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Perceptual quality assessment in three-dimensional (3D) is challenging. In this research, we propose
a binocular energy response based quality assessment metric of stereoscopic images. To be more
specific, we first construct binocular energy responses of the original and distorted images, and measure
the similarity between them as Image Quality Metric (IQM). Then, the binocular response and the
binocular masking components are used to modulate the IQM, respectively. Finally, two evaluation results
are nonlinearly integrated into an overall score by considering the importance of each component.
Experimental results show that compared with the relevant existing metrics, the proposed metric can
achieve higher consistency with the subjective assessment of stereoscopic image.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Three-dimensional (3D) imaging technologies have been re-
searched widely recently [1], the application of which ranges from
content creation, video coding, network transmission and stereo-
scopic display. Therefore, designing for objective perceptual 3D
image quality assessment (3D-IQA) approach is increasingly im-
portant [2], since such perceptual issue is hardly considered in the
traditional 2D image quality assessment (2D-IQA). Following the
research of 2D-IQA, 3D-IQA approaches fall into two categories:
subjective assessment and objective assessment. Specifically, the
development of objective quality assessment models has been a
fruitful area of work.

In the aspect of objective/subjective assessment, the term ‘qual-
ity of experience (QoE)’ should be considered to capture the vari-
ous factors that contribute to the overall visual experience of the
3D visual signal [3]. In contrast to the 2D case, QoE of 3D involves
not only evaluating 2D image quality, but also additional aspects
of quality, e.g., depth perception, visual comfort, and other visual
experience. Many 2D-IQA metrics were proposed during the last
decade, such as Structural SIMilarity (SSIM) [4], visual signal-to-
noise ratio (VSNR) [5], visual information fidelity (VIF) [6], etc.
However, the direct use of 2D-IQA in measuring 3D-IQA may
not be straightforward, since the above 3D perceptual attributes
needed to be considered. Lambooij et al. constructed a 3D quality
model as a weighted sum of 2D image quality and perceived depth,
and the model was validated by subjective experiments [7]. Chen
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et al. explored 3D QoE by constructing the visual experience as a
weight sum of image quality, depth quantity and visual comfort,
and subjective experiments were conducted to test the model [8].
However, these methods remained on a subjective level to explore
the combination of various perceptual scales.

Currently, some publicly available 3D databases were provided,
such as LIVE 3D IQA database [9], EPFL 3D image database [10],
IRCCyN/IVC 3D image database [11], etc., by adding different types
of stimuli (e.g., image distortion or camera distance) on both left
and right images. Some objective 3D-IQA metrics were proposed
by verifying on the databases. Research on objective 3D-IQA can
be divided into two categories based on the involved information
for evaluation. The most direct use of state-of-the-art 2D-IQA ap-
proaches in 3D-IQA is to evaluate the two views of the stereoscopic
images, disparity/depth images separately by 2D metrics, and then
combined into an overall score. Benoit et al. presented a linear
combination solution for disparity distortion and 2D image quality
on both views [11]. You et al. integrated the disparity information
into quality assessment, and investigated the capabilities of some
combination schemes [12]. Ha et al. designed a quality assessment
method by considering the factors of temporal variation and dis-
parity distribution [13]. Hewage et al. performed the evaluation
for 3D video by using the extracted information from the depth
maps and color images [14]. Obviously, it is not effective to as-
sess the quality of perceived depth using image quality assessment
methods (e.g., SSIM), because stimuli toward perceived depth are
different with those for 2D image quality.

From another point of view, visual perceptual properties (e.g.,
monocular and binocular properties) were other important cues in
3D-IQA. Maalouf et al. computed the ‘Cyclopean’ image from left
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and right images to simulate the brain perception, and used con-
trast sensitivity coefficients of cyclopean image as the basis of eval-
uation [15]. Lin et al. utilized binocular integration (i.e., binocular
combination and the binocular frequency integration) behaviors as
the bases for measuring the quality of stereoscopic 3D images [16].
Ryu et al. formulated a model for stereoscopic images based on
binocular perception model considering asymmetric properties of
stereoscopic images [17]. Ko et al. proposed a structural distor-
tion parameter based binocular perception model for 3D image
quality assessment [18]. Wang et al. proposed a metric by con-
sidering the binocular spatial sensitivity to reflect the binocular
fusion and suppression properties [19]. Bensalma et al. proposed
a Binocular Energy Quality Metric (BEQM) by modeling the sim-
ple cells responsible for the local spatial frequency analysis and
the complex cells responsible for the generation of the binocu-
lar energy [20]. However, these methods are simple extensions of
the monocular visual properties into the binocular vision, and how
these monocular visual properties affect the binocular vision is still
not accounted.

