entropy of the IG distribution
with the parameters and . Then

(11)

where is the order- modified Bessel function of the
second kind.
This property is easily derived from the differential entropy of

a generalized IG distribution; see Appendix A. The derivative
of the Bessel function with respect to its order, needed in the
second term of (11), is given by [25]

(12)

where is the exponential integral [25].
Property 2 (Additivity Property of the IG Distribution [24]):

Let be not necessarily inde-
pendent IG random variables, and let for con-
stants . If there exists a constant such that for

all , then .
The bounds on the capacity are then given by the following

theorem.

Theorem 1: The capacity of the AIGN channel, defined in
(10), is bounded as

(13)

where is given by Property 1.
Proof: From (8)

(14)

with given by Property 1. From (10)

(15)

(16)

which follows since is independent of .
Upper Bound: Since is nonnegative by assumption, and

the IG-distributed first passage time is nonnegative by defini-
tion, is also nonnegative. Moreover, if , then

. Then

(17)

which follows since is the entropy of an expo-
nentially distributed random variable with mean : the
maximum-entropy distribution of a nonnegative random vari-
able with a mean constraint [26]. Thus, substituting into (16)

(18)

Lower Bound: Suppose the input signal is IG dis-
tributed with mean equal to , satisfying (9). Choose
the second parameter of the IG distribution for the input
signal as ; i.e., . Then
from Property 2, and

. Then

(19)

since is in the feasible set of the maximiza-
tion. Thus, again substituting into (16)

(20)

The theorem follows from (18) and (20).
Note that if one could find a valid pdf for (with )

that resulted in an exponential distribution for (via convo-
lution with the IG distribution of ), then the expression in
(18) would be the true capacity for mean constrained inputs.
For example, at asymptotically high velocities, i.e., as ,

, and the variance , i.e.,
the noise distribution tends to the Dirac delta function. The fact
that as is proven in [27]. The fact that is
distributed exponentially then leads to the conclusion that, at
high drift velocities, the optimal input is also exponential;
i.e., .
At low velocities, the situation is considerably more compli-

cated. As shown in Appendix B, the deconvolution of the output
( ) and noise ( ) pdfs leads to an invalid pdf; i.e., at asymptot-
ically low velocities, this upper bound does not appear achiev-
able.

B. Numerical Results

We now present numerical results by evaluating the mutual
information of the AIGN channel and, in order to illustrate the
upper and lower bounds stated by Theorem 1, we consider

and . We
present two more lower bounds on the capacity of the AIGN
channel by considering the following.
1) Uniformly distributed input in the range ,
2) Exponentially distributed input with mean ; i.e.,
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Fig. 2. Mutual information as a function of velocity; .

In these two cases, we only have closed-form expressions for
but not for and we compute through numer-

ical integration to plot . Note that, for all the cases,
.

In the case where has the uniform distribution on ,
convolving the input and noise distributions leads to

(21)

where is the cumulative distribution function (cdf) of
and is given by [24]

(22)

where is the cdf of a standard
Gaussian random variable .
In the case where with , the

convolution leads to [28]

(23)

where . When , the convolution
of and results in the pdf of given by [28]

(24)

where and .

Fig. 2 plots the mutual information as a function of velocity
for all four cases mentioned previously. It is only over a narrow
range of velocities that the upper and lower bounds, given by
(13), are close to each other. Further, the cases with exponential
and uniform inputs track the upper bound, with the exponential
input approaching the bound at high velocities. This is consis-
tent with the discussion in the previous section. However, given
its finite support, a uniform input may be closer to a practical
signaling scheme.
Fig. 3 presents a closer look at the behavior of the bounds

at low velocities ( ) by plotting and , the
differential entropies of and , respectively, along with the
upper and lower bounds. The upper bound has a nonmonotonic
behavior: it decreases with decreasing velocity but after a cer-
tain value of , it increases as the velocity decreases. The lower
bound decreases monotonically as the velocity goes to zero.
This can be explained as follows. Consider the upper bound on
capacity, i.e., with . Recall that

and . As decreases, increases
and hence also increases (as can be seen from the figure).

also increases as the velocity decreases,2 but it does so
at a lower rate than . This results in a net improvement in

with . On the other hand, when
, both and have

almost the same value at lower values of , resulting in
that goes to zero.
At low velocities, as shown in Appendix B, the result of de-

convolving the output ( ) and noise ( ) pdfs does not satisfy
the necessary properties of a pdf. Hence, the upper bound does
not appear achievable, and the upper bound may be rather loose
at low velocities. As the differential entropy of the noise ( )

2The monotonic decrease in with increasing velocity satisfies the in-
tuition that the propagation time has less variance as the velocity of the fluid
medium increases.
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Fig. 3. Upper and lower bounds at low velocities for .

