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Abstract—Compressive sensing (CS) provides a new paradigm
for efficient data gathering in wireless sensor networks (WSNs).
In this paper, with the assumption that sensor data is sparse we
apply the theory of CS to data gathering for a WSN where n
nodes are randomly deployed. We investigate the fundamental
limitation of data gathering with CS for both single-sink and
multi-sink random networks under protocol interference model,
in terms of capacity and delay. For the single-sink case, we
present a simple scheme for data gathering with CS and derive
the bounds of the data gathering capacity. We show that the
proposed scheme can achieve the capacity @(%) and the delay

O(M,/i5ew)» where W is the data rate on each link and M is

the number of random projections required for reconstructing a
snapshot. The results show that the proposed scheme can achieve
a capacity gain of O(7%) over the baseline transmission scheme

and the delay can also be reduced by a factor of 6(7m]\/‘[’g").
For the multi-sink case, we consider the scenario where n, sinks
are present in the network and each sink collects one random
projection from n, randomly selected source nodes. We construct
a simple architecture for multi-session data gathering with CS.
We show that the per-session capacity of data gathering with CS

is @(Mn:\/%) and the per-session delay is ©(M, /7).

Finally, we validate our theoretical results for the scaling laws of
the capacity in both single-sink and multi-sink networks through
simulations.

I. INTRODUCTION

Wireless sensor networks (WSNSs) consisting of a large
number of nodes, are usually deployed in a large region for
many applications, such as surveillance, security and habit
monitoring. Data gathering is one of the most important
functions provided by WSNs, where sensors are responsible
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for gathering information and delivering them to a destination
node (sink). In many situations, it is inefficient for sensors
to transmit all the raw data to the sink, especially when
sensed data exhibits high correlation. To reduce transport
load, conventional compression techniques are usually used
to exploit the correlation among sensor data so that less
data can be delivered to the sink without sacrificing the
salient information. However, the efficiency of conventional
compression techniques relies heavily on compression and
routing algorithms, which result in large overhead cost of com-
munication and computation for sensors. Moreover, distributed
source coding techniques, such as Slepian-Wolf Coding [1],
are also difficult to be applied in such scenarios in that the prior
knowledge about the characteristics of data distribution should
be known in advance. Fortunately, compressive sensing (CS)
[2] provides a promising solution in a more efficient manner
for the data gathering problem in WSNs, which attempts to
reduce sensor data traffic over the network through collecting
far fewer measurements than the number of original sensor
data.

The applications of compressive sensing for data gathering
in multi-hop WSNs have drawn much attention recently [3]-
[7]. In [3], [4], Luo et al. applied CS theory for data gathering
to efficiently reduce communication cost and prolong network
lifetime for large scale multi-hop WSNs. In [5], Quer et al.
studied the behavior of CS in conjunction network topology
and routing to transmit random projections of the sensor data
in a data gathering WSN. In [6], Lee et al. investigated CS
for energy efficient data gathering in a multi-hop WSN. In [7],
Xiang et al. proposed compressed data aggregation technique
with CS to minimize the network energy consumption through
joint routing and compressed aggregation scheme.

While various applications of compressive sensing for data
gathering have been extensively studied, there have been few
works on investigating the performance of data gathering with
CS in terms of capacity and delay. In this paper, we will
concentrate on the capacity and delay for data gathering with
CS in random networks, where n sensor nodes are randomly
deployed in a region. The typical traffic pattern for data
gathering is many-to-one or many-to-many. The capacity of
this traffic pattern has been extensively studied in a few papers
[9]-[12]. Also, both capacity and delay scaling laws for this
traffic pattern have been investigated in [13], [14]. However,
the traffic model adopted in the above works is based on the
baseline transmission scheme where the raw data is directly
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transmitted to the sink(s) through multi-hop routing without
any processing in intermediate nodes. It is assumed to be
inefficient when the transmitted data exhibits high correlation.
Therefore, it is necessary to characterize the improvement of
the capacity and delay performance brought by the theory of
CS for data gathering. The initial work on investigating the
capacity of data gathering with CS in a single-sink network
can be found in [3]. To derive the lower bound of the capacity,
they assume that there exists an appropriate routing scheme
such that each subtree contains roughly the same number
of nodes and has relatively uniform characteristics of data
sparsity distribution in each subtree. This assumption is quite
strict since the characteristics of a sensed field may not be
uniform. In this paper, we relax this constraint and extend the
application of CS for data gathering to a more general case
where the underlying data sparsity distribution can be non-
uniform in each subtree.

