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Abstract—This paper considers the problem of interference
suppression in direct-sequence code-division multiple-access (DS-
CDMA) systems over fading channels. An adaptive array receiver
is presented which integrates multiuser detection, beamforming,
and RAKE reception to mitigate cochannel interference and
fading. The adaptive multiuser detector is formulated using a
blind constrained energy minimization criterion and adaptation
is carried out using a novel algorithm based on set-membership
parameter estimation theory. The proposed detector overcomes
the shortcomings of conventional LMS- and RLS-type algorithms,
namely, that of slow convergence and large computational load,
respectively. This is especially the case when strong interferers
are present or when the number of adaptive weights is rel-
atively large. DS-CDMA systems can have a relatively large
number of spatially distributed interferers. Thus beamforming
is based on direction-of-arrival (DOA) estimates provided by an
approximate maximum-likelihood estimator (DOA-MLE). Unlike
previous approaches, the DOA-MLE exploits the structure of the
DS-CDMA signaling scheme resulting in robust performance and
simple implementation in the presence of angle spreading. The
overall method is suitable for real-time implementation and can
substantially improve the interference suppression capabilities of
a CDMA system.

Index Terms—Adaptive filters, array signal processing, code
division multiaccess, direction of arrival estimation, interference
suppression, mobile communication.

I. INTRODUCTION

T HE USE OF spread-spectrum multiple-access techniques
is well established in the wireless communications arena.

In particular, direct-sequence code-division multiple access
(DS-CDMA) has been widely studied in the literature and
has been implemented in several commercial systems as
well. Adaptive interference suppression techniques based on
multiuser detection (MUD) and antenna array processing have
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recently been considered as powerful methods for increasing
the quality, capacity, and coverage of these systems. They
provide a superior, though computationally more expensive,
alternative to conventional single-sensor matched filtered de-
tection which is severely limited by multiaccess interference
(MAI).

This paper focuses on cochannel interference (CCI) mitiga-
tion techniques for the uplink channel of DS-CDMA systems
over slowly fading channels. CCI is known to be the dominant
impairment for such systems which ultimately limits the
achievable performance and is exacerbated by the large fluc-
tuations in received signal power due to fading and distance
(the near–far effect). Multiuser detection [13], [18], [29] and
adaptive array processing [3], [21], [22], [27], [32] have been
shown to be promising solutions to this problem. Toward
this end, a new adaptive array receiver structure is presented
which adopts a two-pronged approach to CCI suppression
using MUD and beamforming. Also, a RAKE structure is
incorporated for operation over frequency-selective fading
channels. Thus the overall receiver makes combined use of
frequency diversity through the use of RAKE combining, code
(or time) diversity and angle diversity through the use of
beamforming.

A. Multiuser Detection for CCI Suppression

The near–far problem is a major hurdle for DS-CDMA
systems and power control has been the method of choice
for current systems such as IS-95 [23]. While some basic
power control is essential for the operation of any mobile radio
system, precise power control methods for overcoming the
near–far problem have several drawbacks. They are wasteful
of bandwidth and power, increase the complexity of the mobile
transceiver, and most importantly, do not provide very reliable
and satisfactory performance. When MUD schemes are used, a
centralized receiver can receive CDMA signals from different
users with large power differences, and yet detect their signals
with error probabilities that approach that of optimal detection
in the absence of MAI. The basis for most such methods is
to exploit the knownstructureof the signal and interference,
i.e., the signal from each user consists of products of signature
waveforms with information symbols from a known alphabet.

The principles of MUD are by now well established [13],
[29]. The optimal detector [29] is a major theoretical mile-
stone but has limited practical utility due to its exponential
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complexity in the number of users. Decorrelating detectors
have enjoyed much popularity due to their near–far resis-
tant performance and much reduced linear complexity [29].
A minimum energy formulation for blind adaptive near–far
resistant MUD was introduced in [13] and also used in [27].
While the minimum mean square error (MMSE) and the
equivalent minimum output energy solutions are known to be
near–far resistant, a major obstacle lies in adaptively seeking
the optimum solutions. Stochastic gradient algorithms such
as LMS are very attractive because of their simplicity but
suffer from poor convergence due to the large dimensionality
in typical CDMA systems and the fluctuation in received
signal powers [18]. Least squares (LS) algorithms, on the
other hand, provide adequate convergence speed under these
circumstances, but can be prohibitively complex to implement.
Note that most low-complexity fast-RLS-type algorithms are
not applicable due to the lack of time-shift structure in
the input vectors [12]. Thus there is a clear imperative to
develop reduced-complexity MUD schemes without having to
sacrifice performance. The major difference in the adaptive
MUD detector presented in this paper is that it utilizes a
novel recursive algorithm based on set-membership parameter
estimation theory [4], [8] which provides significant benefits
in terms of tracking, convergence, and complexity.