Fig. 4. Mutual information as a function of ; .

decreases monotonically with increasing velocity, velocity is
one indicator of the channel quality in an AIGN channel. How-
ever, it is instructive to compare these features to the AWGN
channel, in which the channel capacity is monotonic with re-
spect to a single parameter, namely the signal power to noise
power ratio (SNR). In the AIGN channel, the mutual informa-
tion cannot be similarly reduced to a function of a single pa-
rameter. The pdf in (3) is a function of both velocity (via ) and
diffusion coefficient (via ).
An example of this complex relationship is shown in Fig. 4,

where . Both the upper bound and the mutual information

with uniform inputs fall with increasing diffusion (randomness),
but then further increasing diffusion increases mutual informa-
tion. The increase in mutual information as a function of diffu-
sion is, initially, counterintuitive since diffusion is assumed to
be the source of randomness, and hence uncertainty. To under-
stand this result, it is instructive to consider the zero-velocity (no
drift) case. Without diffusion, molecules would forever remain
stationary at the transmitter, and never arrive at the receiver, re-
sulting in zero mutual information. In this case, increasing dif-
fusion helps communication. Thus, while it is true that diffusion
increases randomness, its impact is not monotonic. To illustrate



4684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 7, JULY 2012

Fig. 5. Mutual information as a function of ; .

this effect, consider Fig. 5. Here, the velocity is set relatively
high ( ). The plots are the entropies and mutual informa-
tion (upper bound) as a function of . The upper bound falls
steeply until , very slowly until , and then rises
slowly for increasing . This is because for relatively large
values of , this velocity appears “low” and increasing dif-
fusion increases mutual information. This is confirmed by the
falling entropy of the noise term ( ).
To summarize, in this section we developed capacity bounds

for the AIGN channel based on the IG distribution of the mol-
ecule propagation time. While increasing velocity increases
mutual information, increasing diffusion beyond a point also
increases mutual information. Unlike the AWGN channel, no
single parameter captures the performance of theAIGN channel.

IV. RECEIVER DESIGN

We now discuss receivers for the AIGN channel by recov-
ering the transmitted message (transmission time) from the
times the molecules are received. We develop both the ML
estimator and the ML detector, and provide an error probability
analysis for the ML detection.

A. Maximum Likelihood Estimator

The receiver observes and needs to compute
, an estimate of . Given an observation , the ML

estimator of , denoted , is given by

(25)

where

.
(26)

The pdf given previously is commonly known as the shifted
IG distribution, or the three-parameter IG distribution, and is
denoted as where is the location parameter [24],
or the threshold parameter [27].

Theorem 2: For a given observation , theML estimator
of the transmitted symbol in an AIGN channel is given

by

(27)

Proof: Let represent the
log-likelihood function. Since is monotonic,

In our case,

.
(28)

By setting , and searching over values of , we
obtain the MLE given by (27).
This result is consistent with the expected high-velocity case

( ), wherein .

B. ML Detection: SEP Analysis

Analogous to the use of a signal constellation in AWGN chan-
nels, we now restrict the input to the channel, i.e, the trans-
mission time, to take discrete values: for -ary modulation, we
have . We begin
with the error probability for binary modulation with ML de-
tection at the receiver. Let , with
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and . For a
given observation , the log-likelihood ratio is given
by

.

(29)

If is positive (negative), then has higher (lower) like-
lihood than . If , then there is no preference be-
tween and ; we ignore this case, which occurs with van-
ishing probability. Thus, for ML detection, the decision rule is
as follows.
• Pick if ; otherwise, pick .

For MAP detection, we use the same decision rule, replacing
with .

The SEP is given by

(30)

where is the probability of when
.

(31)

where is the decision threshold value of , satisfying
. Similarly,

(32)

We now give an upper bound on the error probability for the
case when , which is simple to calculate and yet closely
approximates the exact error probability.