From the observation of the existing 3D-IQA metrics, both im-
age quality and depth perception are expected to measure the
QoE of 3D. However, the combination of these two parts is some-
what ill-defined in the existing metrics, since disparity map is
estimated from the stereoscopic image, while the perception of
depth from disparity is generally not well understood. In order
to tackle the problem, we propose a binocular energy response
based stereoscopic image quality assessment metric in this pa-
per. The main contributions of this work are as follows: (1) We
construct binocular energy responses of the original and distorted
images based on Gabor filters and disparity information, and mea-
sure the similarity between them as Image Quality Metric (IQM);
(2) By considering the binocular response and binocular masking
characteristics, we use the binocular energy and the binocular just
noticeable difference (BJND) components to modulate the IQM, re-
spectively; (3) Two evaluation results are nonlinearly integrated
into an overall score by considering the importance of each com-
ponent. The rest of the paper is organized as follows. Section 2
discusses the background and motivation of the proposed metric.
Section 3 presents the proposed quality assessment metric. The
experimental results are analyzed in Section 4, and finally conclu-
sions are drawn in Section 5.

2. Background and motivation

In order to explain the ideas of the proposed 3D-IQA metric, we
first review some relevant works and point out the problems, and
then present our innovation in the design of 3D-IQA.

2.1. Binocular energy response construction

It has been known that binocular vision is a complex visual
process that requires the brain and both eyes working together
to produce depth perception and clear vision [21]. The process of
binocular visual perception can be regarded as responses of a pair
of simple cells received from left and right eyes. As an example
of one-dimensional signals, given the simple response functions,
Cl(x) = ρl(x)eiϕl(x) and Cr(x) = ρr(x)eiϕr(x) for two input images,
the binocular energy response, BE(x), can be expressed as [22]

BE(x) = ∥∥Cl(x) + Cr(x)
∥∥2

= ρ2
l (x) + ρ2

r (x) + ρl(x) · ρr(x) · cos
(
�φ(x)

)
(1)

where �φ(x) = φl(x) − φr(x), being the phase difference between
the left and right images.

However, the above binocular energy response may not be
able to characterize depth perception (e.g., position shift between
views is not considered in the above expression). In order to mea-
sure depth perception, the existing technologies [12–14] directly
evaluate the quality of estimated disparity by 2D-IQA methods.
However, the limitations of these evaluations are that: (1) binoc-
ular disparity is obtained by stereo matching method. The quality
of the estimated disparity has a great relationship with the spe-
cialized stereo matching method since ground truth disparity is
generally not available; (2) the HVS perceives a single mental
image (e.g., cyclopean image) [23] of a scene by combining two
images received from the two eyes. The disparity information is
only assisted to the construction and formation of the cyclopean
image. Fig. 1 shows the estimated disparity maps from different
distorted stereoscopic images. It is clearly demonstrated that the
quality of the estimated disparity has weak correlation with the
subjective perceived quality.

Considering that two simple cells, belonging to the left and
right images, have different spatial positions, the right response
function Cr(x) can become a shifted version of the left
response function, i.e. Cr(x + d) = Cl(x), thus, the binocular en-
ergy response BE(x) can be re-expressed as

BE(x) = ∥∥Cl(x) + Cr(x + d)
∥∥2

= ρ2
l (x) + ρ2

r (x + d) + ρr(x) · ρr(x + d) · cos
(
�φ(x)

)
(2)

where d is the estimated disparity value at pixel (x, y), ρ2
l (x) and

ρ2
r (x + d) are the energy magnitudes of Cl(x) and Cr(x + d), re-

spectively, and �φ is the corresponding phase difference. It is no-
ticed that the estimated disparity will affect the energy magnitude
ρ2

r (x + d) and phase difference �φ. It should be emphasized that
the disparity d is estimated from reference stereoscopic images
(i.e., undistorted original stereoscopic images) in the above binoc-
ular energy response, because we believe that the identification of
matched regions should mainly depend on camera geometry, while
image distortions will do not seriously affect the camera geometry.