B. Multichannel CDMA Reception

The use of antenna arrays offers the possibility of utilizing
the spatial characteristics of different user signals to aug-
ment the temporal discrimination provided by their signature
sequences. Adaptive arrays are typically designed for either
utilizing spatial diversity for mitigating the effect of fading
or for using the inherent angle diversity in the received
signals for CCI reduction. In [17], an adaptive array receiver
configured as the cascade of a beamformer and matched filter
(MF) detector is presented. The update of the beamformer
weights in this structure is rather cumbersome, especially over
fading channels. A receiver structure with an MF detector
followed by a beamformer is presented in [21]. However, the
eigen-decomposition-based DOA estimation algorithm used
for beamforming is computationally complex. An extension
of this receiver structure, called a 2D-RAKE is also presented
[21], [22] while noncoherent RAKE combining with -ary
orthogonal modulation is considered in [22]. Joint spatiotem-
poral reception, akin to broadband beamforming [28], has also
been considered [3], [18]. A drawback of this approach is
the large number of adaptive weights, which is given by the
product of the number of chips per symbol (assuming chip
rate sampling) and the number of antenna elements. Such
configurations can also be sensitive to imperfect knowledge
of the array manifold, particularly when angle spreading is
present [3].

In this paper, a multisensor receiver is used with a MUD
for each element in the first stage. This is followed by
a bank of DOA-based beamformers and RAKE combin-
ing for frequency selective channels (Fig. 1). For flat fading
channels, the receiver structure simplifies to a single beam-
former and single tap equalizer. Since RAKE combining takes
place after beamforming for each branch, channel fading

estimation can take place after MAI has been suppressed.
Also, the beamformer operates on symbol-rate samples after
MUD. This facilitates the development of a new approxi-
mate maximum-likelihood DOA estimation (DOA-MLE) al-
gorithm.

This paper is organized as follows. Section II presents the
CDMA signal model and the problem formulation. The MUD
technique is developed in Section III. This is followed by a
description of the DOA estimation method, beamforming and
RAKE combining in Section IV and its performance analysis.
Numerical results are presented in Section V along with some
discussions and the paper is concluded in Section VI.

II. CDMA SIGNAL MODEL AND PROBLEM FORMULATION

Consider an asynchronous DS-CDMA system withusers.
Asynchronous uplink transmissions are received at a cen-
tralized receiver from all cochannel active users within the
cell of interest and from neighboring cells as well. Let the
information symbol sequence from theth user be denoted by

, chosen in general from a complex alphabet. Assuming
the symbol and chip duration to be and , respectively,
resulting in a nominal processing gain , the spread-
spectrum signal emanating from theth user is given by

(2.1)

where is the chip index; denotes the modulus operation
and denotes the floor operation; is the transmitted
power of the th user; denotes the th chip of the
th users’ periodic spread-spectrum sequence with period

After performing baseband pulse shaping with a filter ,
the transmitted waveform is given by

(2.2)

The pulse is assumed to have unit energy and duration
Assume that the transmitted signal from theth user is

received at an antenna array receiver with elements. An
-path frequency-selective slowly fading model is assumed in

order to formulate the spatiotemporal impulse response of the
th sensor to the signals from theth user (see Appendix A)

according to

(2.3)

where denotes the composite response of theth sensor
to the th multipath component from theth user; is the
time delay of the th multipath component of theth user’s
received signal and that the maximum delay
Thus the received complex baseband signal from theth user
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Fig. 1. Receiver structure forL-path frequency selective fading channel forkth user.

at the th element is given by the convolution

(2.4)

The received signal from asynchronous users at the central-
ized receiver is obtained as the superposition of each user’s
signals according to

(2.5)

where is the flat propagation delay of theth user and
denotes the th sensor’s front-end additive noise.

The receiver structure shown in Fig. 1 is used to recover
transmitted symbols from all desired users. For a particular
desired user, the composite signal is chip match filtered and
fed into multiple RAKE arms, each delayed by a chip time
or more. It is assumed that the receiver uses conventional
techniques for determining which RAKE arms contain delayed
copies of the signal [21]. Also, RAKE receiver arms for
user are synchronized to the path delays Without
loss of generality, chip synchronous reception is assumed
and nonidealities due to imperfect carrier synchronization and
clock jitter are ignored. Thus the chip rate samples for the
th user with delay are obtained at the th sensor after

demodulation as

(2.6)

Denoting the sequence of received samples of dimension
spanning one symbol as , the chip sample vector for the
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th symbol of the desired user, i.e., for ,
is given by

(2.7)

where

(2.8)

and and denote the two overlapping symbols;
is the vector of filtered noise samples during theth

symbol. Thus in addition to the filtered background noise, each
sample of the received chip vector for theth symbol has
two interfering components. These arise from the multipath
components of the same user with different time delays and
from all other users. In addition, each interferer (self-multipath
as well as from other users) contributes two independent
interference vectors to the received sample vector in each
symbol time. The th users’ symbols for theth RAKE arm
are extracted using a linear detector , characterized by the
discrete-time inner product with the sampled chip sequence as

(2.9)

As can be seen in Fig. 1, a linear MUD is used for each RAKE
branch at all array elements. The computation and adaptive
update of these linear detectors is now addressed.