Theorem 3: Let , with
, , and . The upper bound

on the SEP of the ML detector in an AIGN channel with input
is given by

(33)

Proof: Let

(34)

Then

(35)

Note that since . Furthermore

(36)

(37)

where (36) follows since, under ML detection,
when . Now, (30) becomes

(38)

(39)

where the last inequality follows since (by assump-
tion), and so is nonnegative. Finally, note that

, and (33) follows.
Corollary 1: The upper bound on the SEP given by (33) is

asymptotically tight as ; i.e.,

(40)

Proof: The error in bound (38) is at most , and the error
in bound (39) is equal to ; thus, the total error is at
most . Noting that as , we show that
as . For , we have

(41)

Finally, follows from substituting (41) into (34): since
(by assumption), for all

as , and (40) follows.
To illustrate this result, consider Fig. 6: is the area under the

curve as varies from to and is always
larger than , the area under the curve

from to .
This bound can easily be generalized to -ary modulation.

When , and
, the upper bound on SEP is given by

(42)

To compute the ML estimate, the receiver needs to know and
, the parameters of the noise. One way to enable the receiver
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Fig. 6. Deriving the upper bound on SEP; , , , , and .

to acquire the knowledge of these parameters is by training as
in a conventional communication system. Appendix C provides
the ML estimates of these parameters based on the IG pdf.

C. Improving Reliability: Transmitting Multiple Molecules

The performance of a molecular communication system (the
mutual information and the error rate performance) can be im-
proved by transmitting multiple molecules to convey a message
symbol. We assume that the trajectories of the molecules are in-
dependent, and that they do not interact with each other during
their propagation from the transmitter to the receiver.
The transmitter releases molecules simultaneously to

convey one of messages, . In [9], it was
shown using simulations that if multiple molecules are avail-
able, releasing them simultaneously is the best strategy. Essen-
tially, releasing them at different times leads to confusion at the
receiver with molecules potentially arriving out of order. In the
case of simultaneous transmissions, the receiver observes mu-
tually independent arrival times

(43)

where are i.i.d. with .

1) Maximum Likelihood Estimation: We first consider ML
detection of the symbol when multiple molecules are used. As-
suming that the receiver knows the values of and through
an earlier training phase, it can use the multiple observations

to obtain .
The pdfs are i.i.d. with

given by (26). The ML estimate, in this case,
is given by (44), shown at the bottom of the page. Simplifying
the aforementioned equation, the ML estimate can be expressed
as

(45)

where

(46)

2) Linear Filter: The aforementioned approach estimates the
transmitted message using a complicated ML detection filter
that processes the received signal. Given the potential appli-
cations of this research, a simpler filter would be useful. One
such filter is the linear average, which is optimal in an AWGN

(44)
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Fig. 7. Mean and standard deviation of .

channel [29]. In this case, the receiver averages the observa-
tions and performs a ML estimate with the sample mean as the
test statistic. The receiver generates

(47)

The linear filter has the following nice property: by the addi-
tivity property of IG distribution in Property 2,

. Now,

where

(48)

The linear receiver, therefore, acts as if is reduced by a factor
of to . At reasonably high velocities, this leads to better
performance; however, we have seen in Section III that, at low
velocities, diffusion can actually help communications.
At high drift velocities, the reduction in the effective diffu-

sion results in an effect akin to the diversity order in wireless
communication systems. This is shown in the following result.

Theorem 4: For 2-ary modulation with
, as drift velocity , the upper bound on SEP can

be approximated as

(49)

where , and are constants.
Proof: The proof is found in Appendix D.

Furthermore, for molecules and detection using the linear
filter,

(50)

which is essentially (49) with replaced by .
Since, in both (49) and (50), the first term dominates at high

velocities, a semilog plot of versus velocity is asymptotically
linear, with slope proportional to .

D. Simulation Results

Fig. 7 showshow thevarianceand themeanof theMLestimate
vary with velocity for a given . With increasing velocity, the
estimator becomes unbiased and the variance approaches zero.
Fig. 8 plots the SEP with -ary modulation for different values
. The input alphabet employed for simulations is

. The figure also compares the upper bound
on error probability, presented in Section IV-B, with the error
probability obtained through Monte Carlo simulations.
The poor performance of -ary modulation as shown in

Fig. 8 motivates the multiple molecule system described in
Section IV-C. Fig. 9 plots the error rate performance when

and each symbol is conveyed by releasing mul-
tiple molecules. As expected, there is a effect akin to receive
diversity in a wireless communication system. Here, the perfor-
mance gain in the error probability increases with the number
of molecules transmitted per message symbol.
Fig. 9 also compares the performance of the averaging filter

with the ML estimation given by (45). The linear averaging
filter is clearly suboptimal with performance worsening with in-
creasing number of molecules transmitted per symbol ( ). This
result again underlines the significant differences between the
AIGN and AWGN channel models.
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Fig. 8. Comparing the analytical upper bound and simulated error probability; single molecule case with -ary modulation. Equiprobable symbols and .