2.2. Perceptual properties analysis

The above binocular energy reflects the strength of response
for different retinal points. However, in the process of binocu-
lar summation, the masking effect should not be ignored. It is
well known that visual masking effect (e.g., formulated as just-
noticeable difference (JND)) has played an important role in pro-
HVS signal processing [24]. For example, the HVS can tolerate more
error in higher frequency components while the distortion in lower
frequency components has a larger impact on the visual quality.
Recently, Zhao et al. proposed a BJND model to measure the mini-
mum distortion in the two views of stereoscopic images with psy-
chophysical experiments [25]. It is assumed that disparity between
the patterns is zero, and disparity has minor impact on the binoc-
ular combination. In the following, we summarize the derivation
of the BJND model. By incorporating the luminance and contrast
masking effects, as well as considering the correspondence match-
ing between two views, the BJND at the left view is defined as

BJNDl = BJNDl
(
bgr(x + d, y), ehr(x + d, y), Ar(x + d, y)

)
= AC,limit

(
bgr(x + d, y), ehl(x + d, y)

)

×
(

1 −
(

Ar(x + d, y)

AC,limit(bgr(x + d, y), ehr(x + d, y))

)λ)1/λ

(3)

where d is the estimated disparity value computed similarly with
Eq. (2), bgr(x + d, y) denotes the background luminance level,
ehr(x + d, y) denotes the edge height, Ar(x + d, y) denotes the
noise amplitude, and AC,limit is the visibility threshold determined
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Fig. 1. Examples of quality degraded left images and the corresponding disparity maps: (a) Original left image; (b) Gaussian blurred left image; (c) H.264 compressed left
image; (d) JPEG compressed left image; (e) The corresponding disparity map of (a); (f) The corresponding disparity map of (b); (g) The corresponding disparity map of (c);
(h) The corresponding disparity map of (d).

Fig. 2. Examples of BJND results of left images for different types of distortion: (a) Original left image; (b) Gaussian blurred left image; (c) H.264 compressed left image;
(d) JPEG compressed left image.

Fig. 3. The framework of the proposed quality assessment metric.
by bgr(x+d, y) and ehr(x+d, y). A more detailed representation of
the visibility threshold AC,limit is given in [25]. If the noise is omit-
ted, that is, Ar(x + d, y) = 0, the visibility thresholds are elevated
linearly with the edge height, but the elevating effect decreases as
the background luminance increases.

From Eq. (3), since BJNDl for one pixel in the left image is de-
pendent on the corresponding background luminance, edge height
and noise amplitude of the matched pixel in the right image, only
those matched regions in the left and right images are considered
in this paper. Such consideration is reasonable because the BJND
model focuses on binocular combination, while the unmatched
regions in the left and right images (e.g., the occluded/disoc-
cluded regions in the estimated disparity map) cannot provide
clear binocular vision. The matched regions between two views
are obtained based on the estimated disparity map in Eqs. (2), (3),
assuming that the HVS matches an object in the two views in a
way similar to stereo matching. Fig. 2 shows the BJND maps of the
left images in Figs. 1(a)–(d), where, to facilitate display, the BJND
values are mapped to [0, 255]. We can find that with different dis-
tortion strength, the BJND values become different, and this agrees
with the sensitivity property of the binocular vision.

From the above analyses, important innovations of the 3D-
IQA framework include: (1) the binocular energy response is con-
structed to measure the strength of response for different retinal
points; (2) the BJND model is used to reflect binocular masking
effect in measuring image quality. To be more specific, these fac-
tors are taken into account in quality assessment by weighing the
measured quality score, and combined into an overall score.

3. Proposed quality assessment metric

The framework of the proposed quality assessment metric is il-
lustrated in Fig. 3. Given the original and distorted stereoscopic im-



JID:YDSPR AID:1583 /FLA [m5G; v 1.131; Prn:31/03/2014; 8:00] P.4 (1-9)

4 F. Shao et al. / Digital Signal Processing ••• (••••) •••–•••
Fig. 4. Examples of binocular energy maps across all scales and orientations: (a) The constructed binocular energy map from the stereoscopic image in Fig. 1(a); (b) The
constructed binocular energy map from the stereoscopic image in Fig. 1(b); (c) The constructed binocular energy map from the stereoscopic image in Fig. 1(c); (d) The
constructed binocular energy map from the stereoscopic image in Fig. 1(d).
ages, the corresponding binocular energy responses are generated
based on Gabor filter responses and the estimated disparity maps.
Then, the similarity between the binocular energy responses of the
original and distorted stereoscopic images is measured as Image
Quality Metric (IQM). Finally, the binocular energy and binocular
masking (e.g., BJND) features are used to modulate the IQM, and
afterward combination is made to get a total quality score. There-
fore, by considering the binocular energy and binocular masking
characteristics in the proposed IQM, we hope to produce accurate
estimates of the perceptual quality.