III. B LIND MULTIUSER DETECTION

The goal here is to blindly compute linear decorrelation
weight vectors to preserve the desired signal and mitigate
interference, see, e.g., [9], [13], [27], and [30]. In [13], it is
shown that a blind MUD can be formulated using no more
information than the conventional detector, i.e., knowing the
timing and signature sequence of the desired user. The linear
blind MUD is decomposed into two orthogonal components.
The first component is “anchored” to the signature sequence
of the desired user while the second component is always or-
thogonal to it. Using the minimum output energy criterion, the
latter component can be used to adaptively suppress MAI and
blindly achieve the MMSE solution. A conceptually similar
approach is described in [27] using constrained beamforming
techniques originating in classical array signal processing and
is also used in this paper.

For the special case that the receiver treats MAI as additive
white noise or when detector adaptivity is not feasible, the
linear detector is merely the signature sequence of the desired
user. The following algorithm is presented following the
framework of the well-knownGeneralized Sidelobe Canceler

(GSC) [28]. In the rest of this paper, denotes the detector
vector for any one of the RAKE arms and the corresponding
subscript is dropped for notational brevity. Constraining the
detector to present a unit response to the desired user’s
signature sequence, and decomposinginto corresponding
constrained and unconstrained components

(3.1)

where the nonadaptive part of

(3.2)

with the constraint matrix and output constraint
Thus in this case The columns of

the matrix span the null space of
In general, of course, multiple constraints can be imposed
on , for instance, to exploit the knowledge of signature
sequences and timing of other interfering users and enable
faster convergence of adaptive solutions. Such constraints
appear as columns of and result in a corresponding
decrease in the dimensionality of In the extreme case
when all the columns of are constrained, the detector
ceases to be adaptive. is readily obtained via one of
many orthogonalizing procedures [28]. In fact, for the special
case above, can be precomputed off-line for each desired
signature sequence. denotes the -dimensional
adaptive portion of Thus the output of the th array
element for the th RAKE arm is given by

(3.3)

Equation (3.3) can be viewed as a standard adaptive filter-
ing problem with serving as the desired signal;

serving as the input vector; denoting the

adaptive weight vector; and denoting the estimation
error. When a single signal-preserving constraint is used, the
vector which minimizes the mean squared error (MSE)
in (3.3) is given by

(3.4)

where denotes the noise-plus-MAI covariance matrix and
denotes the cross-covariance matrix of the desired signal

and MAI. The minimum mean squared error (MMSE) is given
by where is obtained by substituting from
(3.4) in (3.1).

A. Adaptive Solution Strategies

The conventional solution to the above is to perform an
unconstrained optimization involving which can be ob-
tained via stochastic gradient descent or LS algorithms [12].
As described in Section I, a desirable goal is to seek an
alternative solution strategy which has LS like, or better,
properties with reduced computational burden. A compelling
solution to this problem is to consider a new approach based on
set-membership parameter estimationtheory, see, e.g., [4], [7],
[8]. Set-membership parameter estimation techniques can lead
to recursive algorithms with powerful properties and provide
a set of feasible estimates rather than a point estimator. For
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excellent tutorial overviews of set-membership theory, see [4]
and [7]. Other key papers detailing the structure, features,
convergence and tracking properties, and signal processing
applications of set-membership algorithms include [5], [6], [8],
and the references therein.

Specifically, the focus of this paper is on a subset of set-
membership techniques, namely, the class ofoptimal bounding
ellipsoids(OBE) algorithms [5], [8]. There are several features
of OBE algorithms which render them attractive for the
problem at hand. Experience has shown that OBE algorithms
perform better than weighted recursive LS algorithms in track-
ing time-varying parameters and in low SNR situations [5],
[10], [15]. Furthermore, OBE algorithms are computationally
efficient due to theirdiscerning updateproperty. They can also
provide an explicit indication of any loss in tracking—a feature
not possessed by point estimation algorithms such as LMS
or LS algorithms. Although LS algorithms can be equipped
with such indicator functions rather easily, such a feature is
an integral part of parameter estimation using OBE algorithms.
As a point of common ground, the geometric centers of the
bounding ellipsoids in OBE algorithms (which are usually
taken as point estimates at any given time) are known to
be weighted recursive LS estimates [7]. Simply stated, the
optimization of the weighting (update) factors of data sets
according to set-membership principles essentially leads to
the discerning update property and superior convergence and
tracking properties.