Fig. 9. Comparing the error probability of MLE with the averaging filter. Equal a priori probabilities and .

V. DISCUSSION

In proposing a new channel model based on IG noise, we have
analyzed the simplest possible interesting cases. In this regard,
there are several issues left unresolved.

A. Single Versus Multiple Channel Uses

Throughout this paper, we have focused on the case of a
single channel use, in which we use the channel to transmit
a single symbol of information; our capacity results are mea-
sured in units of nats per channel use. Translating these results

to nats per molecule is straightforward: each channel use con-
sists of a deterministic number of molecules , where ;
thus, we merely divide by . However, measuring capacity in
nats per unit time is a more complicated issue, since the dura-
tion of the channel use is a random variable, dependent on both
the input and the output. Following [19], where the capacity
per unit time of a queue timing channel was calculated with re-
spect to the average service time, here we can normalize our
capacity results either with the average propagation time
or the average length of the communication session . Since

, our decision to constrain the mean of
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the input distribution would then have a natural interpre-
tation in terms of the capacity per unit time.
Further, our system model excludes the possibility of other

molecules propagating in the environment, except those trans-
mitted as a result of the channel use; equivalently, we assume
each channel use is orthogonal. This raises the question of how
to use the channel repeatedly: if the signaling molecules are
indistinguishable, then (under our formulation) the transmitter
must wait until all molecules have arrived before a new
channel use can begin. On the other hand, if the signaling
molecules are distinguishable, then channel uses can take place
at any time, or even at the same time. This is because if there is
no ambiguity in matching received molecules to channel uses,
those channel uses are orthogonal.

B. Intersymbol Interference

Repeated channel uses also lead to a situation akin to in-
tersymbol interference (ISI) in conventional communications.
Since propagation time is not bounded, the transmitter may re-
lease the molecule corresponding to the “next” symbol while
the “previous” molecule is still in transit. Molecules may, there-
fore, arrive out of order, introducing memory to the channel: to
calculate the likelihood of the transmitted message, the optimal
detector must consider all possible permutations of molecules’
arrival. This problem is exacerbated if multiple molecules are
released simultaneously to achieve diversity.

C. Synchronization and Differential Encoding

The system model and the analysis presented here assume
perfect synchronization between the transmitter and the re-
ceiver. It is unclear how difficult it would be to achieve this with
nanoscale devices. An information theoretic analysis of the
effect of asynchronism in AWGN channels has been presented
in [30]. Given the importance of timing in our model, exten-
sions of such work to the AIGN channel would be useful. An
interesting alternative would be to use differential modulation
schemes such as interval modulation presented in [31].

D. Amplitude and Timing Modulation

The work presented here focuses on timing modulation,
which leads naturally to the AIGN channel model. We can as
well consider “amplitude” modulation wherein the number of
molecules released by the transmitter is varied according to the
message to be transmitted. In this context, it might be possible
to leverage work on positive-only signaling channels such as in
optics [32]. Amplitude modulation could be coupled with the
timing modulation considered here. However, it is important
to note that any amplitude information would be reproduced at
the receiver faithfully since, in the model we have considered
so far, the receiver is allowed to wait for all molecules to arrive
before decoding. Therefore, to be useful, a reasonable model
of amplitude modulation must include delay constraints and
account for the issue of ISI as described previously.

E. Two-Way Communication and Negative Drifts

The AIGN channel model is valid only in the case of a pos-
itive drift velocity. In this regard, it does not support two-way

communication between nanodevices. With negative drift ve-
locities, it is not guaranteed that the molecule arrives at the re-
ceiver [24]. Molecular communications with negative drift ve-
locities remain a completely open problem and one that is out-
side the scope of this paper. With negative drift, the pdf of the
noise is distributed IG (albeit with a nonzero probability of par-
ticles never arriving), so the IG framework provided here might
be useful to analyze such a channel.