3.1. Local phase and amplitude features

As discussed in Section 2, the response functions, Cl(x) =
ρl(x)eiϕl(x) and Cr(x) = ρr(x)eiϕr(x) are used to represent the en-
ergy responses. In this work, different with [20] that use complex
wavelet transform (CWT) to calculate the energy, we apply log-
Gabor filter on the left and right images to model binocular re-
sponse. Previous researches have shown that simple cells in the
primary visual cortex can be well-modeled using log-Gabors [26].
A set of responses at location x on different scales and along dif-
ferent orientations, denoted as [ηs,θ (x), ζs,θ (x)], can be obtained by
applying the log-Gabor filter Gs,θ (denoted by spatial scale index s
and orientation index θ ) in the Fourier frequency domain

Gs,θ (ω, θ) = exp

(
− (log(ω/ω0))

2

2σ 2
r

)
· exp

(
− (θ − θ0)

2

2σ 2
θ

)
(4)

where the parameters ω and θ are the normalized radial frequency
and the orientation angle of the filter, and ωs and θs are the cor-
responding center frequency and orientation of the filter, respec-
tively.

Then, the local amplitude (LA) at location x on different scale s
along different orientation θ is given by

LA(s, θ,x) =
√

ηs,θ (x)2 + ζs,θ (x)2 (5)

Similarly, the local phase (LP) at location x on different scale s
along different orientation θ is given by

LP(s, θ,x) = arg tan
(
ηs,θ (x), ζs,θ (x)

)
(6)

Regarding the parameter selection of log-Gabor filter, ω0 = 1/6,
θ0 = 0, σr = 0.3, and σθ = 0.4. In the experiment, the numbers of
scale and orientation of the filter are all set to 4. The design of the
filter is based on the work in [27].

3.2. Binocular energy response

As discussed earlier, the quality of the stereoscopically viewed
3D image generally cannot be predicted based on the average qual-
ity of the two individual images [28]. According to the definition
in Eq. (2), we use the LA and LP of the filter responses to predict
the binocular energy response. The binocular energy response for
the distorted stereoscopic image at location x on different scale s
along different orientation θ is given by

BEd(s, θ,x) = (
LAl

d(s, θ,x)
)2 + (

LAr
d

(
s, θ,x′))2

+ LAl
d(s, θ,x) · LAr

d

(
s, θ,x′) · cos

(
�ϕd(s, θ,x)

)
(7)

where the subscripts “o” and “d” denote the original and the
distorted images, respectively, the superscripts “l” and “r” de-
note the left and right images, respectively, x and x′ are the
matched locations in the left and right images, and �ϕd(s, θ,x) =
L Pl

d(s, θ,x) − L P r
d(s, θ,x′). In this work, we use state-of-the-art

stereo matching algorithm in [29] to estimate the disparity from
reference stereoscopic images. Similarly, the binocular energy re-
sponse B Eo(s, θ,x) for the original stereoscopic image can be cal-
culated by the same manner. Fig. 4 shows the constructed binoc-
ular energy maps across all scales and orientations for the stereo-
scopic images in Figs. 1(a)–(d). It is obvious that the important
features (e.g., edges and contours) are preserved in Figs. 4(a)–(d).
Thus, the similarity between the binocular energy responses of the
original and the distorted images is expected to give a reasonable
estimation of quality degradation.

3.3. Image quality measure

Since image distortions will lead to unequal distribution of the
binocular energy response with different levels of change, to bal-
ance the inconsistence, their phase shift is defined as

ES(s, θ,x) = arccos

(
2BEd(s, θ,x) · BEo(s, θ,x) + T1

BEd(s, θ,x)2 + BEo(s, θ,x)2 + T1

)
(8)

where T1 is a positive constant to increase the stability of the en-
ergy shift. In this paper, T1 = 16.

Then, the phase shift across all scales and orientations are cal-
culated as the IQM

I Q M(x) =
∑

s

∑
θ

ES(s, θ,x) (9)

Based on the analysis in Fig. 4, binocular energy can reflect the
perceptual importance in binocular vision. That is, if a pixel has a
significant binocular energy value, it implies that this position x
will have a high impact on binocular response. Therefore, we use
the binocular energy as a modulation component for IQM pooling.
The binocular energy modulated quality score is calculated by

Q e =
∑

x∈Rmtr
we(x) · IQM(x)∑

x∈Rmtr
we(x)

(10)

where we(x) = BEn(x) denotes the weight at location x, and Rmtr

indicates the matched regions in the estimated disparity map from
reference stereoscopic images, because those unmatched regions
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(e.g., the occluded/disoccluded regions in the estimated disparity
map) cannot produce clear binocular vision. Since the matched
regions are obtained based on the estimated disparity map from
reference stereoscopic images, the proposed IQM can be applied
on symmetrically or asymmetrically distorted stereoscopic images.
Considering that it is the distorted stereoscopic image that are de-
livered to the viewers, the possible overlapping effects between
the binocular energy responses from both the original and the
distorted stereoscopic should be considered [30]. Therefore, the
BEn(x) is calculated by