The OBE algorithms may appear to have complexity
from an inspection of the recursive update equations. However,
their discerning update (or data-selective) feature can be
fruitfully exploited for significant reduction in complexity
[6], [10], [11]. Since the primary interest here lies within
the class of linear detectors, the computational complexity of
updating the adaptive weights vectors is the differentiating
factor. In [10], it is shown that under typical cellular traffic
statistics, using the selective update criterion described in
Section III-B, approximately update processors can be
statistically shared among independent users being received
at a base station. Another way to exploit the discerning update
property for computational savings is described in [6] where
an approximately average complexity implementation
is obtained over a block of bits using time-buffered operation
of the update processor for a single user. Thus the structure
and properties of OBE algorithms can narrow the gap between
performance and complexity which is encountered by several
conventional adaptive filtering algorithms.

B. OBE Algorithm

A recursive algorithm is now derived to estimate
based on set-membership principles using OBE. The idea
here is to update the estimator such that the estimation error
is constrained to lie within a specified performance bound.
This approach is conceptually reminiscent of [1] where a
linear programming framework is used for robust adaptive
beamforming and a beamformer weight vector is adapted to
attain a certain performance bound using a recursive linear
programming algorithm. The goal is to construct an OBE

algorithm which attempts to seek solution vectors that
meet the followingspecificationfor all :

(3.5)

where is a specified constant corresponding to a desired
performance level and may also be viewed as a design
parameter. Furthermore, to ensure that the solution to the
above is nonempty, the input parameters are assumed to
come from a so-calleddesign space consisting of all input
vectors formed by the additive noise values bounded
in magnitude by a suitable constant [20]. Weight vectors
which achieve (3.5) for all possible input sequences from the
design space constitute the so-calledfeasibility setand any
member of this set is a valid detector. Since this is a worst
case deterministic error specification, excellent performance is
obtained even for those input vectors arising from outside the
design space. The objective of the OBE methodology is to
seek this feasibility set or any one of its members. This set
is given by

(3.6)

In the OBE methodology, the feasibility set is sought by
successively refiningmembership sets defined at time

as

(3.7)

However, the complexity in exactly computing is over-
whelming even for small and OBE algorithms circumvent
this problem by recursively updating hyper-ellipsoids
which tightly outerbound the membership sets for all

(Fig. 2). It follows that also outerbounds
at all times, since is a subset of , i.e.,.

for all Thus a recursive
formulation can be used to update with each incoming
chip vector at the symbol rate. Equation (3.3) can be rewritten
in matrix form for the array as

(3.8)

where

and

(3.9)
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Fig. 2. Schematic depicting operation of OBE recursions in two dimensions
(N = 3 andM = 1).

Then as per the set-membership framework, let the error
specification for the th user be

(3.10)

where denotes the vector norm and is an appropri-
ately chosen constant. The selection of is addressed later
in this section. Define as a degenerate ellipsoid as

(3.11)
Let the membership set at time be given by

(3.12)

where is a symmetric positive-definite matrix and
is the center of the ellipsoid. An ellipsoid that

contains is given by

(3.13)

where is a real number in . It can now be shown
that there exists a symmetric positive-definite and a
positive scalar such that

(3.14)

is a well-defined ellipsoid (Fig. 2).

Proposition 3.1: Consider the inequalities (3.11) and (3.12)
above. Define

and

The following recursive update equations may be obtained:

and

The last three equations in Proposition 3.1 constitute the
recursions of the OBE algorithm. In order to compute the
optimal update factor the parameter is minimized.
can be considered to be a bound on the estimation error at
the th step and is closely related to other popular measures
of optimization such as volume and trace of the bounding
ellipsoid [5], [15]. Unlike these measures, minimization of

lends itself to a very efficient test for innovation. A
tight upper bound on , denoted by , is given by

(3.15)

where Denote the optimal by
(which lies in for some real scalar design parameter

and define the quantity

(3.16)

Proposition 3.2: Minimization of with respect to
leads to the following update condition:

1) if then
2) otherwise where takes

the values shown at the bottom of this page.

See [15] for proofs of Propositions 3.1 and 3.2. This result
is used for computing the optimal update parameter at
each step. Equation (3.16) and Proposition 3.2 constitute the
condition for data selectivity or no-update. At any time, the
center of the ellipsoid is taken as an estimate of the

if

if

if

if
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adaptive component of the detector in (3.1). To initialize the
algorithm, is chosen such that

where resulting in being a suitably large initial
hyper-sphere. In other words, the following initial values may
be chosen:

and (3.17)

In (3.5) and the subsequent treatment in this section, an
explicit dependence of on time (i.e., on ) is not shown.
However, in general, is not necessarily constant over
time. Since one of the goals of using a multiuser detector
is to simplify power control mechanisms, a time-varying

error specification is beneficial to the adaptive detector’s
performance in fading channels. Assuming that channel fading
estimates are available, the error specification is appropriately
modified to reflect the received power estimate of the desired
user (see Section V). Such estimates are typically obtained via
the use of pilot symbols which are periodically inserted in a
framing pattern or via dedicated pilot channels. Also, such es-
timates are required by RAKE combiner (except when simple
selection diversity is used). The next stage of processing in the
receiver of Fig. 1 entails the combining of the detector outputs
corresponding to each RAKE branch from all array elements
via a bank of beamformers.

