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It has been showed that, by employing fake fingers, the existing fingerprint recognition systems may be
easily deceived. So, there is an urgent need for improving their security. Software-based liveness detec-
tion algorithms typically exploit morphological and perspiration-based characteristics separately to mea-
sure the vitality. Both such features provide discriminant information about live and fake fingers, then, it
is reasonable to investigate also their joint contribution.

In this paper, we combine a set of the most robust morphological and perspiration-based measures. The
effectiveness of the proposed approach has been assessed through a comparison with several state-of-
the-art techniques for liveness detection. Experiments have been carried out, for the first time, by adopt-
ing standard databases. They have been taken from the Liveness Detection Competition 2009 whose data
have been acquired by using three different optical sensors. Further, we have analyzed how the perfor-
mance of our algorithm changes when the material employed for the spoof attack is not available during
the training of the system.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

In many applications, a high level of security has been provided
by different biometric devices. In particular, fingerprint scanners
are the most widely adopted for personal identification. However,
the security of a fingerprint-based identification system is compro-
mised in presence of fake biometric data. In fact, it is possible to de-
ceive automatic fingerprint identification systems by presenting a
well-duplicated synthetic finger. Artificial fingerprints carrying
the identity of enrolled users and created to attempt to gain unau-
thorized access are referred as spoof (Nixon et al., 2007). This kind
of attack at the sensor level can occur when people wish to disguise
their own identity or when a person wants to gain privileges of an
authorized person. To minimize sensor vulnerability, different ap-
proaches have been proposed. As an efficient means to circumvent
attacks that use spoof fingers, liveness detection has been suggested.

In the context of fingerprint recognition, liveness detection
means the capability of the system to detect if the biometric sam-
ple presented is really from a live finger tip or not. Liveness meth-
ods may belong to two main categories. The first one exploits
characteristics as the temperature of the finger, the electrical con-
ductivity of the skin and the pulse oximetry. They can be detected
ll rights reserved.
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by using additional hardware in conjunction with the biometric
sensor. This makes the device costly. The second category performs
an extra process on the biometric sample in order to detect the
vitality information directly from the fingerprint images. In this pa-
per, we focus on this second category of approaches, known as soft-
ware-based (Schuckers et al., 2006). The existing software-based
solutions may include dynamic or static methods (Jin et al., 2007).
Static characteristics (as temperature,conductivity) and dynamic
behaviors (skin deformation, perspiration) of live finger tips have
been extensively studied in fingerprint liveness detection research.
In particular, morphology- and perspiration-based characteristics
have been typically exploited separately. Since both features pro-
vide discriminant information about live and fake fingers, it is rea-
sonable to investigate also their joint contribution.

In this paper, we propose a novel fingerprint liveness detection
method which provides fingerprint vitality using static measures
extracted from only one image and based on a combination of skin
perspiration and morphologic properties (Schuckers et al., 2006).
Moreover, we propose a feature selection process that should be
able to choose the best feature set for each fingerprint sensor. This
also allowed us to reduce the time needed for extracting features
from images. The performance of the proposed method has been
compared with several other state-of-the-art algorithms. Such a
comparison has been made, for the first time, by adopting standard
databases taken from the Liveness Detection Competition 2009
(LivDet09) in which Biometrika, CrossMatch and Identix sensors
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Fig. 2. The image shows a macro photography of a live fingerprint.
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were used (Marcialis et al., 2009). Further, we presented a novel
study focused on how the performance of the liveness detection
algorithms changes when fake fingers are produced by employing
materials that are different with respect to those adopted for train-
ing. Also in this case our algorithm demonstrated better perfor-
mance with respect to the other algorithms under comparison.

The paper is organized as follows. An overview of the existing
methodologies for fingerprint liveness detection is presented in
Section 2. In particular, three static methods based on morphologic
characteristics are described. Our approach and the combined fea-
tures are presented in Section 3. Some comparative results against
the three previous described methods are reported in Section 4, by
considering first the assumption that all the materials employed
for realizing the spoof attacks are available for the training of the
system, then the case when the material is new. Finally, our con-
clusions are drawn in Section 5.
2. Related works

Previous works have shown that it is possible to spoof a variety
of fingerprint technologies through relatively simple techniques.
For example, in 2002, Matsumoto et al. (2002) conducted experi-
mental spoofing research by creating gummy fingers to attack fin-
gerprint verification systems. They have reported a vulnerability
evaluation of 68%–100% for cooperative users and 67% for not-
cooperative users (when data were extracted from latent
fingerprints).