BEn(x) = BEo(x) + BEd(x)

2
− min

{
BEo(x),BEd(x)

}
(11)

where BEo(x) = ∑
s

∑
θ BEo(s, θ,x) and BEd(x) = ∑

s

∑
θ BEd(s, θ,x)

denote the binocular energy values across all scales and orien-
tations of the original and distorted stereoscopic images at loca-
tion x, respectively.

From another perspective, the retinal points with higher binoc-
ular energy response will have lower masking value, but the prop-
erty is not absolute (e.g., luminance and contrast masking effects).
The BJND model can be used to reflect the visual sensitivity of dif-
ferent retinal points. Intuitively, if a pixel has a significant BJND
value, it implies that this pixel can tolerate large distortion, and
thus the importance of the pixel in binocular perception will be
low. Therefore, it would be more effective to impose a higher
weight on the perceptually important pixels, and from this per-
spective, the BJND modulated quality score is calculated by

Q b =
∑

x∈Rmtr
wb(x) · IQM(x)∑

x∈Rmtr
wb(x)

(12)

where wb(x) denotes the weight at location x, and wb(x) = 1/

BJNDl(x);BJNDl(x) denotes the BJND value of the distorted left im-
age at location x.

Finally, considering that the above binocular energy and BJND
features are necessary in modulating quality score, and the rela-
tionship between them is not a simple superimposed, we investi-
gate nonlinear combination of the two quality scores Q b and Q e

to obtain the final quality score

Q = (Q e)
α · (Q b)

β (13)

where α and β are parameters adjusting the importance of binocu-
lar energy and BJND features. In this paper, we train these param-
eters by optimizing the evaluation results between the objective
and subjective scores.

4. Experimental results and analyses

4.1. Stereoscopic image quality databases

In the experiment, we have used two databases, NBU 3D IQA
database [31,32] and LIVE 3D IQA database [9], to verify the per-
formance of the proposed metric. The NBU 3D IQA database has
been released and can be downloaded at http://cise.nbu.edu.cn/
MPC-lab/resourse.htm. The NBU 3D IQA database consists of 312
distorted stereoscopic pairs generated from 12 reference images.
Five types of distortions are symmetrically applied to the refer-
ence images at various levels: Gaussian Blur (60), White Noise (60),
JPEG (60), JPEG2000 (60) and H.264 (72). The LIVE 3D IQA database
consists of 365 distorted stereoscopic pairs generated from 20 ref-
erence stereoscopic images. Five types of distortions are also sym-
metrically applied to the reference images at various levels: Gaus-
sian Blur (45), White Noise (80), JPEG (80), JPEG2000 (80) and Fast
Fading (80). Each image in these databases has been evaluated by
human subjects, and then assigned a quantitative subjective qual-
ity score: Difference Mean Opinion Score (DMOS).
Note that the two databases differ in the following respects:
(1) the reference images in the LIVE 3D IQA database are acquired
using an advanced terrestrial range scanner, while the reference
images in the NBU 3D IQA database are chosen from the MPEG
test set; (2) for distortion stimulus, H.264 compression and Fast
Fading distortions are not all included in the two databases; (3) for
subjective tests, images in the NBU 3D IQA database are displayed
on screens through a duality stereoscopic projection system, while
images in the LIVE 3D IQA database are displayed on passive 3D
monitor; (4) the subjective test methodology of the NBU 3D IQA
database is Double Stimulus Continuous Quality Scale (DSCQS),
while Single Stimulus Continuous Quality Evaluation (SSCQE) is
used in the LIVE 3D IQA database. Thus, experiments on the two
databases can comprehensively reflect the performance of the pro-
posed metric.

4.2. Parameters determination and performance measurement

Four commonly used performance indicators are employed to
evaluate the metrics: Pearson linear correlation coefficient (PLCC),
Spearman rank order correlation coefficient (SRCC), Kendall rank-
order correlation coefficient (KRCC), and root mean squared er-
ror (RMSE), between the objective scores after nonlinear regres-
sion and the subject scores. Among these four criteria, SRCC and
KRCC are employed to assess prediction monotonicity, and PLCC
and RMSE are used to evaluate prediction accuracy. For a perfect
match between the objective and subjective scores, PLCC = SRCC =
KRCC = 1 and RMSE = 0. For the nonlinear regression, we use the
following five-parameter logistic function [33]

DMOSp = β1 ·
(

1

2
− 1

1 + exp(β2 · (x − β3))

)
+ β4 · x + β5 (14)

where β1, β2, β3, β4 and β5 are determined by using the subjective
scores and the objective scores.

