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Abstract—This paper considers the problem of interference recently been considered as powerful methods for increasing
suppression in direct-sequence code-division multiple-access (DSthe quality, capacity, and coverage of these systems. They
CDMA) systems over fading channels. An adaptive array receiver provide a superior, though computationally more expensive
is presented which integrates multiuser detection, beamforming, . T . . '
and RAKE reception to mitigate cochannel interference and alte_rnatlve.to .convent|onaI. S|.ngle—sensor. matche(_j filtered de-
fading. The adaptive multiuser detector is formulated using a tection which is severely limited by multiaccess interference
blind constrained energy minimization criterion and adaptation (MAI).
is carried out using a novel algorithm based on set-membership  This paper focuses on cochannel interference (CCI) mitiga-
parameter estimation theory. The proposed detector overcomes tion techniques for the uplink channel of DS-CDMA systems

the shortcomings of conventional LMS- and RLS-type algorithms, . . .
namely, that of slow convergence and large computational load, over slowly fading channels. CCl is known to be the dominant

respectively. This is especially the case when strong interferers impairment for such systems which ultimately limits the
are present or when the number of adaptive weights is rel- achievable performance and is exacerbated by the large fluc-
atively large. DS-CDMA systems can have a relatively large tyations in received signal power due to fading and distance
number of spatially distributed interferers. Thus beamforming (the near—far effect). Multiuser detection [13], [18], [29] and

is based on direction-of-arrival (DOA) estimates provided by an . .
approximate maximume-likelihood estimator (DOA-MLE). Unlike adaptive array processing [3], [21], [22], [27], [32] have been

previous approaches, the DOA-MLE exploits the structure of the Shown to be promising solutions to this problem. Toward
DS-CDMA signaling scheme resulting in robust performance and this end, a new adaptive array receiver structure is presented
simple implementation in the presence of angle spreading. The \yhijch adopts a two-pronged approach to CCl suppression
overall method is suitable for real-time implementation and can ,ing MUD and beamforming. Also, a RAKE structure is
substantially improve the interference suppression capabilities of . . . .
a CDMA system. incorporated for operation over frequency-selective fading
o ) ] channels. Thus the overall receiver makes combined use of
_Index Terms—Adapiive filters, array signal processing, code g0 ency diversity through the use of RAKE combining, code
division multiaccess, direction of arrival estimation, interference . . . . .
suppression, mobile communication. (or time) diversity and angle diversity through the use of

beamforming.

I. INTRODUCTION A. Multiuser Detection for CCl Suppression

HE USE OF spread-spectrum multiple-access techniquesthe near—far problem is a major hurdle for DS-CDMA

is well established in the wireless communications arer@/stems and power control has been the method of choice
In particular, direct-sequence code-division multiple accef current systems such as 1S-95 [23]. While some basic
(DS-CDMA) has been widely studied in the literature angower control is essential for the operation of any mobile radio
has been implemented in several commercial systems S¥§tem, precise power control methods for overcoming the
well. Adaptive interference suppression techniques based r—far problem have several drawbacks. They are wasteful
multiuser detection (MUD) and antenna array processing ha@bandwidth and power, increase the complexity of the mobile
_ _ _ _ _ transceiver, and most importantly, do not provide very reliable
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complexity in the number of users. Decorrelating detectoestimation can take place after MAI has been suppressed.
have enjoyed much popularity due to their near—far resi8iso, the beamformer operates on symbol-rate samples after
tant performance and much reduced linear complexity [2MIUD. This facilitates the development of a new approxi-
A minimum energy formulation for blind adaptive near—famate maximume-likelihood DOA estimation (DOA-MLE) al-
resistant MUD was introduced in [13] and also used in [27¢orithm.

While the minimum mean square error (MMSE) and the This paper is organized as follows. Section Il presents the
equivalent minimum output energy solutions are known to E@DMA signal model and the problem formulation. The MUD
near—far resistant, a major obstacle lies in adaptively seekigghnique is developed in Section Ill. This is followed by a
the optimum solutions. Stochastic gradient algorithms sudescription of the DOA estimation method, beamforming and
as LMS are very attractive because of their simplicity blRAKE combining in Section IV and its performance analysis.
suffer from poor convergence due to the large dimensionalijumerical results are presented in Section V along with some
in typical CDMA systems and the fluctuation in receivediscussions and the paper is concluded in Section VI.

signal powers [18]. Least squares (LS) algorithms, on the
other hand, provide adequate convergence speed under these
circumstances, but can be prohibitively complex to implement,,

Note that most low-complexity fast-RLS-type algorithms are )
not applicable due to the lack of time-shift structure in Consider anasynchronous DS-CDMA system wiiftusers.

the input vectors [12]. Thus there is a clear imperative fsynchronous uplink transmissions are received at a cen-
develop reduced-complexity MUD schemes without having ftplized receiver from all cochannel active users within the
sacrifice performance. The major difference in the adaptif€!l Of interest and from neighboring cells as well. Let the
MUD detector presented in this paper is that it utilizes fformation symbol sequence from theh user be denoted by
novel recursive algorithm based on set-membership parameféf-): chosen in general from a complex alphabet. Assuming

estimation theory [4], [8] which provides significant benefitf1® Symbol and chip duration to ki€ and T, respectively,
in terms of tracking, convergence, and complexity. resulting in a nominal processing gaih = 7}, /7., the spread-
spectrum signal emanating from tikéh user is given by

CDMA SIGNAL MODEL AND PROBLEM FORMULATION

B. Multichannel CDMA Reception

The use of antenna arrays offers the possibility of utilizing , y — /P | 2 N ew (NS (+ — 0T 21
the spatial characteristics of different user signals to aug- uk(?) zn: k "(LNJ)C"(R ON)8(t = nle)  (2.1)

ment the temporal discrimination provided by their signature

sequences. Adaptive arrays are typically designed for either . - o :
utilizing spatial diversity for mitigating the effect of fadingv(\?heren Is the chip index;% denotes the modulus operation

or for using the inherent angle diversity in the receivegnd L] denotes the floor operation is the transmitted
: 9 ; g y . “power of thekth user;c,(n%N) denotes theuth chip of the
signals for CCI reduction. In [17], an adaptive array receiver , P .
) JLth users’ periodic spread-spectrum sequence with pe¥iod
configured as the cascade of a beamformer and matched filter : ) : )
. er performing baseband pulse shaping with a filel),

(MF) detector is presented. The update of the beamform[ﬁr . .