In general, attackers use molds of fingers made with materials
as Silicone, Play-Doh, Clay and Gelatin (gummy finger). Fig. 1 shows
a fingerprint image obtained by using a mold made of silicone. In
this section, we describe the two main software-based approaches
that have been proposed so far in the literature.
2.1. Dynamic approaches

Dynamic features derive from the analysis of multiple frames of
the same finger. A typical dynamic property of a live finger is the
perspiration phenomenon that starts from the pores and evolves
in time across the ridges, see Fig. 2. This distinctive spatial mois-
ture pattern can be detected by observing multiple fingerprint
images acquired at two appropriate different times. An interesting
method based on perspiration changes in live fingers was pre-
sented in (Abhyankar and Schuckers, 2009). In this method, the
changing perspiration pattern is isolated through a wavelet analy-
sis of the entire fingerprint image. For an image processing algo-
rithm, to quantify the sweating pattern is challenging. Since this
pattern is a physiological phenomenon, it is variable across sub-
jects. Further, it presents a certain sensitivity to the environment,
the pressure of the finger, the time interval and the initial moisture
Fig. 1. An example of fingerprint obtained by using a mold made of silicone.
content of the skin (Derakhshani et al., 2003). Its effectiveness re-
quires an efficient extraction of the evolving pattern from images.
2.2. Static approaches

Static features can be extracted from a single fingerprint impres-
sion or as a difference between different impressions. Generally,
static measurements may be altered by factors such as the pressure
of the finger on the scanner surface. According to the taxonomy pro-
posed in (Coli et al., 2008), features extracted by different impres-
sions can be skin deformation-based or morphology-based, while
features extracted by a single impression can be perspiration-based
or morphology-based. Morphology-based features give a general
description of the fingerprint pattern using its geometrical proper-
ties. Those based on the perspiration phenomenon quantify perspi-
ration patterns along ridges in live subjects. Elastic deformations
due to the contact, the pressure and the rotation of the fingertip
on the plane surface of the sensor, are more evident in fake finger-
prints made using artificial materials than in live fingerprints.
Deformation-based methods detect liveness by comparing these
distortions through static features (Chen et al., 2005). The elastic
behavior of live and fake fingers has been analyzed by extracting
a specific set of minutiae points, see Fig. 3. The second type of static
features using multiple impressions relies on a morphologic inves-
tigation which exploits the thickness of the ridges that is modified
after producing the fingerprint replica.

Methods which exploit intrinsic properties of a single impres-
sion study the skin perspiration phenomenon. The vitality indica-
Fig. 3. The image shows the discontinuities that interrupt the flow of ridges which
are the basis for most fingerprint authentication methods. Minutiae are the points
at which a ridge stops, and bifurcations are the points at which one ridge divides
into two. Many types of minutiae exist, including dots (very small ridges), islands
(ridges slightly longer than dots, occupying a middle space between two tempo-
rarily divergent ridges), ponds or lakes (empty spaces between two temporarily
divergent ridges), spurs (a notch protruding from a ridge), bridges (small ridges
joining two longer adjacent ridges), and crossovers (two ridges which cross each
other).
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tion can be found by using Wavelet Transform and Fast Fourier
Transform (Coli et al., 2007). Wavelet analysis is able to capture
the non-regular shape typical of the ridges in an image acquired
from a live finger. Images taken from artificial fingers show a more
regular shape. Fourier Transform is employed to study the regular
periodicity of pores on the ridges in live fingerprints. Such a regu-
larity is not present in signals corresponding to spoof fingerprints.
Liveness detection methods which search for morphological char-
acteristics of fingerprint images, are significantly more efficient
when based on the surface coarseness. A novel morphologic static
feature based on the Fourier Transform has been exploited in (Coli
et al., 2007), where the modulus of the Fourier Transform of a given
fingerprint image is computed. The approach is based on the obser-
vation that some high frequency characteristics, such as the ridge
line discontinuity, are less defined in fake fingerprint images; then,
the difference between live and fake fingerprints can be measured
in terms of high frequency energy which quantifies the amount of
residual spectrum on the high frequencies. This approach, how-
ever, has been tested only on one database; further, the compari-
son with respect to methods existing in the scientific literature
seems only in a preliminary state. Finally, a promising texture-
based method was proposed in (Nikam and Agarwal, 2008). In this
approach textural details captured by using local binary pattern
histograms and ridge frequency and orientation information cap-
tured by using wavelet energy features were combined.

Below, we describe three static morphology-based methods
which exploit a single fingerprint image for vitality information
extraction and which have been used for a comparison with our
approach in Section 4. Each of them exploits a subset of the fea-
tures we used in our algorithm. Note that also (Coli et al., 2008) re-
ports experiments on state-of-the-art features. In their study,
however, both dynamic and static features were employed, while
in the current approach we employ only static features; further
we evaluate the related discriminant power on standard databases.