In the proposed scheme, we determine the parameters α and β

in Eq. (13) by training to optimize the PLCC values between the ob-
jective and subjective scores. In the experiments, we select a small
subset of the NBU 3D IQA database (House, Puppy, and Soccer2 test
sequences) to train the parameters. For simplicity, the parameters
are chosen by linear regression optimization. The parameter deter-
mination results are α = 0.0505 and β = 0.7755. As expected, the
binocular masking component is more important than the binoc-
ular energy component (i.e., α < β). In the following experiments,
the proposed scheme is tested on the remaining test sequences in
the NUB 3D IQA database (in this way, we avoid same sequences
for training and testing). Thus, totally 234 distorted stereoscopic
images are adopted in the NUB 3D IQA database. The same pa-
rameters are adopted in the LIVE 3D IQA database to guarantee
training and testing sets be not the same.

In order to evaluate the performance of the proposed scheme,
we compare with the existing state-of-the-art schemes, includ-
ing four 2D-IQA schemes, i.e., signal-to-noise ratio (PSNR), VIF [6],
multi-scale SSIM (MS-SSIM) [34] and mean singular value decom-
position (MSVD) [35], and three 3D-IQA schemes, i.e., Benoit’s
scheme [11], You’s scheme [12] and Wang’s scheme [19]. The for-
mer four schemes directly estimate the quality of each view sepa-
rately and generate a weighted average score. For Benoit’s scheme,
we adopt the d1 metric in the paper, in which the 2D image
quality metric is the average result of the left and right images
using SSIM, and disparity distortion is the global correlation coeffi-
cient between the original and distorted disparity maps. For You’s
scheme, we adopt the best combination approach in the paper, in
which the image quality metric (IQM) is the average result of the
left and right images using universal quality index (UQI) [36], and
depth quality metric (DQM) is the quality result of the disparity

http://cise.nbu.edu.cn/MPC-lab/resourse.htm
http://cise.nbu.edu.cn/MPC-lab/resourse.htm
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Table 1
Performance comparison of the eight schemes (the cases in bold: the best performance).

Database Metric PSNR MS-SSIM VIF MSVD Benoit [11] You [12] Wang [19] Proposed

NBU 3D PLCC 0.8132 0.8067 0.8464 0.8605 0.7936 0.7435 0.7578 0.9220
SRCC 0.8914 0.8728 0.8982 0.9033 0.8529 0.7762 0.8740 0.9371
KRCC 0.6950 0.6719 0.7103 0.7248 0.6565 0.5668 0.6711 0.7750
RMSE 9.4784 9.6244 8.6735 8.2966 9.9091 10.8905 10.6256 6.6533

LIVE 3D PLCC 0.7159 0.8290 0.9247 0.9127 0.8867 0.9162 0.8676 0.9295
SRCC 0.7071 0.9258 0.9195 0.9029 0.8854 0.9248 0.8922 0.9297
KRCC 0.5154 0.7524 0.7388 0.7169 0.6876 0.7503 0.6972 0.7574
RMSE 11.4489 9.1701 6.2422 6.7009 7.5810 6.3206 8.1544 6.0472

Fig. 5. Scatter plots of objective scores vs. subjective scores of the eight schemes on the NUB 3D IQA database: (a) PSNR; (b) MS-SSIM; (c) VIF; (d) MSVD; (e) Benoit’s scheme
[11]; (f) You’s scheme [12]; (g) Wang’s scheme [19]; (h) Proposed scheme.
map using SSIM. To benchmarking these schemes, the same stereo
matching method [29] have been used for disparity generation.