: N . : e transmitted waveform is given by
weights in this structure is rather cumbersome, especially over
fading channels. A receiver structure with an MF detector
followed by a beamformer is presented in [21]. However, the y; (t) = E ' VP Ak(LﬁJ)Ck(”%N)¢(t —nT). (2.2)
eigen-decomposition-based DOA estimation algorithm used n N

for beamforming is computationally complex. An extension

of this receivgr structure, called a 2D-RAK.E'is alsp presentgg,o pulsey:(t) is assumed to have unit energy and duration
[21], [22] while noncoherent RAKE combining with/-ary 1w  assume that the transmitted signal from thea user is
orthogonal modulation is considered in [22]. Joint spatioteMsaived at an antenna array receiver with elements. An
poral reception, akin to broadband beamforming [28], has algQpath frequency-selective slowly fading model is assumed in
been considered [3], [18]. A drawback of this approach i§qer to formulate the spatiotemporal impulse response of the

the large number of adaptive weights, which is given by theh sensor to the signals from thigh user (see Appendix A)
product of the number of chips per symbol (assuming Ch%R:cording to

rate sampling) and the number of antenna elements. Such
configurations can also be sensitive to imperfect knowledge
of the array manifold, particularly when angle spreading is
present [3].

In this paper, a multisensor receiver is used with a MUD
for each element in the first stage. This is followed by
a bank of DOA-based beamformers and RAKE combirwherea,(c’l") denotes the composite response of it sensor
ing for frequency selective channels (Fig. 1). For flat fading the/th multipath component from thith user;;, 7. is the
channels, the receiver structure simplifies to a single beatime delay of thelth multipath component of théth user’s
former and single tap equalizer. Since RAKE combining takesceived signal and that the maximum detay; _,)7. < 7.
place after beamforming for each branch, channel fadifidius the received complex baseband signal fromktheuser

L—1
() = > a6t — 1) (2.3)
=0
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Fig. 1. Receiver structure foE-path frequency selective fading channel fath user.

at themth element is given by the convolution where v, is the flat propagation delay of thith user and
n{™)(t) denotes themth sensor’s front-end additive noise.
The receiver structure shown in Fig. 1 is used to recover

(M) gy — (m)
e (#) _x"( )x Iy (1) transmitted symbols from all desired users. For a particular

_ Z O (t = rTl) desired user, the composite signal is chip match filtered and
s ot = Tl fed into multiple RAKE arms, each delayed by a chip time

or more. It is assumed that the receiver uses conventional

- Z \/P_)"Akq J) (n%N) technigques for determining which RAKE arms contain delayed

copies of the signal [21]. Also, RAKE receiver arms for
Z aé’}%(t—nTc ) (2.4) user k are synghronlz_ed to the path delayg_Tc. Wlthout

loss of generality, chip synchronous reception is assumed

and nonidealities due to imperfect carrier synchronization and

. . clock jitter are ignored. Thus the chip rate samples for the
The received signal fronk” asynchronous users at the central
. . . . o kth user with delayr,; 7. are obtained at the:th sensor after
ized receiver is obtained as the superposition of each us

. . edemodulatlon as
signals according to
@’(;l")(n) = r(m)(t) * (=t — e — vi))|t=nt,. (2.6)
K-1
rm) =" ™t — ) + 0 (1) (2.5) Denoting the sequence of received samples of dimenaion
k=0 spanning one symbol a.ém) the chip sample vector for the
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pth symbol of the desired user, i.e., fore [pN,pN+N —1], (GSC) [28]. In the rest of this papews;, denotes the detector

is given by vector for any one of thé, RAKE arms and the corresponding
subscript is dropped for notational brevity. Constraining the
vé’}”(p) =/ Pkagln)Ak(p)ck detector to present a unit response to the desired user’s
n Z /_R,aé’;’)[Ak,ockr,o + Ap 160 1] signature sequence, and d_ecompomnglnto corresponding
oy constrained and unconstrained components
L—-1
m Wy, = Wi,q — CrnWia (3.1)
+ Z Vb, Z agl )[Ah,ochl,o + Ay _1en 1] !
h#k 1=0 where the nonadaptive part afy,
+2(p) @7) wiy = CL(CI O™ (3.2)
where with the constraint matrixC, = ¢; and output constraint
- g = 1. Thus in this casew;, = ¢;/N. The columns of
e = [cr(0), ex (1), -+, (N = 1)] the N x (N — 1) matrix C},, span the null space ofy.
0 =1[0,---,0,¢,(0), -, cn(N — 7T — )]* In general, of course, multiple constraints can be imposed
ent—1 = [cr(N — miT2), -+ (N — 1),0,---,0]7  (2.8) ©ON Wiyq, for instance, to exploit the knowledge of signature

sequences and timing of other interfering users and enable

and A; o and A, _; denote the two overlapping symbolsfaster convergence of adaptive solutions. Such constraints
2™ (p) is the vector of filtered noise samples during fle appear as columns of’) and result in a corresponding
symbol. Thus in addition to the filtered background noise, eaggcrease in the dimensionality af; .. In the extreme case
sample of the received chip vector for theh symbol has when all the columns o, are constrained, the detector
two interfering components. These arise from the multipaggases to be adaptivé: ,, is readily obtained via one of
components of the same user with different time delays aAtany orthogonalizing procedures [28]. In fact, for the special
from all other users. In addition, each interferer (self-multipagase aboveC’ ,, can be precomputed off-line for each desired
as well as from other users) contributes two independeignature sequencew, denotes theN — 1l-dimensional
interference vectors to the received sample vector in eag@iaptive portion ofw,. Thus the output of thenth array
symbol time. Thekth users’ symbols for théth RAKE arm €lement for thelth RAKE arm is given by
are extracted using a linear detectoy;, characterized by the m (m H A(m
discrete-time innergproduct with the sampled chip seqlilence as eil )(p) - w’{‘{ﬂvi‘l )(p) B w’gao’“:"vil )(p)' (3:3)