Moon et al. (2005) proposed a method based on analyzing the
surface coarseness in high resolution (1000 dpi) fingertip images.
It has been observed that the surface of a fake finger is much coar-
ser than that one of the human skin. The coarseness feature is mea-
sured by computing the standard deviation of the residual noise of
the fingerprint image. The alternation of the ridges and valleys,
known as ridge/valley pattern, makes the fingertip surfaces intrin-
sically coarse at a certain scale. This effect of the ridge/valley pat-
tern which may contribute to the surface coarseness was
minimized by investigating the input image using a wavelet
decomposition at different scales. In particular, the image is en-
hanced through a histogram equalization and converted into a
mono-dimensional signal representing the gray level profile of
the ridges. The residual noise was calculated as difference between
the two fingerprint images before and after de-noising. The stan-
dard deviation of the residual noise gives the information about
the pixel value fluctuation which is generally stronger in the noise
residue of a coarser surface texture, see Fig. 4 and Fig. 5. To make a
decision Moon used a threshold equal to 25; in general, however,
the optimal threshold value depends on the database adopted for
carry out experiments. We empirically found that it may signifi-
cantly vary with the material employed to realize spoof samples
and the resolution factor. This algorithm is fast and convenient
but it works well only in presence of an high resolution sensor
(1000 dpi, while the common commercial sensors present a resolu-
tion of about 500 dpi) (Coli et al., 2007).

An interesting texture-based approach using a single fingerprint
image was proposed by Nikam and Agarwal (2009). They analyzed
liveness of a fingerprint image by using the gray level associated to
the fingerprint pixels. The gray level distribution in a fingerprint
image changes when the physical structure changes. This informa-
tion is quantified by using several texture features. Real and fake
fingerprint images present different textural properties useful for
vitality detection. Due to the presence of sweat pores and the per-
spiration phenomenon, authentic fingerprints exhibit non-unifor-
mity of gray levels along ridges, while due to the characteristics
of artificial material surface, such as gelatin or silicone, spoof fin-
gers show high uniformity of gray levels along ridges. The gray le-
vel distribution of the single pixels is modeled as first order
statistics, while the joint gray level function between pair of pixels
is modeled as second order statistics. The authors proposed Gabor
filter-based features, since fingerprints exhibit oriented texture-
like pattern and Gabor filters can optimally capture local frequency
and orientation information. The basic steps of the adopted proce-
dure are listed as follows:

� Step1: Fingerprint image is filtered using a bank of 4 Gabor fil-
ters oriented in 4 directions 0�, 45�, 90� and 135�.
� Step2: A gray level co-occurrence matrix method is applied to

filtered images to extract textural details.
� Step3: Dimensionality of the features is reduced by Principal

Component Analysis (PCA).

Features are used to train three different classifiers: a Neural
Network (NN), a Support Vector Machine (SVM) and OneR. A Mul-
tilayer Perceptron (MLP) is used as NN and a Radial basis function
(RBF) is used as the SVM kernel, with parameters C and c as 1 and
2.3, respectively. The three classifiers are then fused using the
‘‘Max Rule’’. This approach presents good performance when the
core point (see Fig. 3) is accurately located. However, existing core
detection algorithms do not work well in the presence of poor
quality images or with very dry or wet fingerprints, resulting in a
noisy core.

An approach based on multiresolution texture analysis and the
inter-ridge frequencies analysis of fingerprint images has been pro-
posed by Abhyankar and Schuckers (2006). They used different
texture features to quantify how the gray level distribution in a fin-
gerprint image changes when the physical structure changes. First
order statistics model the gray level distribution of the single pix-
els by using histograms, while second order statistics refer to the
joint gray level function between pair of pixels. Two secondary fea-
tures were used, Cluster Shade and Cluster Prominence, based on
the co-occurrence matrix. These features, derived from a multi-res-
olution texture analysis, were combined with features derived
from fingerprint local-ridge frequency analysis. Error rates were
computed after processing the statistics and the local ridges fre-
quencies features by using Fuzzy-C-means classifier. This algo-
rithm does not depend on the perspiration phenomenon and it is
able to overcome the dependence on more than one fingerprint im-
age. However, it presents limitations in real scenarios, since the
computation of the local-ridge frequencies may be affected by cold
weather and different skin conditions, including dirty fingers and
wet fingers.
3. The proposed approach

Among the software-based approaches proposed in the scien-
tific literature, methods which rely only on one impression result
in a faster authentication. However, none of the static approaches
developed so far seems to be able to separate fake and live finger-
prints with acceptable error rates. They usually exploit a limited
set of features which can perform differently as the resolution of
the images under consideration, as well as the material used for
spoofing, varies. Further, in general each individual static feature
we previously described is able to capture the vitality by exploiting
a different aspects of the fingerprint. Then, the proposed investiga-
tion focuses on combining features taken from different



Fig. 4. Wavelet-based de-noising of a human fingerprint (image taken from Identix database) and the corresponding residual noise.