Furthermore, we also consider a scenario where multiple
sinks are present in the network. In such a network, each
sink is responsible for collecting data from some source nodes
that are randomly selected from n nodes. We also assume
that each sink can recover the entire sensed field from these
source nodes. This assumption is built on the remarkable result
of compressive sensing using sparse random projections [17],
[18] which states that recovering an approximation of n sensor
data can be obtained by querying any k randomly selected
sensors, where k can be far smaller than n. Due to the fact
that wireless network allows for spatial reuse [8], multiple
sinks can collect data from their corresponding source nodes
simultaneously without interfering with each other under an
appropriate scheduling scheme. This also increases the net-
work capacity for data gathering. The main contributions of
our work are listed as follows.

o We apply the theory of CS to data gathering in both
single-sink and multi-sink networks. In particular, we
exploit the idea of sparse random projections for da-
ta gathering in multi-sink networks, which can reduce
the communication cost and pre-processing of data. We
analyze not only the capacity but also the delay under
protocol interference model in single-sink and multi-sink
networks, respectively. For each type of network, we
derive matching asymptotic upper bound and lower bound
on the data gathering capacity. We also present simulation
results to verify the theoretical analysis on the scaling
laws of the capacity in both single-sink and multi-sink
networks.

o For the single-sink network, we consider the scenario
where n source nodes are randomly deployed in the
network. We present a simple scheme with CS for data
gathering routing in random networks without the as-
sumption on the relatively uniform characteristics of data
sparsity distribution in each subtree, which is different
from the work in [3]. We derive the upper bound of
the data gathering capacity, and prove that the proposed
scheme can achieve this upper bound in the order sense,

i.e, the total capacity of @(%)1. We also study the delay

performance of the proposed scheme and show that the

delay for collecting a snapshot with CS is ©(M 10271 )?
The results show that the proposed scheme can achieve
a capacity gain of ©(4;) over the baseline transmission
scheme and the delay can also be reduced by a factor of
@(7\%0%).

o For the multi-sink network, we consider multi-session
data gathering with CS in random networks in which
there are total ng sinks in the network. For each session,
each sink collects one random projection from n4 source
nodes that are randomly selected from n nodes. Each sink
can obtain n values of nodes from M random projections
by means of CS. Under this model, we first derive the
upper bound on the data gathering capacity. We then
construct a simple architecture for data gathering routing
and prove that the proposed scheme can achieve the upper
bound in the order sense. We show that the per-session
capacity of data gathering with CS is @(Mn:\f%w)

Meanwhile, we find the average delay for each data gath-

ering session in multi-sink networks is still © (M

102 n )
This is because delay is mainly determined by the number
of hops required for sending a packet to the sink and the
number of random measurements M.

The remainder of this paper is organized as follows. In Section
II, we introduce the basic theory of compressive sensing and
the network model used in the paper. In Section III, we
consider the case with a single sink, and present a scheduling
and routing scheme based on CS for data gathering in WSNs.
We derive the bounds of data gathering capacity and delay for
the proposed scheme. In Section IV, we extend the application
of CS to data gathering in multi-sink networks. We construct
an architecture for multi-session data gathering routing and
derive the bounds of capacity and delay for the proposed
scheme. In Section V, we validate our theoretical results
through simulations. Finally, we conclude the paper in Section
VL

II. PRELIMINARIES
A. Compressive Sensing Basics

Compressive sensing has emerged as a new technique for
signal acquisition and processing. CS provides a new sampling
paradigm for sparse signals and enables to reconstruct a sparse
signal from a small number of measurements. Consider a
signal vector x = (z1,...,7,)7. Suppose that x can be
represented as x = >, 6;1; in domain U = (¢1,...,9,),
where 6; are the transform coefficients in domain ¥. We say
that the vector x is k-sparse if there are only k& non-zero
entries in vector @ = (,...,0,) . Now considering in the