(m) HA(m) Equation (3.3) can be viewed as a standard adaptive filter-

ey (p) = wivy, (p)- (2.9) ing problem withw{fq'izé’l")(p) serving as the desired signal;

As can be seen in Fig. 1, a linear MUD is used for each RAK@kH,n'i)éT) (p) serving as the input vectowr , denoting the

branch at all array elements. The computation and adaptagaptive weight vector; andi’l")(p) denoting the estimation

update of these linear detectors is now addressed. error. When a single signal-preserving constraint is used, the
vector wy, , which minimizes the mean squared error (MSE)

ll. BLIND MULTIUSER DETECTION in (3.3) is given by

The goal here is to blindly compute linear decorrelation  Wka = (Cf, RiCin) " Cil  (Ri + Ryi)wic g (3.4)
weight vectors to preserve the desired signal and mitigat(?1 . . .
. s ; denotes the noise-plus-MAI covariance matrix and
interference, see, e.g., [9], [13], [27], and [30]. In [13], it i/ ereR; . . : .
shown that a blind MUD can be formulated using no mm@sa Og/?Anft_?ﬁethrﬁigiﬁizcg\éi;agcﬁal%”::rg: ER/IeMdSeES;riE':sd is\llg?wal
information than the conventional detector, i.e., knowing t&?’ : q 9

rk
blind MUD is decomposed into two orthogonal component .'4) in (3.1).
The first component is “anchored” to the signature sequence ) ) ]
of the desired user while the second component is always 6r- Adaptive Solution Strategies
thogonal to it. Using the minimum output energy criterion, the The conventional solution to the above is to perform an
latter component can be used to adaptively suppress MAI amaconstrained optimization involving;. ., which can be ob-
blindly achieve the MMSE solution. A conceptually similatained via stochastic gradient descent or LS algorithms [12].
approach is described in [27] using constrained beamformiAg described in Section |, a desirable goal is to seek an
techniques originating in classical array signal processing aaltiernative solution strategy which has LS like, or better,
is also used in this paper. properties with reduced computational burden. A compelling
For the special case that the receiver treats MAI as additigelution to this problem is to consider a new approach based on
white noise or when detector adaptivity is not feasible, treet-membership parameter estimatibeory, see, e.g., [4], [7],
linear detector is merely the signature sequence of the desiféld Set-membership parameter estimation techniques can lead
user. The following algorithm is presented following thdo recursive algorithms with powerful properties and provide
framework of the well-knowrGeneralized Sidelobe Cancelera set of feasible estimates rather than a point estimator. For

timing and signature sequence of the desired user. The lin84r%* Rw;, wherew, is obtained by substitutings, . from

Authorized licensed use limited to: UNIVERSITY NOTRE DAME. Downloaded on March 5, 2009 at 11:42 from |IEEE Xplore. Restrictions apply.



KAPOOR et al. INTERFERENCE SUPPRESSION IN CDMA MOBILE RADIO SYSTEMS 1345

excellent tutorial overviews of set-membership theory, see [dlgorithm which attempts to seek solution vectarg, that
and [7]. Other key papers detailing the structure, featuraaget the followingspecificationfor all p:
convergence and tracking properties, and signal processing ,
applications of set-membership algorithms include [5], [6], [8], A(m) H a(m) (v 2
and the references therein. Z iy —wiCeatil W <k (39)
Specifically, the focus of this paper is on a subset of set-
membership techniques, namely, the classpimal bounding Where~3 is a specified constant corresponding to a desired
ellipsoids(OBE) algorithms [5], [8]. There are several featureperformance level and may also be viewed as a design
of OBE algorithms which render them attractive for th@arameter. Furthermore, to ensure that the solution to the
problem at hand. Experience has shown that OBE algorith@gove is nonempty, the input parameters are assumed to
perform better than weighted recursive LS algorithms in trackome from a so-calledesign spacé> consisting of all input
ing time-varying parameters and in low SNR situations [5yectors%§7’)( ) formed by the additive noise values bounded
[10], [15]. Furthermore, OBE algorithms are computationallin magnitude by a suitable constant [20]. Weight vectors
efficient due to theidiscerning updat@roperty. They can also which achieve (3.5) for all possible input sequences from the
provide an explicit indication of any loss in tracking—a featurdesign space constitute the so-calfeasibility setand any
not possessed by point estimation algorithms such as LM&mber of this set is a valid detector. Since this is a worst
or LS algorithms. Although LS algorithms can be equippethse deterministic error specification, excellent performance is
with such indicator functions rather easily, such a feature dbtained even for those input vectors arising from outside the
an integral part of parameter estimation using OBE algorithndesign space. The objective of the OBE methodology is to
As a point of common ground, the geometric centers of tlseek this feasibility set or any one of its members. This set
bounding ellipsoids in OBE algorithms (which are usualljs given by
taken as point estimates at any given time) are known to M1
be weighted recursive LS estimates [7]. Simply stated, th A N H ;(m)
optimization of the weighting (update) factors of data sets W) = (m>ﬂ {w ¢ 'g_:o i g (p)
according to set-membership principles essentially leads to (P)ED -
the discerning update property and superior convergence and (.
tracking properties. - wi el o () < ’Yf}- (3.6)
The OBE algorithms may appear to ha®éN?) complexity
from an inspection of the recursive update equations. Howeverjn the OBE methodology, the feasibility set is sought by
their discerning update (or data-selective) feature can beccessively refiningnembership setsV,.(p) defined at time
fruitfully exploited for significant reduction in complexity p as
[6], [10], [11]. Since the primary interest here lies within . V1
the class of linear detectors, the computational complexity of Wi(p) = ﬂ {w c V-1 Z ! qA(rn) )

m=0

updating the adaptive weights vectors is the differentiating Ykt

factor. In [10], it is shown that under typical cellular traffic =0 m=0
statistics, using the selective update criterion described in wiCH A(m)( W2 <y 3.7)
Section IlI-B, approximately/(/7 update processors can be kn¥h