4.3. Overall assessment performance

Table 1 lists the performance evaluation results of the eight
schemes on the two databases. The best results across the eight
schemes for each database are highlighted in boldface. From the
table we can see that the proposed scheme outperforms the other
schemes. For PSNR, MS-SSIM, VIF and MSVD schemes, since they
are directly extended from the 2D case and do not take the binoc-
ular visual characteristics into account, the overall performance is
worse than the proposed scheme. For Benoit’s and You’s schemes,
they are the combination of 2D-IQA metrics for stereoscopic im-
ages and disparity maps. The performance of the two schemes is
lower than the proposed scheme on the NBU 3D IQA database,
but is comparatively good on the LIVE 3D IQA database. The rea-
son is that the quality of the estimated disparity is highly de-
pendent on the stereo matching algorithms, but UQI has the best
performance on the LIVE 3D IQA database (in agreement with
the result in [9]). Thus, the overall combined performance will
be weakened. This is another demonstration of the disadvantage
in the 2D quality metric for disparity maps. For Wang’s scheme,
the overall performance is not very high because uniform assess-
ment is adopted for the corresponding and non-corresponding re-
gions of the left and right images, while in the proposed scheme,
only the matched regions are evaluated, and the binocular re-
sponse and the binocular masking features are used to modulate
the quality score. Figs. 4 and 5 show the scatter plots of pre-
dicted quality scores against subjective quality scores (in terms of
DMOS) of the eight schemes on the two databases. Overall, the
proposed scheme has an impressive consistency with human per-
ception.

4.4. Performance on individual distortion types

In this testing, to more comprehensively evaluate the prediction
performance of the proposed metric, we compare the performance
of competing methods on each type of distortion. To save space,
only the results of PLCC and SRCC are presented in Table 2 and Ta-
ble 3. For each type of distortion, the best (highest) value across
the eight schemes is highlighted in boldface. Even though some
schemes may be effective for some special types of distortion,
e.g., PSNR scheme is more effective for WN distortion and MSVD
scheme is more effective for JPEG distortion on the NBU 3D IQA
database, the proposes scheme is more stable across different dis-
tortion types on the NBU 3D IQA database. Since the parameters
α and β are trained from the NBU 3D IQA database, the per-
formance of the proposed scheme on the LIVE 3D IQA database
may be affected by different distortion stimulus, subjective tests
and test methodologies of the two databases, and thus the pro-
posed scheme has variable performance across different distortion
types but the overall performance is prominent on the LIVE 3D IQA
database. Referring to the scatter plots in Figs. 5 and 6, the scatter



JID:YDSPR AID:1583 /FLA [m5G; v 1.131; Prn:31/03/2014; 8:00] P.7 (1-9)

F. Shao et al. / Digital Signal Processing ••• (••••) •••–••• 7
Table 2
PLCC performance comparison of the eight schemes (the cases in bold: the best performance).

Distortion PSNR MS-SSIM VIF MSVD Benoit [11] You [12] Wang [19] Proposed

NBU 3D IQA database
GB 0.8879 0.7689 0.9124 0.9430 0.9149 0.9054 0.9475 0.9573
WN 0.9570 0.8858 0.9362 0.9440 0.9197 0.8830 0.9234 0.9083
JPEG 0.7353 0.9019 0.7951 0.9368 0.8370 0.7522 0.8566 0.9171
JP2K 0.7054 0.7130 0.7379 0.9233 0.8243 0.6623 0.8158 0.9200
H.264 0.8394 0.8483 0.8575 0.9267 0.8038 0.7062 0.8908 0.9429

LIVE 3D IQA database
GB 0.8395 0.9443 0.9574 0.9190 0.9154 0.9543 0.9280 0.9553
WN 0.9262 0.9052 0.9012 0.9460 0.9160 0.9369 0.9390 0.9400
JPEG 0.2238 0.6242 0.6196 0.4162 0.4774 0.6147 0.4244 0.6033
JP2K 0.6978 0.9143 0.8972 0.8853 0.8772 0.9311 0.8641 0.9166
FF 0.6673 0.7171 0.8393 0.7307 0.7132 0.8490 0.7296 0.8284

Table 3
SRCC performance comparison of the eight schemes (the cases in bold: the best performance).

Distortion PSNR MS-SSIM VIF MSVD Benoit [11] You [12] Wang [19] Proposed

NBU 3D IQA database
GB 0.9445 0.9043 0.9444 0.9494 0.9153 0.9112 0.9485 0.9654
WN 0.9588 0.8014 0.9378 0.9490 0.8791 0.8561 0.8700 0.8710
JPEG 0.8666 0.9334 0.8874 0.9338 0.8824 0.8087 0.8799 0.9592
JP2K 0.8760 0.8535 0.8518 0.9353 0.8779 0.6876 0.8619 0.9693
H.264 0.8871 0.8928 0.8957 0.9047 0.8227 0.7279 0.8862 0.9540

LIVE 3D IQA database
GB 0.7361 0.9231 0.9341 0.8900 0.8726 0.9323 0.9126 0.9258
WN 0.9317 0.9433 0.9316 0.9459 0.9388 0.9397 0.9395 0.9392
JPEG 0.2297 0.6252 0.5808 0.3879 0.4756 0.6034 0.3875 0.5887
JP2K 0.7310 0.8932 0.9007 0.8902 0.8667 0.8983 0.8626 0.8941
FF 0.6011 0.7424 0.8053 0.7162 0.6106 0.8172 0.6298 0.7973

Fig. 6. Scatter plots of objective scores vs. subjective scores of the eight schemes on the LIVE 3D IQA database: (a) PSNR; (b) MS-SSIM; (c) VIF; (d) MSVD; (e) Benoit’s scheme
[11]; (f) You’s scheme [12]; (g) Wang’s scheme [19]; (h) Proposed scheme.
plot of the proposed scheme is more concentrated across different
groups of distortion types.