Fig. 5. Wavelet-based de-noising of a fake fingerprint made of silicone (image taken the from Identix database) and the corresponding residual noise.

E. Marasco, C. Sansone / Pattern Recognition Letters 33 (2012) 1148–1156 1151
approaches, in particular, from the morphology- and the perspira-
tion-based ones. Morphology-based approaches, in fact, try to
model the difference between live and fake images, while perspira-
tion-based approaches try to infer dynamic information from a
single static impression. A combination of perspiration- and mor-
phology-based features is then expected to achieve better perfor-
mance than any of the individual measures improving the
vitality detection accuracy. Moreover, in order to cope with differ-
ent image resolution factors, we propose a feature selection pro-
cess that should be able to choose the best feature set for each
fingerprint sensor. This also allowed us to reduce the time needed
for extracting features from images.
3.1. The considered morphology-based features

� Residual noise of the fingerprint image: indicates the difference
between an original and de-noised image, in which the noise
components are due to the coarseness of the fake finger sur-
face (Abhyankar and Schuckers, 2006). Materials used to
make fake fingers such as Silicone or Gelatin consist of
organic molecules which tend to agglomerate, thus the sur-
face of a live finger is generally smoother than an artificial
one (Moon et al., 2005). In the present work, the coarseness
of the image can be measured by computing the standard
deviation of the residual noise of an image, where the
amount of residual noise was computed by using a wave-
let-based approach. According to the approach proposed by
Moon et al. (2005), we have treated the surface coarseness
as a kind of Gaussian white noise added to the image. Firstly,
the image was de-noised with a Symlet by applying a soft-
threshold for wavelet shrinkage. The noise residue was
achieved by calculating the difference between the two finger
tip images before and after de-noising. The Noise Residue
Standard Deviation is a good indicator of texture coarseness
since the pixel value fluctuation in the noise residue of a
coarser surface texture is generally stronger.
� First order statistics: measure the likelihood of observing a gray

value at a randomly-chosen location in the image. The gray
level associated to each pixel is exploited to determine a vitality
degree of the fingerprint image. They can be computed from the
histogram of pixel intensities in the image. The goal is to quan-
tify the variations of the gray level distribution when the phys-
ical structure changes. The distinction between a fake and a live
finger is based on the difference of these statistics. If H(n) indi-
cates the normalized histogram and N the number of bin, the set
of first order statistical properties used in this work are as fol-
lows (Abhyankar and Schuckers, 2006):
– Energy:
e ¼
XN�1

n¼0

HðnÞ2 ð1Þ

– Entropy:

s ¼ �
XN�1

n¼0

HðnÞlog HðnÞ ð2Þ

– Median:

M ¼ arg min
a

X

n

HðnÞjn� aj ð3Þ
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– Variance:

r2 ¼
XN

n¼0

ðn� lÞ2HðnÞ ð4Þ

– Skewness:

c1 ¼
1
r3

XN�1

n¼0

ðn� lÞ3HðnÞ ð5Þ

– Kurtosis:

c2 ¼
1
r4

XN�1

n¼0

ðn� lÞ4HðnÞ ð6Þ

– Coefficient of variation:

cv ¼ r
l

ð7Þ

3.2. The considered perspiration-based features

� Individual pore spacing. Extensive research has shown that pore
patterns are unique to each individual (Abhyankar and Schuc-
kers, 2006). A photo-micrograph of pores is shown in Fig. 6.
For the purpose of the proposed approach, we focus on analyz-
ing the occurrence of pores that causes a gray value variability
in the fingerprint image. This tendency can be studied by using
the Fast Fourier Transform (FFT), then the fingerprint image has
to be transformed into a ridge signal, representing the gray-level
value along the ridge. The discrimination between a live finger
and a fake one is performed in the space of the total energy of
the ridge signal. In this method, according to the algorithm pro-
posed in (Derakhshani et al., 2003), the 2-dimensional finger-
print image was mapped to 1-dimensional signal which
represents the gray-level values along the ridges. This technique
enables quantification of the perspiration phenomenon in a
given image. The gray-level variations in the signal correspond
to variations in moisture due to the pores and the presence of
perspiration. By transforming the signal in the Fourier domain
lets to measure this static variability in gray-level along the
ridges. In particular, the focus is on frequencies corresponding
to the spacial frequencies of the pores. Firstly, by using a med-
ian filter the image was processed to remove noise and device
effects. Such as de-noised image was converted into a binary
one. Second, a thinning routine was applied on the binary image
and the fingerprint ridge paths, composed by only one pixel,
were determined. Connections were removed to have only indi-
vidual curves. Finally, the FFT was computed and the total
energy associated to the spatial frequencies of the pores were
obtained as static feature. The coefficients of interest are from
11 to 33, since these values correspond to the spacial frequen-
cies (0.4–1.2 mm) of pores. The formula for this static measure
SM is given from the following:
Fig. 6. The image on the left shows a photo-graphical example of pores. The image
on the right is output from a high resolution sensor (1000 dpi) that captures the
location of pores in detail. Both are taken from Choi et al. (2007).
SM ¼
X33