'We use the following asymptotic notation throughout this paper: Giv-
en non-negative functions f(n) and g(n): f(n) = O(g(n)) mean-
s lim sup f(n)/g(n) < oo; f(n) = o(g(n)) is equivalent to

Timf(n)/g(n) = 0: f(n) = Qg(n)) is equivalent to g(n) = O(f(n)):
f(n) = w(g(n)) is equivalent to g(n) = o(f(n)); f(n) = ©(g(n)) means
f(n) = O(g(n)) and f(n) = Q(g(n)).

2log denotes the logarithm to the base e throughout this paper.
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Fig. 1. Tllustration of data gathering with CS in a line network with n
source nodes and one sink. Each node generates M random measurements,
aggregates and transmits them to the sink along the line path.

framework of CS, instead of directly sampling x, we obtain
the compression version y through a measurement matrix &,
ie.,, y = ®x, where ® is M X n measurement matrix with
M < n. The theory of CS states that the k-sparse signal x
can be recovered from M measurements with high probability
if M > cklogn, where c is a constant [15]. This indicates
that the number of required measurements M scales linearly
with signal sparsity k, and is only logarithmic in signal length
n. Recovering the signal x from y can be conducted through
solving an ¢;-minimization problem:

erg{r]lv 01, sty=o¥o, x=Vo. (1)

Let us take an example for the application of CS in a data
gathering scenario. Considering the line network with n source
nodes in Fig. 1, each node s; has a value x; to transmit
to the sink s,. In the baseline transmission scheme, the
value x; at each node s; is directly transported via multi-hop
transmissions to the sink without any computation performed
at the intermediate nodes. In a CS manner, each node s;
calculates a new value y,,; by multiplying its value x; with
a random coefficient ®@,,,; (1 < m < M), i.e., Ymi = P .
Then, the new value y,,,; is aggregated and transmitted along
the line path to the sink. Finally, the sink receives the value
Ymn = ZZL:I ®,,;z;. The process is repeated for M times so
that the sink will receive M measurements. Hence, one round
of data gathering is completed. An illustration for data gather-
ing with CS is shown in Fig. 1. The sink can reconstruct all the
values of 7 nodes from the M measurements using recovering
algorithms, such as linear programming (LP) techniques [2].
In the following sections, we will illustrate in detail how to
combine CS with scheduling and routing algorithms for data
gathering in both single-sink and multi-sink WSNs.

B. Sensor Data and Network Model

In this paper, we consider a wireless sensor network, where
n nodes are randomly and independently deployed in a unit
square area. At a sampling instant, each node ¢ measures
a real value z;. Let x = (x1,...,2,)7 denote the vector
of sampling values. We assume that there are only spatial
correlations among sampling values and x is k-sparse under a
transform basis . We can use the eigenvectors of the graph
Laplacian as an orthonormal basis to sparsify the sensor data
as done in [25]. However, how to use such a transform basis
U to sparsify the sensor data is beyond the scope of this
paper. Meanwhile, we assume the number of measurements
M is chosen so as to guarantee that the k-sparse signal x

can be completely recovered, i.e., M > cklogn, as stated
above. We also assume all nodes share a common wireless
channel and the communication distance of each node is r(n).
We further assume the constant capacity of each link is W
which means that each node can transmit at W bits/second
through the wireless channel. A time-division multiplexing
access (TDMA) scheme is adopted in our data gathering
scheme for cell scheduling. We adopt a protocol interference
model, which is defined as follows [8]:

Definition 1: Let X; denote the location of sensor node %
and |X; — X;| denote the Euclidean distance between node 4
and node j. When node ¢ transmits to node j, the transmission
is successful if the following two conditions are satisfied: (1)
|X; — X;| < r(n). (2) For other node k which transmits
simultaneously, |X;, — X;| > (1 + A)r(n), where A is a
positive constant that determines the size of the guard zone to
prevent interference.