VI. CONCLUSION

We have considered molecular communication between
nanoscale devices connected through fluid medium, with in-
formation encoded in the release times of the molecules. We
have proposed a mathematical framework to study such a com-
munication system by modeling it as communication over an
additive noise channel with noise following the IG distribution.
We then obtained lower and upper bounds on the capacity of
an AIGN channel and discussed receiver design. Our results
illustrate the feasibility of molecular communication and show
that it can be given a mathematical framework. Our key contri-
bution here has been to provide this mathematical framework,
making it possible to tackle some of the open problems in
molecular communications.

APPENDIX A
DIFFERENTIAL ENTROPY OF THE IG DISTRIBUTION

Here, we prove Property 1. For a given and , the differ-
ential entropy of the noise is fixed and can be computed
from the generalized IG distribution (GIG). The GIG distribu-
tion is characterized by three parameters and the pdf of a random
variable distributed as GIG is given by [24]

(51)

where is the modified Bessel function of the third kind of
order . It is commonly denoted as and
is a special case, obtained by substituting [24].
When , its differential entropy, in nats, is

given by [33]

(52)

Setting , the differential entropy of is
given by

(53)

and the property follows.
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APPENDIX B
EVALUATING OPTIMAL INPUT DISTRIBUTION AT

LOW VELOCITIES

If a pdf exists that leads to an exponentially distributed mea-
sured signal , it would be the capacity achieving input distri-
bution. Furthermore, the pdf is the convolution of
and . We, therefore, attempt to evaluate at asymp-
totically low velocities by deconvolving the exponential distri-
bution (of the output signal ) and the IG distribution (of the
noise). The Laplace transform of the IG distribution is given by

(54)

For given values of and , as we have and
is fixed. In such a case, can be approximated as

(55)

As , . To achieve the upper

bound on capacity, , where
and hence

(56)

and the pdf of can be obtained by computing the inverse
Laplace transform . The inverse Laplace transform can
be computed by making use of the following Laplace transform
pair [34]:

(57)

where , and are constants. Using(57), we obtain

(58)

where

Note that can be evaluated for complex values of its
argument and , where is the complex
conjugate of . Hence

(59)

where denotes the real part of . The pdf obtained previ-
ously, unfortunately, is not a valid pdf.

1) When There Is No Drift: To confirm the result in (59),
we test the case of zero velocity. Note that in this case, the noise
is not IG distributed; however, the zero velocity case converges
in limit to the case without drift. Without drift, the pdf of the
arrival time is given by [24]

(60)

Note that and

(61)
Substituting , we get

(62)

This results in

(63)

Note that (62) is the same as (55), and (63) is the same as (56).
Hence, we get (59) when we try to obtain by evaluating

.

APPENDIX C
ESTIMATING NOISE PARAMETERS

To estimate the noise parameters, the transmitter releases
“training” molecules at known time . Let the receiver observe

where are i.i.d.
and the receiver knows a priori. The pdfs of

, are i.i.d. and IG distributed as given by

(64)

In general, ; however, in our case,
. When , .

When the receiver knows the value of , the ML estimates of
the remaining two parameters and can be obtained as

(65)

where is the sample mean and

(66)

Assuming and does not change significantly from the time
the receiver estimates the parameters and the time of actual com-
munication, the receiver can obtain the ML estimate of the re-
lease times of the molecules.
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APPENDIX D
UPPER BOUND ON ASYMPTOTIC ERROR RATE

Here, we prove Theorem 4. Recall that, for 2-ary modulation
with , the upper bound on SEP is
given by

(67)

where

(68)

where is the cdf of a standard
Gaussian random variable and

(69)

For , can be approximated as

(70)

Now, we compute , , and examine its behavior
as . Recall that and

(71)

Consider the first term in

(72)

When , we have and thus

. Hence, we use (70) to obtain

(73)

Now, consider the second term in

(74)

When we have and, using (70),

we obtain

(75)

Thus

(76)

At high velocities, can be approximated as

(77)

and hence, the upper bound on SEP can be approximated by

(78)

The theorem follows by taking the logarithm of this expression.

REFERENCES

[1] S. F. Bush, Nanoscale Communication Networks. Boston: Artech
House, 2010.

[2] S. Hiyama et al., “Molecular communication,” in Proc. 2005 Nano Sci.
and Technol. Institute Conf., 2005, pp. 391–394.