k¼11

f ðkÞ2 ð8Þ

where f(k) is expressed by the following:

f ðkÞ ¼
Pn

i¼1j
P256

p¼1Sa
0iðpÞe�j2pðk�1Þðp�1Þ=256j

n
ð9Þ

Sa
0i ¼ S0i �meanðS0iÞ ð10Þ

where n is the total number of individual ridges and S0i is the ith
ridge.
� Intensity-based. From the intensity distribution perspective,

among the 256 different possible intensities, the spoof and
cadaver fingerprints images are distributed in the dark (<150)
(Tan and Schuckers, 2005). The current study uses image histo-
grams showing the number of pixels at each different intensity
values found in the image and it focuses on the gray level values
along the ridge, represented by the ridge signal. We have com-
puted two particular features: (i) gray level 1 ratio, correspond-
ing to the ratio between the number of pixels having a gray
level belonging to the range (150,253) and the number of pixels
having a gray level belonging to the range (1,149); (ii)gray level
2 ratio, corresponding to the ratio between the number of pixels
having a gray level belonging to the range (246,256) and the
number of pixels having a gray level belonging to the range
(1,245). Moreover, we have analyzed the uniformity of gray lev-
els along ridge lines and the contrast between valleys and
ridges. As Fig. 7 shows, real fingerprints exhibit non-uniformity
of gray levels and high ridge/valley contrast values. Then, the
general variation in gray-level values of in a spoof fingerprint
is less than a live one. To capture this information we have com-
puted as additional feature the Gradient of the gray-level matrix
of the image.

3.3. Feature selection and classification

The time to perform the recognition process is a fundamental
parameter which affects the performance of the proposed system.
A feature selection phase reduces the number of features to be ex-
tracted and subsequently the time needed for feature extraction.
We have selected the subset of features with highest discriminant
power on the training set by using a Sequential Forward Selection
technique. The feature selection was performed for each sensor.

Different classifiers have been trained, such as a Support Vector
Machine, a Decision Tree, a Multilayer Perceptron and a Bayesian
classifier. For each sensor, we have chosen the classifier with the
highest accuracy on the training set.
Fig. 7. Gray level uniformity analysis in fingerprint images: high level value for a
real fingerprint and low for a spoof. The image was taken from Nikam and Agarwal
(2009).



Table 1
Datasets for training.

Database Subjects Live images Fake images Frames

Biometrika 13 520 520 0 and 5 s
Identix 35 375 375 0 and 2 s
CrossMatch 63 500 500 0 and 2 s

Table 2
Datasets for testing.

Database Subjects Live images Fake images Frames

Biometrika 37 1440 1440 0 and 5 s
Identix 125 1125 1125 0 and 2 s
CrossMatch 191 1500 1500 0 and 2 s

Table 3
Fingerprint sensors used for LivDet 2009.

Sensors Model no. Resolution (dpi) Image size

Biometrika FX2000 569 (312 � 372)
Identix DFR2100 686 (720 � 720)
CrossMatch Verifier 300 LC 500 (480 � 640)

Table 4
Time required for extracting the proposed set of features on a Core Duo T8100 2, 1 Ghz
Intel Processor.

Feature Average extraction time (s)

Energy 0.15
Entropy 0.02
Mean 0.02
Variance 0.02
Skewness 0.06
Kurtosis 0.06
Coefficient of variation 0.02
Residual noise std 0.59
Indiv pore spacing 1.00
Gray level 1 0.02
Gray level 2 0.02
Gradient 0.06

Table 5
Selected features for each database.

Feature Biometrika CrossMatch Identix

Morphology-based Energy x x
Morphology-based Entropy x x
Morphology-based Mean x x x
Morphology-based Variance x x
Morphology-based Skewness x x
Morphology-based Kurtosis x x
Morphology-based Coefficient of variation x x x
Morphology-based Residual noise std x x x
Perspiration-based Pore spacing x x
Perspiration-based Gray level 1 x
Perspiration-based Gray level 2 x x
Perspiration-based Gradient x x x

Table 6
Performance of the proposed algorithm.

Ferrlive (%) Ferrfake (%) e (%)

Biometrika 12.20 13.00 12.60
CrossMatch 17.40 12.90 15.20
Identix 8.30 11.00 9.70
Average 12.60 12.30 12.47

Table 7
Performance of the best algorithm submitted to the Liveness Detection Competition
2009.