statistically shared among independent users being received
at a base station. Another way to exploit the discerning upddt@wever, the complexity in exactly computingy.(p) is over-
property for computational savings is described in [6] whethelming even for smalV andp. OBE algorithms circumvent
an approximatelyO(N) average complexity implementationthis problem by recursively updating hyper-ellipsoigs(p)
is obtained over a block of bits using time-buffered operatiotihich tightly outerbound the membership s&t4 (p) for all
of the update processor for a single user. Thus the structaréFig. 2). It follows that&,(p) also outerbound®y. (N, vx)
and properties of OBE algorithms can narrow the gap betwedh all times, since©,(N,vx) is a subset ofW(p), i.e.,.
performance and complexity which is encountered by sevefal(p) > Wi(p) D Ox(N,7) for all p. Thus a recursive
conventional adaptive filtering algorithms. formulation can be used to updafe(p) with each incoming
chip vector at the symbol rate. Equation (3.3) can be rewritten
in matrix form for the array as

B. OBE Algorithm . I
€(p) = Ui q(p) — Vk,n(p)wk,a (3.8)

A recursive algorithm is now derived to estimaig .
based on set-membership principles using OBE. The idg@ere
here is to update the estimator such that the estimation error A a(0)) \ (1) (M—1)
is constrained to lie within a specified performance bound? x,¢(p) = [¥3,'(P), 03/ (p), -5~ ()]
This approach is conceptually reminiscent of [1] where CIP )é H (P)wp 4
linear programming framework is used for robust adaptive ' '

nd
beamforming and a beamformer weight vector is adapted% A o O I H (M-l
attain a certain performance bound using a recursive line&.n(p) = [CHL 00 (), CL 057 (0), -, O %) ()]
programming algorithm. The goal is to construct an OBE (3.9
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. 1 Se(p) Propositiqn 3.1: Consider the inequalities (3.11) and (3.12)
k(o= 1) above. Define

and
A
Qi(p) = [1 = M) + A(p)Gr(p)-
The following recursive update equations may be obtained:
1
Fig. 2. Schematic depicting operation of OBE recursions in two dimensionst (p) T1-— Ak (p) [Pk(p B 1) B /\k(p)Pk (p B 1)

N =3 dM = 1). _
(=3an ) Vi @Qi @VE (0)P(p — 1))

(p) =wi(p — 1) + M\ (p) P (p) Vi n(p)di
Then as per the set-membership framework, let the errozrl(;k(p) wil(p —1) KPP PV i (P (p)
specification for thekth user be an ) ) )
oi(p) =[1 = A(@loi(p — 1) + A (P) i
2 _
< Vi (3.10) — 1= M@ (p)dr ()@ (p)di(p)- m

llexi(p)]|*
where|| - || denotes the vectds, norm andy? is an appropri- The last three equations in Proposition 3.1 constitute the
ately chosen constant. The selectionygfis addressed later recursions of the OBE algorithm. In order to compute the

in this section. DefineSy(p) as a degenerate ellipsoid as  optimal update factor the parametgf(p) is minimized.o%(p)
can be considered to be a bound on the estimation error at

Si(p) = {w € OV 1 U o(p) — Vil (0w|* < 47} the pth step and is closely related to other popular measures
(3.11) of optimization such as volume and trace of the bounding
Let the membership set at tinfe — 1) be given by ellipsoid [5], [15]. Unlike these measures, minimization of
o3(p) lends itself to a very efficient test for innovation. A
-1 ={wec" " [w—w(p—1]" tight upper bound om2(p), denoted by 2(p), is given by
Pyl (p - D[w—wi(p - 1)] < 0f(p - 1)} o 2(p) =[1 = Mo — 1) + M(p)7}
(312) d;' (p)di(p)

—[1 = X%(@)(p)

1— Mg Ak ‘
where Py (p — 1) is a symmetric positive-definite matrix and [ k(P)] + Ak(p)gx(p)
. s S (3.15)
wi(p — 1) is the center of the ellipsoid. An ellipsoid that .
containsé (p — 1) N Sk(p) is given by whereg,(p) = [|Gi(p)||- Denote the optimahx(p) by A7 (p)
(which lies in [0, ay] for some real scalar design parameter
Ex(p) ={w e V11— \(p)]fw — wi(p — D] ar € (0, 1)) and define the quantity
PN (p— Dw —wp(p—1 A —ol(p—1
(0~ D — wi(p = 1] u(p) 2 B cklp = L) (3.16)
+ (D) Ui o (p) = Vi 0] dil (p)di(p)
<[l - Ak(p)]ff;%(p — 1)+ Ak(p)’w%} (3.13) Proposition 3.2: Minimization of o—'?(p) with respect to

Ax(p) leads to the following update condition:

where A\ (p) is a real number ir{0, 1). It can now be shown 1) if 3.(p) > 1, then A} (p) = 0;

that there exists a symmetric positive-definf(p) and a  2) otherwiseA{(p) = min(oy, vx(p)) Where v (p) takes

positive scalar; (p) such that the values shown at the bottom of this page.

N1 = See [15] for proofs of Propositions 3.1 and 3.2. This result
E(p) ={w e 7" [w — wi(p)] is used for computing the optimal update paramétgip) at
Py (p)w —wi(p)] < o2(p)}  (3.14) each step. Equation (3.16) and Proposition 3.2 constitute the

condition for data selectivity or no-update. At any timethe

is a well-defined ellipsoid (Fig. 2). center of the ellipsoidw;(p) is taken as an estimate of the
o, if dy (p)di(p) =0
U=5ed, it ge(p) =1
vi(p) = 1 g (p) i "
LV EEdem) L A@E) -1 >0
Qg if 1+ Bk(p)lgr(p) —1]1 <0
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adaptive component of the detector in (3.1). To initialize theéifferences between the postcorrelation complex baseband
algorithm, £,(0) is chosen such that outputs. Each doublet operates independently to compute the
£(0) = {w € VL [w|? < 1/p) DOA-MLE and the estimates from multiple doublets are then