[3] T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, and K.
Arima, “Molecular communication for nanomachines using intercel-
lular calcium signaling,” in Proc. 5th IEEE Conf. Nanotechnol., Jul.
2005, pp. 478–481.

[4] Y. Moritani, S. M. Nomura, S. Hiyama, K. Akiyoshi, and T. Suda,
“A molecular communication interface using liposomes with gap junc-
tion proteins,” in Proc. 1st Int. Conf. Bio-Inspired Models Netw., Inf.
Comput. Syst.,, Dec. 2006.

[5] M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kaya-
suga, H. Kojima, H. Sakakibara, and K. Oiwa, “A design of a molecular
communication system for nanomachines using molecular motors,” in
Proc. 4th Annu. IEEE Conf. Pervasive Comput. Commun. Workshops,
Mar. 2006, p. 554.

[6] S. Hiyama, Y. Moritani, and T. Suda, “A biochemically engineered
molecular communication system,” presented at the presented at the
3rd Int. Conf. Nano-Networks, Boston, MA, 2008.

[7] S. Hiyama and Y. Moritani, “Molecular communication: Harnessing
biochemical materials to engineer biomimetic communication sys-
tems,” Nano Commun. Netw., vol. 1, pp. 20–30, Mar. 2010.

[8] A. W. Eckford, “Molecular communication: Physically realistic
models and achievable information rates,” arXiv:0812.1554v1 [cs.IT]
8 December 2008.

[9] S. Kadloor and R. S. Adve, “Development of a framework to study a
molecular communication system,” in Proc. 18th Int. Conf. Comput.
Commun. Netw., 2009.

[10] S. Kadloor, R. S. Adve, and A.W. Eckford, “Molecular communication
using Brownian motion with drift,” IEEE Trans. Nanobiosci., to be
published.

[11] M. J. Moore, T. Suda, and K. Oiwa, “Molecular communication: Mod-
eling noise effects on information rate,” IEEE Trans. Nanobiosci., vol.
8, no. 2, pp. 169–179, Jun. 2009.

[12] B. Atakan and O. Akan, “An information theoretical approach for
molecular communication,” in Proc. 2nd Int. Conf. Bio-Inspired
Models Netw., Inf., Comput. Syst., Budapest, Hungary, 2007, pp.
33–40.



4692 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 7, JULY 2012

[13] M. Pierobon and I. F. Akyildiz, “A physical end-to-end model for
molecular communication in nanonetworks,” IEEE J. Sel. Areas
Commun., vol. 28, no. 4, pp. 602–611, May 2010.

[14] P. Thomas, D. Spencer, S. Hampton, P. Park, and J. Zurkus, “The dif-
fusion mediated biochemical signal relay channel,” Adv. Neural Inf.
Process. Syst., vol. 16, pp. 1263–1270, 2004.

[15] B. Atakan and O. B. Akan, “Single and multiple-access channel ca-
pacity in molecular nanonetworks,” presented at the presented at the
4th Int. Conf. Nano-Networks, Luzern, Switzerland, 2009.

[16] T. Nakano and J.-Q. Liu, “Design and analysis of molecular relay chan-
nels: An information theoretic approach,” IEEE Trans. Nanobiosci.,
vol. 9, no. 3, pp. 213–221, Sep. 2010.

[17] D. Blackwell, Information Theory, 1961, pp. 183–193, Modern Math-
ematics for the Engineer (Second Series).

[18] H. Permuter, P. Cuff, B. V. Roy, and T. Weissman, “Capacity of the
trapdoor channel with feedback,” IEEE Trans. Inf. Theory, vol. 54, no.
7, pp. 3150–3165, Jul. 2008.

[19] V. Anantharam and S. Verdú, “Bits through queues,” IEEE Trans. Inf.
Theory, vol. 42, no. 1, pp. 4–18, Jan. 1996.

[20] R. Sundaresan and S. Verdú, “Capacity of queues via point-process
channels,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2697–2709, Jun.
2006.

[21] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Cal-
culus, 2nd ed. New York: Springer-Verlag, 1991.

[22] S. Goldstein, “Mechanical models of Brownian motion,” Lecture Notes
Phys., vol. 153, pp. 21–24, 1982.

[23] J. Berthier, Microfluidics for Biotechnology. Boston: Artech House,
2006.

[24] R. S. Chhikara and J. L. Folks, The Inverse Gaussian Distribution:
Theory, Methodology, and Applications. New York: Marcel Dekker,
1989.