Ferrlive (%) Ferrfake (%) e (%)

Biometrika 15.60 20.70 18.20
CrossMatch 14.40 15.90 15.20
Identix 9.80 11.30 10.60
Average 13.20 16.10 14.67
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4. Experimental results

4.1. Datasets

Our experimental phase was carried out by using three dat-
abases taken from the Fingerprint Liveness Detection Competition
2009 (LivDet09) and composed by live and spoof fingerprint
images. Each database refers to a different sensor (Biometri-
ka,CrossMatch e Identix) and each one of them is composed by
two subsets, one for training and the other one for testing the algo-
rithm (Marcialis et al., 2009). The considered sensors are optical
and the employed fingerprint sensing mechanism acquires the im-
age by placing the finger on a transparent prism and then using a
camera. In total internal reflection (TIR) sensors, ridges and valleys
are imaged in contrast: ridges are in contact with a glass platen,
the surface is illuminated trough one side on a prism and then re-
flected. Sensors based on this technology are vulnerable to spoof
attacks in which the artificial fingerprints are made of materials
having a light reflectivity similar to that one of the skin.

Biometrika training dataset is made up by 520 silicone images
and 520 live images (13 subjects � 20 acquisitions� 2 frames),
with 2 time-series (0 s and 5 s). The corresponding test set is made
up by 1440 silicone images and 1440 live images (37 subjects � 20
acquisitions � 2 frames), with 2 time-series (0 s and 5 s). Cross-
Match training dataset is made up by 500 live images and 500 fake
images produced by using silicone, gelatin and Play-Doh, with 2
time-series (0 s and 2 s). The corresponding test set is made up by
1500 live images and 1500 fake images produced by using Silicone,
Gelatin and Play-Doh, with 2 time-series (0 s and 2 s). Identix train-
ing dataset is made up by 375 live images and 375 spoof images
produced by using Silicone, Gelatin and Play-Doh, with 2 time-series
(0 s and 2 s). The corresponding test set is made up by 1125 live
images and 1125 spoof images produced by using Silicone, Gelatin
and Play-Doh, with 2 time-series (0 s and 2 s). The details regarding
the data collection are reported in Tables 1 and 2, while those re-
lated to characteristics of the sensors are reported in Table 3.

4.2. Performance of our method

In this paper, the classification performance was evaluated by
adopting the same parameters used during LivDet09, defined
below:

� Ferrlive: rate of misclassified live fingerprints.
� Ferrfake: rate of misclassified fake fingerprints.

The performance indicator is given from the error e averaged on
the three databases Biometrika, CrossMatch and Identix, where e for
each database is computed as follows:

e ¼ Ferrliveþ Ferrfake
2

ð11Þ

The time required for feature extraction is reported in Table 4
for each feature exploited in our approach. Table 5 reports the
features selected for each sensor by using a Sequential Forward



Table 8
Performance of the method of Moon on the three databases LivDet09 using Symlet
wavelet for de-noising.

Threshold Ferrlive (%) Ferrfake (%) e (%)

Biometrika 20.60 20.80 25.00 23.00
CrossMatch 3.1�11 27.40 19.60 23.50
Identix 10.50 74.70 1.60 38.20
Avg 40.97 15.40 28.23

Table 9
Performance of the method of Nikam (Max Rule) on the three databases LivDet09.

Ferrlive (%) Ferrfake (%) e (%)

Biometrika 14.30 42.30 28.30
CrossMatch 19.00 18.40 18.70
Identix 23.70 37.00 30.35
Avg 19.00 32.57 25.78

Table 10
Performance of the method of Abhyankar and Schuckers on the three databases
LivDet09.

Ferrlive (%) Ferrfake (%) e (%)

Biometrika 24.20 39.20 31.70
CrossMatch 39.75 23.30 31.53
Identix 48.40 46.00 47.20
Avg 37.45 36.17 36.81

Table 11
Performance of the proposed approach on CrossMatch and Identix databases.

CrossMatch Identix

Gelatin
(%)

Play-Doh
(%)

Silicone
(%)

Gelatin
(%)

Play-Doh
(%)

Silicone
(%)

Ferrlive 6.5 5.7 12.6 3.8 19.2 9.7
Ferrfake 25.9 16.7 10.0 42.3 5.5 30.6
e 16.2 11.2 11.3 23.05 12.35 20.15
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Selection technique. The individual discriminant power of each fea-
ture considered in this work, has shown a certain dependence on
the database, while the joint (usage of both perspiration- and mor-
phology-based features) discriminant power has been high on all
the three databases. This is confirmed by the fact that in all cases
both morphology- and perspiration-based features have been se-
lected. The subset of features selected for all the three sensors
was composed by three morphology-based features (mean, stan-
dard deviation of the residual noise and the coefficient of varia-
tions) and one perspiration-based feature (gradient). Table 6
reports the results obtained by employing the proposed method,
the achieved average error rate is 12.47%. On Biometrika and Identix
datasets, the highest accuracy was achieved by using a Multilayer
Perceptron classifier, while on CrossMatch dataset, by using a Deci-
sion Tree classifier.