. . . __ suitably combined.
where . < 1 resulting in&,(0) being a suitably large initial

hyper-sphere. In other words, the following initial values maf. Maximum-Likelihood DOA Estimation

be chosen: The relationship between angle of arrival, beamwidth of
P, (0)=Inx_1, wi(0)=0, and gz(o) =1/p. (3.17) arriving signals, and antenna spacing has been explored in [26]
In (3.5) and the subsequent treatment in this section, %ﬂd the reference_s therein. For an mterelt_ament spacing of
) 9 . . . and narrowband signal wavelength the fading experienced
explicit dependence of;, on time (i.e., onp) is not shown. . .
. 5 . at adjacent sensors is almost perfectly correlated for small
However, in general;y; is not necessarily constant over

time. Since one of the goals of using a multiuser detect\étffllues ofp/v (such as 0.5 or less) and angle spregsuch

. o X . .as A < 10°). Thus interelement spacing for each doublet
is to simplify power control mechanisms, a time-varyin .

5 . - . assumed to be such that the two sensors experience nearly
~; error specification is beneficial to the adaptive detector:

performance in fading channels. Assuming that channel fadi|8g%rgbcggzaﬂgagc((;ng;d§;dse(gsi))r and(m + 1) constitting

estimates are available, the error specification is appropriatggl) o o(m) o ()
modified to reflect the received power estimate of the desired ' (P) =wy. v () — wi (P)Ch Vs (D)

user (see Section V). Such estimates are typically obtained via _ \/P_’ka(fn)Ak (p) + (W /N) — wf(p)Cf ]I("’)(p)
the use of pilot symbols which are periodically inserted in a ?fn) ~(m) ATk
framing pattern or via dedicated pilot channels. Also, such es- =V Peay; A(p) + Iy (p) (4.1)

timates are required by RAKE combiner (except when simplehere w;(p) denotes the updated weight vector from the
selection diversity is used). The next stage of processing in th&ursions of Proposition 3.1 (p) denotes the collective
receiver of Fig. 1 entails the combining of the detector outpUigerference terms in (2.7); anijﬁ?”) (p) is appropriately de-
corresponding to each RAKE branch from all array elemenfged. GivenP observations from time instanty — P + 1)

via a bank of beamformers. to p, an approximate MLE of the spatial phase difference can

IV. DOA ESTIMATION AND BEAMEORMING be obtained straightforwardly (see Appendix B) as

Beamforming is carried out based on DOA estimates of the Im Zp: 6(m+1)(7,)(6(m)(7)))*
desired users’ signals. This approach is particularly well suitedA(m) . r=p— P41 kt kt
for DS-CDMA systems in which there are a large number @i~ (p) = tan »
of spatially distributed interferers. As depicted in Fig. 1, in Re| GECTH)(T)(@;CT)(T))*]
a frequency-selective multipath environment, the outputs of r=p—P+1
each RAKE branch from each sensor in a uniform linear array (4.2)

are fed into a bank of beamformers. Since steering vectors gjgere (el(crln) (r))* denotes the complex conjugate ‘fiﬂl)(ﬂ-

computed from DOA estimates, array calibration is reqUiFE@onceptually similar approaches have also been used for

in this approach. Each beamformer strives to be spatiaﬂaéquency estimation where the corresponding problem is

selective in the direction of the particular RAKE branch outpygnyerted to a phase estimation problem. At every time instant,

and requires DOA estimates of the desired users’ signals at §3&h doublet contributes a DOA-MLE for each user being

output of each branch for computing its coefficients. tracked. Since all array elements are used for beamforming, the
Carrying out DOA estimation prior to despreading capoA-MLE's from each doublet are combined to form a single

be a formidable task. Most subspace-based methods are gimate. The simplest method is to average the outputs from

applicable due to the large number of independent signals afth doublet, while other schemes may be readily conceived.

typically small number of array elements. Postdetection DOy instance, a suitable selection criterion can be adopted for

estimation, on the other hand, is a viable option. Several metflecting the “best” DOA-MLE from among the doublets. In

ods have been proposed in the literature, including subspagfly case, denote the final DOA estimate at timiay (/A)kl(p)-

based methods such as Weighted Subspace Fitting [2], ESPREE the /th-beamformer weight vector be denoted &y (see

[25], and an eigendecomposition based method [21]. The itefg. 1); the data covariance matrix at the output of tte

tive ML algorithm based on alternating projections proposed RAKE branch byR;; and the steering vector for thgh-user’s

[31] is also applicable. The structure of a DS-CDMA systenmth path be given by

however, allows for a much simpler and robust approach. This 1) (M1

section describes an approximaéaximum-Likelihood DOA si(p) = [1,/% P ... edone T OH (4.3)

Estimator(DOA-MLE) used for beamforming. In addition to Adopting the classical minimum variance distortionless

inheriting the desirable properties of MLE’s, it also turns outsponse(MVDR) criterion for computing the beamformer

to be simple and intuitive. The basic idea is to partition theeights [28]

array into groups of two consecutive sensors or doublets. The R

algorithm then exploits the fading correlation between closely bui(p) = L 3(p)

e TR (o (4.4)
spaced doublet elements to extract the spatially induced phase 8..(P) Ry sp(p)
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The output of thdth beamformer is then given by estimator for tan ( S;)) is unbiased. Similarly, taking the
second moment
uia(p) = bia(p)ew(p)- (4.5)

b (p) is typically block-updated using (4.4) above at a ratgﬁcgln) (®)2] = n EP: E[|ej¢§§>|a§€f;l>|2
commensurate with the available processing power whijle 2
is approximated by a suitably windowed temporal average.
Clearly, this method of obtaining the weights for the bank of

r=p—P+1
m—+1 M) K
+ chl )(aél )) %]

beamformers is not optimized for implementation as such but P? - (m) 14
this issue has been extensively studied in the literature, see, - p? Z Eflesa ']
e.g., [28]. However, the problem is alleviated by the fact that r=p-

the dimensionality oby; is not large due to typical values of + E[|6§€7l+1)|2|a§€7l)|2]
M <« N. Experience has shown that block weight updating P?