[25] Y. A. Brychkov, Handbook of Special Functions: Derivatives, In-
tegrals, Series and Other Formulas. Boca Raton, FL: Chapman
Hall/CRC Press, 2008.

[26] T. M. Cover and J. A. Thomas, Elements of Information Theory. , NJ:
Wiley, 2006.

[27] V. Seshadri, The Inverse Gaussian Distribution: Statistical Theory and
Applications. New York: Springer-Verlag, 1999.

[28] W. Schwarz, “On the convolution of inverse Gaussian and exponential
random variables,” Commun. Statistics: Theory Methods, vol. 31, pp.
2113–2121, Dec. 2002.

[29] J. G. Proakis and M. Salehi, Digital Communications, 5th ed. New
York: McGraw-Hill, 2008.

[30] A. Tchamkerten, V. Chandar, and G. W. Wornell, “Communication
under strong asynchronism,” IEEE Trans. Inf. Theory, vol. 55, no. 10,
pp. 4508–4528, Oct. 2009.

[31] S. Mukhtar and J. Bruck, “Interval modulation coding,” in Proc. IEEE
Int. Symp. Inf. Theory, Jun. 2002, p. 327.

[32] S. Hranilovic and F. Kschischang, “Capacity bounds for power- and
band-limited optical intensity channels corrupted by Gaussian noise,”
IEEE Trans. Inf. Theory, vol. 50, no. 5, pp. 784–795, May 2004.

[33] T. Kawamura and K. Iwase, “Characterizations of the distributions of
power inverse Gaussian and others based on the entropy maximization
principle,” J. Jpn. Statist. Soc., vol. 33, pp. 95–104, 2003.

[34] R. B. Hetnarski, “An algorithm for generating inverse Laplace trans-
forms of exponential form,” J. Appl. Math. Phys., vol. 26, pp. 249–253,
Mar. 1975.

K. V. Srinivas was born in Vijayawada, India. He received the B.E. degree in
electronics and communications engineering from the Andhra University Col-
lege of Engineering, Vishakhapatnam, India, in June 1996, the M.Tech. degree
from the Indian Institute of Technology, Kanpur, India, in 1998, and the Ph.D
degree from the Indian Institute of TechnologyMadras, Chennai, India, in 2009,
both in electrical engineering.
Currently, he is a Chief Engineer in the Mobile R&D Division at Samsung

Electronics, Noida, India. He was a Postdoctoral Fellow at the Department of
Electrical and Computer Engineering, University of Toronto, Toronto, ON,
Canada, from March 2009 to October 2011. He was with Space Applications
Centre, Indian Space Research Organization, Ahmedabad, India, as a Scientist,
from October 1999 to September 2002. His research interests include wireless
communications, with emphasis on physical layer algorithms, and the theoret-
ical aspects of nanocommunication networks.

Andrew W. Eckford (M’96–S’97–M’04) is originally from Edmonton, AB,
Canada. He received the B.Eng. degree in electrical engineering from the Royal
Military College of Canada, Kingston, ON, Canada, in 1996, and the M.A.Sc. as
well as Ph.D. degrees in electrical engineering from the University of Toronto,
Toronto, ON, Canada, in 1999 and 2004, respectively. In 2006, Dr. Eckford
joined the faculty of the Department of Computer Science and Engineering,
York University, Toronto, ON, Canada, and was promoted to his current rank of
Associate Professor in 2010.

Raviraj S. Adve (S’88–M’97–SM’06) was born in Bombay, India. He received
the B.Tech. degree in electrical engineering from IIT, Bombay, in 1990, and
the Ph.D. degree from Syracuse University in 1996. Between 1997 and Au-
gust 2000, he worked for Research Associates for Defense Conversion Inc. on
contract with the Air Force Research Laboratory at Rome, NY. He joined the
faculty at the University of Toronto in August 2000, where he is currently an
Associate Professor. Dr. Adve’s research interests include practical signal pro-
cessing algorithms for multiple-input multiple-output wireless communications
and distributed radar systems. In the area of wireless communications, he is cur-
rently focusing on precoding in various scenarios and cooperation in distributed
wireless networks. In radar systems, he is particularly interested in waveform
diversity and low-complexity space-time adaptive processing algorithms. He
received the 2009 Fred Nathanson Young Radar Engineer of the Year award.