As a first comparison, we report in Table 7 the performance
achieved by the algorithm which won of the LivDet09 Competition,
referred to as Anonymous2. It made an error of 14.67% averaged on
the three databases. It can be noted that our approach performed
better on the average; moreover, on two datasets we obtaind bet-
ter results with respect to Anonymous2,while the same results on
the third one (CrossMatch).
4.3. Comparison with existing static methods

Since the characteristics exploited by the algorithm which won
the LivDet09 competition are not known, we compared our
algorithm to other approaches which exploit only morphology-
based or perspiration-based features, in order to have an experi-
mental proof that a combination of them achieves better classifica-
tion performance. In particular, we considered the three static
methods described at the end of Section 2.

To implement the approach proposed by Moon, fingerprint
images were firstly enhanced through a histogram equalization
pre-processing, then they were de-noising by adopting different kind
of filters in order to maximize the performance. A median filter pro-
duced residual noise standard deviation values similar to those ob-
tained in the approach proposed by Moon, while wavelet-based
filters produced lower values. Table 8 reports the best performance
obtained by using a Symlet wavelet for de-noising. According to
the procedure proposed in (Moon et al., 2005), the wavelet shrinkage
was performed by applying a soft-threshold. On the CrossMatch data-
base, composed by a significant percentage of poor quality images,
the threshold assumed the lowest value. In our experiments, we also
used wavelet packets since they work on high frequencies, and it is
known that, fingerprint images present the majority of the compo-
nents just at high frequencies. This procedure is performed by cut-
ting the frequency domain in the middle at each filtering step, and
keeping the high-frequency components only (Walczak et al.,
1996). Wavelet packets were able to improve the classification accu-
racy only when the resolution was high enough, such as on Identix
database where the error decreased from 38.20% to 35.90%.

Table 9 shows the performance of the method proposed by Ni-
kam which achieved the lowest average error rate, equal to 18.70%,
on the CrossMatch database where the Ferrfake is the lowest too. On
Biometrika database, the error made on the live fingerprints is the
lowest, while regarding the negative class, the training set does not
seem to be well represented by the three materials considered to
realize the spoof attacks. Table 10 shows the performance of the
method proposed by Abhyankar–Schuckers, which achieved the
highest error rate, equal to 47.20%, on the Identix database having
the highest resolution; in this case, Ferrlive and Ferrfake are both
high. On Biometrika, the error made on live fingerprints is the low-
est also for this approach.

By comparing the results reported in Tables 8–10 with those
obtained by our approach (Table 6), it can be noted that we per-
formed better than any of the existing methods on all the three
databases. In particular, we showed the lowest average error rate
(9.70%) on Identix database, while approaches which exploit only
one of the two considered categories of features showed the high-
est error rate on this dataset. The approaches proposed by Moon
and Nikam which exploit morphology-based features, in fact, pre-
sented an average error rate of 38.20% and 30.35% respectively,
while the approach proposed by Abhyankar, which exploits perspi-
ration-based features, had an average error rate of 47.20% (see Ta-
ble 10). This confirms our claims regards the advantages of using
both morphology- and perspiration-based features.

4.4. Analysis of the robustness when the material used for spoofing
changes

In our previous experiments, the classifier was trained by using
features extracted from fake samples made with all the materials
available in each database. In particular, Gelatin, Silicone and
Play-Doh are the materials employed in both Identix and Cross-
Match databases. However, a good liveness detection algorithm is
expected to be robust when the material used to learn the fake
class changes. This aspect is a challenging problem in fingerprint
liveness detection, since nowadays materials used for fraudulent
spoof attacks are going to become very sophisticated. In this sec-
tion, we analyze the performance of the existing liveness algo-
rithms in scenarios reproducing the real conditions, where the
material used to attack the system is not a priori known.



Table 12
Performance of the method proposed by Moon on CrossMatch and Identix databases.

CrossMatch Identix

Gelatin (%) Play-Doh (%) Silicone (%) Gelatin (%) Play-Doh (%) Silicone (%)

Ferrlive 12.30 15.00 35.70 45.20 79.60 40.80
Ferrfake 63.10 61.80 47.30 31.80 4.20 36.80
e 37.70 38.40 41.50 38.50 41.90 38.80

Table 13
Performance of the method proposed by Nikam on CrossMatch and Identix databases.