IV. DOA ESTIMATION AND BEAMFORMING

Beamforming is carried out based on DOA estimates of the
desired users’ signals. This approach is particularly well suited
for DS-CDMA systems in which there are a large number
of spatially distributed interferers. As depicted in Fig. 1, in
a frequency-selective multipath environment, the outputs of
each RAKE branch from each sensor in a uniform linear array
are fed into a bank of beamformers. Since steering vectors are
computed from DOA estimates, array calibration is required
in this approach. Each beamformer strives to be spatially
selective in the direction of the particular RAKE branch output
and requires DOA estimates of the desired users’ signals at the
output of each branch for computing its coefficients.

Carrying out DOA estimation prior to despreading can
be a formidable task. Most subspace-based methods are not
applicable due to the large number of independent signals and
typically small number of array elements. Postdetection DOA
estimation, on the other hand, is a viable option. Several meth-
ods have been proposed in the literature, including subspace-
based methods such as Weighted Subspace Fitting [2], ESPRIT
[25], and an eigendecomposition based method [21]. The itera-
tive ML algorithm based on alternating projections proposed in
[31] is also applicable. The structure of a DS-CDMA system,
however, allows for a much simpler and robust approach. This
section describes an approximateMaximum-Likelihood DOA
Estimator(DOA-MLE) used for beamforming. In addition to
inheriting the desirable properties of MLE’s, it also turns out
to be simple and intuitive. The basic idea is to partition the
array into groups of two consecutive sensors or doublets. The
algorithm then exploits the fading correlation between closely
spaced doublet elements to extract the spatially induced phase

differences between the postcorrelation complex baseband
outputs. Each doublet operates independently to compute the
DOA-MLE and the estimates from multiple doublets are then
suitably combined.

A. Maximum-Likelihood DOA Estimation

The relationship between angle of arrival, beamwidth of
arriving signals, and antenna spacing has been explored in [26]
and the references therein. For an interelement spacing of
and narrowband signal wavelength, the fading experienced
at adjacent sensors is almost perfectly correlated for small
values of (such as 0.5 or less) and angle spread(such
as Thus interelement spacing for each doublet
is assumed to be such that the two sensors experience nearly
identical fading. Consider sensor and constituting
a doublet. Using (2.9) and (3.1)

(4.1)

where denotes the updated weight vector from the
recursions of Proposition 3.1; denotes the collective
interference terms in (2.7); and is appropriately de-
fined. Given observations from time instants
to , an approximate MLE of the spatial phase difference can
be obtained straightforwardly (see Appendix B) as

(4.2)

where denotes the complex conjugate of
Conceptually similar approaches have also been used for
frequency estimation where the corresponding problem is
converted to a phase estimation problem. At every time instant,
each doublet contributes a DOA-MLE for each user being
tracked. Since all array elements are used for beamforming, the
DOA-MLE’s from each doublet are combined to form a single
estimate. The simplest method is to average the outputs from
each doublet, while other schemes may be readily conceived.
For instance, a suitable selection criterion can be adopted for
selecting the “best” DOA-MLE from among the doublets. In
any case, denote the final DOA estimate at timeby
Let the th-beamformer weight vector be denoted by (see
Fig. 1); the data covariance matrix at the output of theth
RAKE branch by ; and the steering vector for theth-user’s
th path be given by

(4.3)

Adopting the classical minimum variance distortionless
response(MVDR) criterion for computing the beamformer
weights [28]

(4.4)
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The output of the th beamformer is then given by

(4.5)

is typically block-updated using (4.4) above at a rate
commensurate with the available processing power while
is approximated by a suitably windowed temporal average.
Clearly, this method of obtaining the weights for the bank of
beamformers is not optimized for implementation as such but
this issue has been extensively studied in the literature, see,
e.g., [28]. However, the problem is alleviated by the fact that
the dimensionality of is not large due to typical values of

Experience has shown that block weight updating
with a reasonably chosen temporal block size (instead of
continuous recursive updates) for postdetection beamformers
is a reasonable tradeoff for most channels and interference
scenarios and is used in this paper. Other beamforming meth-
ods, such as the maximum SINR method [28], may also be
used. The length of the temporal windowused by the DOA-
MLE algorithm can be adjusted according to the expected rate
of change of the DOA of incoming signals from the desired
user. For instance, this would depend on mobile speeds, cell
geometry, and symbol rate.