4.5. Impact of each components in the proposed scheme

To demonstrate the impact of each component in the pro-
posed scheme, we design three different schemes for comparison,
denoted by Scheme-A, Scheme-B and Scheme-C, respectively. For
Scheme-A, only Eq. (9) is used to evaluate the quality. For Scheme-
B, only binocular energy modulation in Eq. (10) is considered,
while for Scheme-C, only binocular masking modulation in Eq. (12)
is considered, and other operations are similar with the proposed
scheme. The results of PLCC and SRCC are presented in Table 4
and Table 5. From the table, we can see that the proposed binoc-
ular energy and binocular masking modulation components have
important impacts on the performance improvement for some in-
dependent distortions, e.g., Scheme-B is more effective for the
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Table 4
PLCC comparisons for each component of the proposed scheme.

Database Scheme GB WN JPEG JP2K H.264 FF All

NBU 3D Scheme-A 0.9423 0.9109 0.9300 0.8986 0.9090 – 0.9113
Scheme-B 0.9645 0.9181 0.9237 0.9506 0.9481 – 0.8982
Scheme-C 0.9631 0.8944 0.9318 0.9365 0.9514 – 0.9192
Proposed 0.9573 0.9083 0.9171 0.9200 0.9429 – 0.9220

LIVE 3D Scheme-A 0.9384 0.9421 0.6473 0.9139 — 0.7652 0.9223
Scheme-B 0.9531 0.9328 0.5826 0.9051 – 0.8310 0.9201
Scheme-C 0.9534 0.9373 0.6054 0.9131 – 0.8202 0.9256
Proposed 0.9553 0.9400 0.6033 0.9166 – 0.8384 0.9295

Table 5
SRCC comparisons for each component of the proposed scheme.

Database Scheme GB WN JPEG JP2K H.264 FF All

NBU 3D Scheme-A 0.9495 0.8705 0.9573 0.9377 0.9343 – 0.9284
Scheme-B 0.9609 0.9079 0.9537 0.9710 0.9391 – 0.9277
Scheme-C 0.9648 0.8698 0.9605 0.9691 0.9541 – 0.9370
Proposed 0.9654 0.8710 0.9592 0.9693 0.9540 – 0.9371

LIVE 3D Scheme-A 0.9192 0.9421 0.6248 0.8992 – 0.7330 0.9276
Scheme-B 0.9232 0.9375 0.5614 0.8936 – 0.8069 0.9281
Scheme-C 0.9267 0.9385 0.5875 0.8938 – 0.7949 0.9295
Proposed 0.9258 0.9392 0.5887 0.8941 – 0.7943 0.9297
GB, WN and JP2K distortions on the NBU 3D IQA database, and
Scheme-C is more effective for the JPEG and H.264 distortions on
the NBU 3D IQA database. Even thought the performance improve-
ment is limited by using the above modulations on the LIVE 3D
IQA database, the overall performance can be gradually promoted
by the proposed scheme.

5. Conclusions

This paper has presented a quality assessment method of
stereoscopic image based on binocular energy response. Compared
with the existing two-dimensional (2D) metrics, the technical con-
tribution of the proposed method is that we try to use binocular
energy and binocular masking features to quantify the binocular
visual characteristics. The prominent advantage of the proposed
method is as follows: 1) We construct binocular energy responses
of the original and distorted images, respectively, and measure the
similarity between them as Image Quality Metric (IQM); 2) By con-
sidering the binocular response and binocular masking characteris-
tics, we use the binocular energy and the binocular just noticeable
difference (BJND) components to modulate the IQM, respectively;
3) Two evaluation results are nonlinearly integrated into an overall
score by considering the importance of each component. Experi-
mental results show that the proposed method can achieve much
higher consistency with the subjective assessments. In the future
work, to further advance the performance of the proposed method,
more comprehensive study of various binocular visual characteris-
tics (e.g., visual attention and visual comfort) should be considered
in quality assessment.
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