(m) 4 (m+1),2) (m)2
with a reasonably chosen temporal block size (instead of - P Ellay "1+ Ellegg " [Flag, "] (4.7)

continuous recursive updates) for postdetection beamformﬁ\rsa.n assuming stationarit to the fourth-order of the
is a reasonable tradeoff for most channels and interfere c%,' ' uming I . "y up SN u .
scenarios and is used in this paper. Other beamforming me ?:ggtg:l?ciisdst?vioezumr?)firr:t:gz)(r?ga)relsma;gerznip:wtc’:;:t?gétin
ods, such as the maximum SINR_method [28], may also 8%)—d ' PP ) ) 9
used. The length of the temporal winddused by the DOA- #x —due to angle spreading and due to the inverse tangent
MLE algorithm can be adjusted according to the expected r&geration.

of change of the DOA of incoming signals from the desired

user. For instance, this would depend on mobile speeds, &ell RAKE Reception

geometry, and symbol rate. Consider now the final stage of the adaptive array receiver,
just prior to the slicer. Thel. x 1 vector outputy,(p) =
B. Performance Analysis [wro(®), yr1 (), - yncz—1)(p)]" of the bank of beamformers

Compared to conventional eigendecomposition-based me, fed into the RAKE combiner to obta1|n symbol es_tlr_nates
ods [25], the simplicity of the proposed method is appare pr ez_;u:_h desired user. Denote theh users’ RAKE corgblnmg
Only simple arithmetic operations and functional table Iookug)oefﬂments by (p) = [f’ko(p)’f’“l(}?)’ o re(L-1(p)]T . The
are required. In formulating the DOA-MLE, all multipath utput of thekth-users’ combiner is then given by
components d'elayed _py more than one chip time appear as flk(p) =r (p)y,(p). (4.8)
postdecorrelation additive noise. The DOA-MLE can be com-
puted independently for all users being demodulated and tfigere are several RAKE combining algorithms, the classical
ensures that there are no “resolution” problems, as is the cases being maximal ratio, equal gain, and selection combining
when DOA estimates for multiple sources are simultaneoudi4]. Any one of these methods or other variations in the
being computed. Fod/ sensor elements anid DOA'’s being literature [32] may be used. Such methods typically hinge
estimated, the DOA-MLE require®(M K) operations and on the slowly fading assumption and make use of special
can be used for all sources being demodulated with one @ilot symbols or training sequences to update the RAKE
more doublets. Consider the argument of the inverse tangeambining coefficients. In a flat fading environment, the

function in (4.2) and let RAKE combining reduces to a single 1-tap equalizer yielding
P Ar(p) = (p). 4.9
SRS M AR O RIG ) = T o
P r=p_ P41 The equalizer operates on the received complex baseband

symbol before slicing by correcting the magnitude and phase

Using (4.1), (B.3), and the uncorrelatedness of the transmittgflthe single beamformer’s symbol rate output.
symbols

P V. SIMULATION RESULTS

m Pk m+1 M) %
E[cgcl )(p)] =P Z E[aiz )(ail )) ] Consider first the performance of the proposed receiver in
r=p-P+l1 a flat Rayleigh fading environment. Fading coefficients were
b, P (m)j2 jol | (mtl), (m)ya generated using the standard Jakes model [14] with a normal-
- p Z Ellag; |7’ 4" a1l ized Doppler bandwidth of 0.001. Fig. 3 depicts the ensemble
r=p—P+1

averaged signal-to-interference ratio (SIR) obtained using a
_ b ewgy zp: E[|a(m)|2] nonadaptive MF and an adaptive multiuser detector with OBE,
o ki standard LMS, and RLS algorithms. The latter three algorithms
o are used for updating the GSQ'4’ — 1) x 1 adaptive weight
— % PkE[|a§fl")|2] (4.6) vector component with a single signal-preserving constraint.
Coherent quadrature modulation is used with a processing
where e;’;” is assumed to be zero-mean and uncorrelatgghin of N = 16 with a single antenna elemeqf/ = 1)
Thus assuming a second-order stationary fading process, dineél a background SNR of 20 dB due to the additive white

r=p—IP+1
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Fig. 3. SIR using MF, OBE, and RLS algorithms. Processing @ais= 16,  Fig. 4. MSE using MF, OBE, and RLS algorithms. Processing dais 16,
M = 1. M = 4.
Gaussian noise (AWGN). Similar curves are obtained for 25 r T . . T
larger processing gains. There are a total of 11 active users ‘ : %I'ﬂ

including the desired user, each transmitting with equal power. [~ o S )

This represents a severe interference environment in which | . . . . . BSOS AR R 1
the MF detector cannot provide adequate performance. The g
LMS update gain is fixed at 0.001 while the RLS forgettingg [~ - RTINS S NI St et _
factor is chosen to be 0.99. Larger values of the LMS update : 5
factor resulted in slightly faster convergence. However, theye
also resulted in frequent divergence of the weight vector ané
were therefore not used. The value @f was chosen to be
0.2 for all simulations. The error specificati¢gn?) for OBE

is set atM Py(p) + ¢ wherePy(p) is an estimate of the desired
user’s received power arglis design parameter chosen to be
unity. The SIR at theith symbol is calculated according to

c
«
o
2

> |wH (p)vsig »(p)]? 2% 100 200 300 400 500 600
- Symbol
SIR(p) = & ! (5.1) ymees
; [w!! (p)Vint,r(P)] Fig. 5. MSE using MF, OBE, and RLS algorithms with strong interferer.