B. Performance Analysis

Compared to conventional eigendecomposition-based meth-
ods [25], the simplicity of the proposed method is apparent.
Only simple arithmetic operations and functional table lookup
are required. In formulating the DOA-MLE, all multipath
components delayed by more than one chip time appear as
postdecorrelation additive noise. The DOA-MLE can be com-
puted independently for all users being demodulated and this
ensures that there are no “resolution” problems, as is the case
when DOA estimates for multiple sources are simultaneously
being computed. For sensor elements and DOA’s being
estimated, the DOA-MLE requires operations and
can be used for all sources being demodulated with one or
more doublets. Consider the argument of the inverse tangent
function in (4.2) and let

Using (4.1), (B.3), and the uncorrelatedness of the transmitted
symbols

(4.6)

where is assumed to be zero-mean and uncorrelated.
Thus assuming a second-order stationary fading process, the

estimator for is unbiased. Similarly, taking the
second moment

(4.7)

Again, assuming stationarity up to the fourth-order of the
fading process, the estimate for is asymptotically
consistent. Thus two approximations are made in estimating

—due to angle spreading and due to the inverse tangent
operation.

C. RAKE Reception

Consider now the final stage of the adaptive array receiver,
just prior to the slicer. The vector output

of the bank of beamformers
is fed into the RAKE combiner to obtain symbol estimates
for each desired user. Denote theth users’ RAKE combining
coefficients by The
output of the th-users’ combiner is then given by

(4.8)

There are several RAKE combining algorithms, the classical
ones being maximal ratio, equal gain, and selection combining
[14]. Any one of these methods or other variations in the
literature [32] may be used. Such methods typically hinge
on the slowly fading assumption and make use of special
pilot symbols or training sequences to update the RAKE
combining coefficients. In a flat fading environment, the
RAKE combining reduces to a single 1-tap equalizer yielding

(4.9)

The equalizer operates on the received complex baseband
symbol before slicing by correcting the magnitude and phase
of the single beamformer’s symbol rate output.

V. SIMULATION RESULTS

Consider first the performance of the proposed receiver in
a flat Rayleigh fading environment. Fading coefficients were
generated using the standard Jakes model [14] with a normal-
ized Doppler bandwidth of 0.001. Fig. 3 depicts the ensemble
averaged signal-to-interference ratio (SIR) obtained using a
nonadaptive MF and an adaptive multiuser detector with OBE,
standard LMS, and RLS algorithms. The latter three algorithms
are used for updating the GSC’s adaptive weight
vector component with a single signal-preserving constraint.
Coherent quadrature modulation is used with a processing
gain of with a single antenna element
and a background SNR of 20 dB due to the additive white

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 5, 2009 at 11:42 from IEEE Xplore.  Restrictions apply.



KAPOOR et al.: INTERFERENCE SUPPRESSION IN CDMA MOBILE RADIO SYSTEMS 1349

Fig. 3. SIR using MF, OBE, and RLS algorithms. Processing gainN = 16,
M = 1.

Gaussian noise (AWGN). Similar curves are obtained for
larger processing gains. There are a total of 11 active users
including the desired user, each transmitting with equal power.
This represents a severe interference environment in which
the MF detector cannot provide adequate performance. The
LMS update gain is fixed at 0.001 while the RLS forgetting
factor is chosen to be 0.99. Larger values of the LMS update
factor resulted in slightly faster convergence. However, they
also resulted in frequent divergence of the weight vector and
were therefore not used. The value of was chosen to be
0.2 for all simulations. The error specification for OBE
is set at where is an estimate of the desired
user’s received power andis design parameter chosen to be
unity. The SIR at the th symbol is calculated according to

SIR (5.1)

where the ensemble average is carried out over 200 inde-
pendent trials in each of which the signature sequences are
generated randomly; denotes the detector weight vector
in the th trial at the th symbol; and denote
the received signal and interference chip vectors in the

th trial at the th symbol, respectively. is adapted using
OBE, LMS, and RLS or is fixed when the MF is used.

Using the complexity reduction technique described in [6],
with an update rate of about 20%, the average computational
load of OBE versus RLS over a block of, say, 500 symbols
is about one-fifth. Note that this gain can be smaller for the
time period when a user initiates communication and rapid
parameter updates occur and higher in steady state. Using the
statistical time-shared updator method proposed in [10], and
assuming 64 maximum users at the base station with typical
cellular traffic characteristics, approximately only nine update
processors are required [10], i.e., a seven-fold reduction in
hardware complexity for updating the detector vectors. To
realize this benefit, the base-station architecture must be able to

Fig. 4. MSE using MF, OBE, and RLS algorithms. Processing gainN = 16,
M = 4.

Fig. 5. MSE using MF, OBE, and RLS algorithms with strong interferer.
Processing gainN = 16, M = 4.

allow sharing of baseband signal processing resources among
multiple channels.