CrossMatch Identix

Gelatin (%) Play-Doh (%) Silicone (%) Gelatin (%) Play-Doh (%) Silicone (%)

Ferrlive 27.20 43.70 24.20 23.50 29.30 20.00
Ferrfake 22.00 32.90 31.60 16.00 28.80 31.50
e 24.60 38.30 27.90 19.75 29.05 25.75

Table 14
Performance of the method proposed by Abhyankar and Schuckers on CrossMatch and Identix databases.

CrossMatch Identix

Gelatin (%) Play-Doh (%) Silicone (%) Gelatin (%) Play-Doh (%) Silicone (%)

Ferrlive 45.80 29.80 58.60 65.50 61.60 37.90
Ferrfake 12.20 24.40 17.00 2.40 46.40 27.70
e 29.00 27.10 37.80 33.45 54.00 32.80

Table 15
Performance of the analyzed approaches in terms of the average error e on the Identix
and CrossMatch databases. Last row is reported for the sake of comparison.

Avg e Our method Moon Nikam Abhyankar Schuckers

Gelatin 19.63 38.00 22.18 31.23
Play-Doh 11.78 40.10 33.68 40.55
Silicone 15.73 41.50 26.83 35.30
All materials 12.45 30.85 24.53 39.37
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In our experiments, each detection algorithm was trained by
using a train set in which the negative class was represented by
spoof fingerprints realized with only one of the available materials
in the dataset. Table 11 reports the performance of our method. In
presence of high resolution images, taken from the Identix data-
base, when the training is performed by employing fake fingers
made in Play-Doh and the testing using Gelatin and Silicone, the
spoofing recognition rate is good. Table 12 shows that the method
proposed by Moon wrongly classifies the majority of the fake fin-
gerprints taken from CrossMatch database. For a higher resolution
factor, such a method presents good robustness in presence of un-
known materials using for spoofing. Tables 13 and 14 show that the
variation in fake materials does not affect the performance of both
Nikam and Abhyankar–Schuckers approaches, when the training
set is composed only by samples made in Gelatin.

As resumed in Table 15, when only one feature is used (i.e. the
method by Moon), performance significantly decreases, while algo-
rithms that use more than one feature result more robust to new
materials. Once again, our algorithm always overcomes all the exist-
ing approaches in all the three considered cases. Note that we could
not perform this analysis also for the best algorithm proposed dur-
ing the LivDet09 because its description is not publicly available.
5. Discussion and conclusions

In this paper, we have proposed a novel approach for liveness
detection in fingerprint scanners which combines multiple
features derived from a morphological- and a perspiration- based
analysis of one fingerprint image. The proposed algorithm has been
tested on three different optical sensors.

Our experiments demonstrated that it overcomes the limita-
tions of the existing approaches in real scenarios, where the reso-
lution factor of the fingerprint images is not high enough. Further,
since our method does not require additional hardware, the cost of
the fingerprint sensor does not increase. The overall system will
also be faster, since the required information can be extracted from
only one image without scanning twice the user’s finger. Our
experiments show also that the performance of liveness detection
approaches in which only one feature is exploited, decreases in the
presence of new materials employed for spoofing. This weakness is
reduced when multiple vitality features are extracted. In particular,
the combination of morphology- and perspiration-based features
showed a high robustness in such a scenario.

This notwithstanding, the achieved error rates can be considered
still high to think about its use in a possible unimodal real scenario
in which very low error rates are required. However, recent studies
concerning multimodal scenarios (Rodrigues et al., 2009; Marasco
et al., 2011) suggest a possible usage of the proposed algorithm.
The idea is to consider a multimodal system in which a spoofing
detection algorithm has been integrated and where only one or a
subset of the fused modalities has been spoofed; when the modality
is detected as fake, it is not included in the combination scheme. In
this application the proposed algorithm is able to significantly im-
prove the overall multimodal performance (Marasco et al., 2011).

Since we exploited multiple features and adopted a feature
selection technique based on the specific sensor, we expect that
the proposed approach could be quite robust to a circumvention
that arises when the features computed by the algorithm are
known. On the other, the tolerance with respect to a possible var-
iation of these features depends on the discriminant power showed
by the feature which is under attack. So, as a future research, it
would be interesting to carry out experiments where the value of
a subset of these features changes, in order to analyze the corre-
sponding impact on the performance of our approach.
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Finally, it must be recalled that the three sensors on which we
have tested our approach – the ones present in the LivDet09 com-
petition – are optical. Since some of the morphology- and perspira-
tion-based features used in our proposal have been already
employed with capacitive or electro-optical sensors (Abhyankar
and Schuckers, 2006; Tan and Schuckers, 2005), we expect that
our approach could be successfully applied to these other sensor
technologies. On the other hand, the applicability to emerging sys-
tems in which the finger is optically imaged in 2-D or 3-D will be
matter of future research.
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