Processing gainV = 16, M = 4.

where the ensemble average is carried out over 200 inde-
pendent trials in each of which the signature sequences atew sharing of baseband signal processing resources among
generated randomlyy..(p) denotes the detector weight vectomultiple channels.
in thenth trial at thepth symbol;v.ig . (p) andvi,: .(p) denote An antenna array withi/ = 4 elements is used in Fig. 4
the IV x 1 received signal and interference chip vectors in thend the ensemble averaged mean-squared error (MSE) at the
nth trial at thepth symbol, respectivelyw is adapted using receiver output is computed. Using (3.4), the nonadaptive
OBE, LMS, and RLS or is fixed when the MF is used. MMSE for these parameters is 16 dB. It is assumed that
Using the complexity reduction technique described in [6¢hannel estimates are available at the receiver to equalize the
with an update rate of about 20%, the average computatiopa¢slicer symbol rate samples. With a forgetting factor equal to
load of OBE versus RLS over a block of, say, 500 symbotme, the RLS algorithm also achieved the MMSE bound. Some
is about one-fifth. Note that this gain can be smaller for traegradation in the achievable MSE is to be expected when the
time period when a user initiates communication and rapahannel estimates are not perfect. The tracking behavior of the
parameter updates occur and higher in steady state. Using @&E detector is compared with an RLS detector in Fig. 5. The
statistical time-shared updator method proposed in [10], andnadaptive MF is also shown for comparison. It is seen that
assuming 64 maximum users at the base station with typitalth the OBE and RLS algorithms adapt to the strong interferer
cellular traffic characteristics, approximately only nine updatatroduced at the 450th symbol. The OBE detector settles down
processors are required [10], i.e., a seven-fold reduction imabout 25-50 symbols while the RLS detector takes about
hardware complexity for updating the detector vectors. T&6-100 symbols. The DOA’s of all 11 users are randomly
realize this benefit, the base-station architecture must be abldigiributed in the rangd—60°, +60°], each with an angle
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Fig. 6. Magnitude and rms value of DOA estimation error in degrees using DOA-MLE algorithm: number of syPmbedsus SNR for angle spreadd = 0.
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Fig. 7. Magnitude and rms value of DOA estimation error in degrees using DOA-MLE algorithm: angle sfireaersus SNR for number of
symbols P = 500.

spreading of5°. An intersensor spacing qf = v/8 is used. ratios are shown. Each data point is obtained by ensemble
Perfect correlation is assumed between the fading experiene@draging over 1000 independent trials using a single sensor
at adjacent sensors. This is known to be a good approximatoublet with spacingp = v/8. In Fig. 6, the angle spread
for the sensor spacing and angle spreads under considerattoiis held fixed at0° while the number of symbol#®> used
[26]. The DOA-MLE algorithm (see (4.2)) is used for DOAfor forming the estimate is varied. In Fig. 2 = 500
estimation. Estimates from multiple doublets are averagedvettile A is varied. The angle spread is assumed to arise
each update instant. Beamformer weights are obtained usfrmgm multipath subcomponents uniformly distributed in the
the MVDR criterion (see (4.4)]). The beamformer weights aiaterval [-A /2, A/2]. Fig. 8 depicts the signal-to-noise-plus-
initialized to have an omnidirectional response, the first upddteerference ratio (SINR) using RLS and OBE detectors after
is made at symbol 150, and thereafter every 50 symbols usiris0 symbols versus the number of array elementsifor=
a sliding temporal window to update the DOA-MLE. 16 with a single RAKE path(L = 1). For each case,
Figs. 6 and 7 show the performance of the DOA-MLEhere are ten interferers as before. Fig. 9 shows the effect
algorithm alone. The magnitude and root-mean-square (rnaf)increasing the power of interferers relative to the desired
value of the estimation error under different postdetection SN#gnal power usingv = 16 andM = 2. The resulting SINR is
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Fig. 8. SINR using OBE and RLS detectors versus number of array elements. Total of ten equal power interferers with same power as desired user.
Processing gainN = 16.

computed after 750 symbols of adaptation. The performanceugfdate equations bear a striking resemblance, this differ-
OBE and RLS is compared in a frequency-selective Rayleigimce in performance can be primarily attributed to the data-
fading environment while keeping the same DOA estimatiodependent optimization of the OBE update factor at each
beamforming and RAKE combining in the remaining receivesymbol. The performance of RLS is sensitive to the value
stages. The ensemble averaged SINR at e symbol is of the forgetting factor while the OBE methodology provides

computed at the output of each RAKE branch as a natural and convenient way for optimizing the update factor.
S WOV G F e e e ebon oy oo
SINR(p) = ! (5.2) :

> Ibfl(p)(Vim,r(p) + N.(p))w,(p)|? to sparse updates which have been utilized for significant
T computational savings [6], [10]. The rate of convergence
whereV, - andVi, .. denoteN x M signal and interference assumes particular importance when uplink transmission takes
matrices, each column of which corresponds to the receivplhce in a framing structure with periodic training symbols.
signal and interference chip vector during thth symbol at In such cases, which are typical, the adaptive algorithms are
different array elementsy,.(p) denotes the matrix of additive required to rapidly converge and provide parameter estimates
noise samples in the same fashion andp) denotes the until they are “reinitialized” in the next frame. Overall, the
beamformer weight vector. When multiple RAKE branchegercentage of OBE updates is 20% or less and far lower when
are used, the SINR at the output of each branch is defing@ percentage of updates is computed over a larger number
in the same manner. In Fig. 10, the probability of bit errasf symbols.

(F) is calculated using the SINR after 750 symbols with The multiuser detector is operated with a single constraint
N =32, K = 10 interfering users, each contributing 2 RAKEabove. If desired, a decrease in the number of adaptive
branchesF, is computed for coherent quadrature modulatiogeights can be achieved in the GSC framework by additional

with L RAKE branches as [23] constraints. This will also lead to faster suppression of intracell
1 Lror 1 interferers if their timing and signature sequences are known.
Py = <m) < I, ) However, a drawback of imposing additional constraints is

where the SINR is measured at each RAKE branch. Also,ttl;\at it rgduces the degrees of freedpm available to suppress
constant power profile is assumed across RAKE branches gHgden mterferers. In any case, active _coghannel users from
maximal ratio combining is used. nglghbonng cells are known to be a S|g_n|f|cant and unpre-
dictable source of interference, making it hard to construct
, i appropriate constraints in advance.
A. Discussion Relative to OBE and RLS, the LMS algorithm does not
In the simulations results described above, it is observedrform adequately—a finding consistent with that in the
that the OBE algorithm outperforms the RLS algorithm ititerature [18]. In situations where use of the LMS algorithm

terms of convergence and complexity. While OBE and RLiS not subject to choice, the above results are suggestive
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Fig. 9. SINR using OBE and RLS detectors versus relative powers of ten equal power interfere¥s=antb and M = 2.
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Fig. 10. P, using RAKE receiver versus number of array elements with ten interfefees, 2 and N = 32.