An antenna array with elements is used in Fig. 4
and the ensemble averaged mean-squared error (MSE) at the
receiver output is computed. Using (3.4), the nonadaptive
MMSE for these parameters is 16 dB. It is assumed that
channel estimates are available at the receiver to equalize the
preslicer symbol rate samples. With a forgetting factor equal to
one, the RLS algorithm also achieved the MMSE bound. Some
degradation in the achievable MSE is to be expected when the
channel estimates are not perfect. The tracking behavior of the
OBE detector is compared with an RLS detector in Fig. 5. The
nonadaptive MF is also shown for comparison. It is seen that
both the OBE and RLS algorithms adapt to the strong interferer
introduced at the 450th symbol. The OBE detector settles down
in about 25–50 symbols while the RLS detector takes about
75-100 symbols. The DOA’s of all 11 users are randomly
distributed in the range each with an angle
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Fig. 6. Magnitude and rms value of DOA estimation error in degrees using DOA-MLE algorithm: number of symbolsP versus SNR for angle spread4 = 0.

Fig. 7. Magnitude and rms value of DOA estimation error in degrees using DOA-MLE algorithm: angle spread4 versus SNR for number of
symbols P = 500.

spreading of An intersensor spacing of is used.
Perfect correlation is assumed between the fading experienced
at adjacent sensors. This is known to be a good approximation
for the sensor spacing and angle spreads under consideration
[26]. The DOA-MLE algorithm (see (4.2)) is used for DOA
estimation. Estimates from multiple doublets are averaged at
each update instant. Beamformer weights are obtained using
the MVDR criterion (see (4.4)]). The beamformer weights are
initialized to have an omnidirectional response, the first update
is made at symbol 150, and thereafter every 50 symbols using
a sliding temporal window to update the DOA-MLE.

Figs. 6 and 7 show the performance of the DOA-MLE
algorithm alone. The magnitude and root-mean-square (rms)
value of the estimation error under different postdetection SNR

ratios are shown. Each data point is obtained by ensemble
averaging over 1000 independent trials using a single sensor
doublet with spacing In Fig. 6, the angle spread

is held fixed at while the number of symbols used
for forming the estimate is varied. In Fig. 7,
while is varied. The angle spread is assumed to arise
from multipath subcomponents uniformly distributed in the
interval Fig. 8 depicts the signal-to-noise-plus-
interference ratio (SINR) using RLS and OBE detectors after
750 symbols versus the number of array elements for

with a single RAKE path For each case,
there are ten interferers as before. Fig. 9 shows the effect
of increasing the power of interferers relative to the desired
signal power using and The resulting SINR is
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Fig. 8. SINR using OBE and RLS detectors versus number of array elements. Total of ten equal power interferers with same power as desired user.
Processing gainN = 16.

computed after 750 symbols of adaptation. The performance of
OBE and RLS is compared in a frequency-selective Rayleigh
fading environment while keeping the same DOA estimation,
beamforming and RAKE combining in the remaining receiver
stages. The ensemble averaged SINR at theth symbol is
computed at the output of each RAKE branch as

SINR (5.2)

where and denote signal and interference
matrices, each column of which corresponds to the received
signal and interference chip vector during theth symbol at
different array elements; denotes the matrix of additive
noise samples in the same fashion and denotes the
beamformer weight vector. When multiple RAKE branches
are used, the SINR at the output of each branch is defined
in the same manner. In Fig. 10, the probability of bit error

is calculated using the SINR after 750 symbols with
interfering users, each contributing 2 RAKE

branches. is computed for coherent quadrature modulation
with RAKE branches as [23]

SINR
(5.3)

where the SINR is measured at each RAKE branch. Also, a
constant power profile is assumed across RAKE branches and
maximal ratio combining is used.

A. Discussion

In the simulations results described above, it is observed
that the OBE algorithm outperforms the RLS algorithm in
terms of convergence and complexity. While OBE and RLS

update equations bear a striking resemblance, this differ-
ence in performance can be primarily attributed to the data-
dependent optimization of the OBE update factor at each
symbol. The performance of RLS is sensitive to the value
of the forgetting factor while the OBE methodology provides
a natural and convenient way for optimizing the update factor.
A detailed comparison of the tracking properties of OBE
versus RLS appears in [24]. This optimization also leads
to sparse updates which have been utilized for significant
computational savings [6], [10]. The rate of convergence
assumes particular importance when uplink transmission takes
place in a framing structure with periodic training symbols.
In such cases, which are typical, the adaptive algorithms are
required to rapidly converge and provide parameter estimates
until they are “reinitialized” in the next frame. Overall, the
percentage of OBE updates is 20% or less and far lower when
the percentage of updates is computed over a larger number
of symbols.