of using a variable step size LMS algorithm which cafor improved DOA estimates and interference suppression
adapt to time-varying interference conditions. The use bf the beamformer. The benefits of increased SINR due
an antenna array at the base station with even two or fador combined multiuser detection and beamforming can be
elements is seen to be very beneficial for DS-CDMA receptiotraded off for more efficient utilization of the uplink spectrum,
especially when coupled with multiuser detection. This allonsmplified power control, or combinations thereof.
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VI. CONCLUSIONS where

This paper has presented a new receiver structure for CCI ,(m) =21 (mp/v)sin (6)
suppression and fading compensation for CDMA signalin
over frequency-flat or frequency-selective slowly fading chan- (m) _ y
nels. This is accomplished by combining multiuser detection, 6®z;” = 27 (mp/v)[cos(Or1)60k — (1/2) sin (6r)60;,]-
beamforming, and RAKE reception in a single integrated (A.5)
receiver. Conventional RAKE reception is used to combat ] (m) ]
multipath fading while CCI suppression is carried out bjlote that for point sourcesg, ;" = 0. Using (A.2)—~(A.5)
multiuser detector and beamformingy — 1 + M) adaptive m 5 (m) P!
weights are used for the muItiuserr(%\;tector an()j beamformer, ay) = Zp’“” Itk IO (A.6)
where N is the spread-spectrum processing gain ardis !
the number of antenna array elements. The blind adapti@ipkhejqwejwm) is usually modeled as a complex Gauss-

multiuser detector is formulated using a constrained energy, random variable since it is the summation of a large

minimization criterion and adaptation is carried out using &,mber of i.i.d. random variables constituting the channel
novel OBE algorithm. The OBE multiuser detector providesitenuation for each multipath component.

fast convergence and superior tracking relative to conventional
adaptive algorithms such as LMS and RLS. Also, a simple
and robust approximate maximum-likelihood DOA estimator
is presented for beamforming.

APPENDIX B
DOA-MLE DERIVATION

Rewriting (4.1) in vector form using” samples for sensor
APPENDIX A m and (m + 1)

SPATIO-TEMPORAL IMPULSE RESPONSE (m) (m) ~(m)
. i . ekl -V Pkakl Ak +Ikl (Bl)
The composite spatio-temporal impulse response of the N
. .. (m+1) (m+1) (m+1)
channel and thexth sensor to théth-user’s signals is given by ey =Vhay A+ T (B.2)
L1 m m 2(m)
hé’") (t) = Z a;’;’>5(t — ) (A1) whereeél ), a;l ), Ay, andl,, " denote vectors of lengti#
= of the respective temporal samples. Using (A.6)

" q (1> m m
where a{7" is the response of thenth antenna element gyt = I a4 et (B.3)

to the /th multipath component from thé&th user. Each (m) ) )
multipath component is received with an angle spread wheree,;* denotes the residual difference between the channel

A and is assumed to be distinct (nonoverlapping) from ﬂ:enuation at the:th sensor due to angle spreading. To obtain

other paths of the same user. The angle spread arises i3, a series expansion of (A.6) may be carried out for small
to a large number of rays emanating from local scattere?égl';) according to

in the vicinity of the transmitting source. Each scatterer e ()

manifests itself as a subcomponent which is not resolvable R LA (B.4)
from other subcomponents at the receiver due to the sn@“
delays [14], [26]. The different multipath components (from
different directions), however, are assumed to be delayed by Cgln) — oo Z (jé(f);glh?)pkli@qu- (B.5)
at least one chip time allowing them to be resolved by RAKE 2
branches. In other words, each RAKE branch sees a distinct

us yielding

flat-fading signal with a certain angle spread. Thus Under isotropic scatteringy;” can be regarded as complex-
(m) Hapi+el™) valued zero-mean and Gaussian-distributed. Deno;ifffgby
=) paice H (A-2) 4 for notational simplicity and the conditional probability

o density function ofe(]” by f., $y. is given by
where the summation is taken over all the subcomponents;

(™) denotes the angular deviation of the spatial angle of the by, = arg max el e [ ®)
ith subcomponent of thith multipath component; ang,;; and ‘ (mt1) , (m)
qri; denote the corresponding channel magnitude and phase =arg max feley, /e, @) (B.6)
response, respectively. The spatial angiél) is given by

sincee&") is independent of. Now, using (B.2) and (B.3)

S;;) B 27r(mp/v) i (ekl " 69kh) (AS) (m+1) m) ;o 7™ o | Fmtl) (m+1)
where 6;; denotes the nominal angle-of-arrival of thgh- € = = R P P O \/Hf‘t:f7
users’lth multipath component ané,,;; is the angular de- C i | i q h (td- 2 i
viation of the ith subcomponent's DOA. For small-angle~°"nventional assumplions are now mace on the postdetection
spreadA interference vectors to e|_f1able use of an ML_ approach. N.amely,
they are assumed to be instances of a stationary, ergodic, zero-
SZ) ~ ¢§j;‘> +5¢§$) (A.4) mean complex-valued Gaussian process. Thus the mean of
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e is (e{™ei®) and f, can be factored into a product of
partial densities. Thugy, can be obtained by maximizing [20]
the log-likelihood function according to

dyip, = arg max [(e;f;l—l—l) - e;?l)ejq))H(eggﬁl) - eggl)ch))]. 21

(B.8)

Differentiating the right-hand side of (B.8) with respect®o [22]

and setting to zero yields
: m ) [23]
[egcl )]Hegcl Temi® = [egcl +1)]He§cl ei®, (B.9) [24]

Noting that the right-hand side of (B.9) is merely the complex
conjugate of the left-hand side, and setting the imaginary pgas
to zero yields the desired result in (4.2).

[26]
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