The multiuser detector is operated with a single constraint
above. If desired, a decrease in the number of adaptive
weights can be achieved in the GSC framework by additional
constraints. This will also lead to faster suppression of intracell
interferers if their timing and signature sequences are known.
However, a drawback of imposing additional constraints is
that it reduces the degrees of freedom available to suppress
sudden interferers. In any case, active cochannel users from
neighboring cells are known to be a significant and unpre-
dictable source of interference, making it hard to construct
appropriate constraints in advance.

Relative to OBE and RLS, the LMS algorithm does not
perform adequately—a finding consistent with that in the
literature [18]. In situations where use of the LMS algorithm
is not subject to choice, the above results are suggestive
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Fig. 9. SINR using OBE and RLS detectors versus relative powers of ten equal power interferers andN = 16 andM = 2.

Fig. 10. Pb using RAKE receiver versus number of array elements with ten interferers,L = 2 andN = 32.

of using a variable step size LMS algorithm which can
adapt to time-varying interference conditions. The use of
an antenna array at the base station with even two or four
elements is seen to be very beneficial for DS-CDMA reception,
especially when coupled with multiuser detection. This allows

for improved DOA estimates and interference suppression
by the beamformer. The benefits of increased SINR due
to combined multiuser detection and beamforming can be
traded off for more efficient utilization of the uplink spectrum,
simplified power control, or combinations thereof.
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VI. CONCLUSIONS

This paper has presented a new receiver structure for CCI
suppression and fading compensation for CDMA signaling
over frequency-flat or frequency-selective slowly fading chan-
nels. This is accomplished by combining multiuser detection,
beamforming, and RAKE reception in a single integrated
receiver. Conventional RAKE reception is used to combat
multipath fading while CCI suppression is carried out by
multiuser detector and beamforming. adaptive
weights are used for the multiuser detector and beamformer,
where is the spread-spectrum processing gain andis
the number of antenna array elements. The blind adaptive
multiuser detector is formulated using a constrained energy
minimization criterion and adaptation is carried out using a
novel OBE algorithm. The OBE multiuser detector provides
fast convergence and superior tracking relative to conventional
adaptive algorithms such as LMS and RLS. Also, a simple
and robust approximate maximum-likelihood DOA estimator
is presented for beamforming.

APPENDIX A
SPATIO-TEMPORAL IMPULSE RESPONSE

The composite spatio-temporal impulse response of the
channel and the th sensor to theth-user’s signals is given by

(A.1)

where is the response of the th antenna element
to the th multipath component from the th user. Each
multipath component is received with an angle spread of

and is assumed to be distinct (nonoverlapping) from all
other paths of the same user. The angle spread arises due
to a large number of rays emanating from local scatterers
in the vicinity of the transmitting source. Each scatterer
manifests itself as a subcomponent which is not resolvable
from other subcomponents at the receiver due to the small
delays [14], [26]. The different multipath components (from
different directions), however, are assumed to be delayed by
at least one chip time allowing them to be resolved by RAKE
branches. In other words, each RAKE branch sees a distinct
flat-fading signal with a certain angle spread. Thus

(A.2)

where the summation is taken over all the subcomponents;
denotes the angular deviation of the spatial angle of the

th subcomponent of theth multipath component; and and
denote the corresponding channel magnitude and phase

response, respectively. The spatial angle is given by

(A.3)

where denotes the nominal angle-of-arrival of theth-
users’ th multipath component and is the angular de-
viation of the th subcomponent’s DOA. For small-angle
spread

(A.4)

where

and

(A.5)

Note that for point sources, Using (A.2)–(A.5)

(A.6)

is usually modeled as a complex Gauss-
ian random variable since it is the summation of a large
number of i.i.d. random variables constituting the channel
attenuation for each multipath component.

APPENDIX B
DOA-MLE DERIVATION

Rewriting (4.1) in vector form using samples for sensor
and

(B.1)

(B.2)

where , , , and denote vectors of length
of the respective temporal samples. Using (A.6)

(B.3)

where denotes the residual difference between the channel
attenuation at the th sensor due to angle spreading. To obtain

, a series expansion of (A.6) may be carried out for small
according to

(B.4)

Thus yielding

(B.5)

Under isotropic scattering, can be regarded as complex-
valued zero-mean and Gaussian-distributed. Denotingby

for notational simplicity and the conditional probability
density function of by , is given by

(B.6)

since is independent of Now, using (B.2) and (B.3)

(B.7)
Conventional assumptions are now made on the postdetection
interference vectors to enable use of an ML approach. Namely,
they are assumed to be instances of a stationary, ergodic, zero-
mean complex-valued Gaussian process. Thus the mean of
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is and can be factored into a product of
partial densities. Thus can be obtained by maximizing
the log-likelihood function according to

(B.8)

Differentiating the right-hand side of (B.8) with respect to
and setting to zero yields

(B.9)

Noting that the right-hand side of (B.9) is merely the complex
conjugate of the left-hand side, and setting the imaginary part
to zero yields the desired result in (4.2).
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