C. Cell Fartition and Scheduling

Now we introduce the cell partition method adopted in our
work. We divide the unit square area into cells with side
length ¢, = +/3logn/n so that the number of nodes in
each cell is O(logn) with high probability [19, Lemma 3.1].
Hence, the unit square area is tessellated into /n/3logn
rows and y/n/3logn columns of cells. The transmission is
restricted between adjacent cells (horizontal and vertical). To
guarantee the network connectivity with high probability, we
set the transmission range of a node to be r(n) = v/5¢, =
/15logn/n which is the maximum distance between two
arbitrary nodes in adjacent cells so that any two nodes from
two adjacent cells can communicate with each other.

In this work, a K2-TDMA cell scheduling scheme is adopt-
ed where K2 colors are used to schedule cells transmissions.
Each time slot corresponding to one color is assigned to one
of K2 cells in a super cell, which is composed of K x K
cells. Thus, cells with the same color in the adjacent super
cells are K¢, distance apart from each other. According to the
protocol model, the minimum distance between a receiver and
other simultaneous transmitter is (K — 2)c,, > (1 + A)vV5¢,
to guarantee that concurrent transmissions can be successful.
Hence, if K > 2 + (1 + A)V/5, there exists a TDMA
scheme such that one node per cell with the same color can
simultaneously transmit a packet to the nodes in adjacent
cells successfully. Here, K is a constant. Fig. 2 describes an
example of TDMA cell scheduling scheme with K = 3.

D. Capacity and Delay

In this paper, we investigate the capacity and delay of data
gathering with CS in WSNs. When a sink collects M random
measurements for a snapshot, it forms a reconstruction of
the snapshot. Therefore, we are particularly interested in how
frequently a snapshot can be collected by a sink. Let b denote
the number of bits that each sensor node generates a reading.
Time is divided into time slots with a fixed length ¢t = b/W
seconds. Each node takes one time slot to transport a reading to
its one-hop neighbor. Then, the capacity and delay are defined
as follows:
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Fig. 2. An example of K2-TDMA cell scheduling scheme with K=3.

Definition 2: The capacity of data gathering C' is the max-
imum rate at which the sink can receive a snapshot, i.e., the
maximum rate at which the sink can receive all the nb bits
of data generated by sensor nodes during a time duration 7T’
(.e., %). When multi-sinks are present in the network, the
capacity of data gathering is the maximum total data rate of
all the data gathering sessions.

Definition 3: The delay of data gathering D is the time
transpired between the time when a snapshot is sampled by the
sensor nodes and the time when the last random measurement
reaches the sink.

Notice that all the readings in a snapshot are generated
by sensor nodes at the same time. Meanwhile, the sampling
and data transport can be pipelined in the sense that further
snapshots may be taken and transported to the sink before the
sink receives prior snapshots. Furthermore, we consider the
sum delay of a snapshot rather than the maximum delay of
independent sensor readings since the sink should collect all
M measurements for a snapshot so that it can reconstruct n
sensor readings.

III. DATA GATHERING WITH COMPRESSIVE SENSING IN
SINGLE-SINK NETWORKS

In this section, we consider the case for data gathering in a
single-sink wireless sensor network. We first propose a routing
scheme combined with a pipelining scheduling algorithm for
data gathering. With the pipeline scheduling algorithm, a new
snapshot can be taken and transported to the sink before
the sink receives a prior snapshot. Then, we analyze the
performance of our data gathering scheme in terms of capacity
and delay.

A. Constructive Lower Bound on the Capacity of Data Gath-
ering with Compressive Sensing

We assume that the sink s is located in cell (u,v), where u
and v are Euclidean coordinates. We only consider the region
which has the largest number of sensor nodes since the total
capacity of the network will be the same in the order sense
as that we derive in this paper. For example, the region at

(u,v)
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phases.

The proposed data gathering with CS scheme which contains three

the lower left corner is considered in this paper. The proposed
routing scheme for data gathering has three phases. In the
first phase, a cell head is designated to collect the data from
the neighboring nodes in the same cell. In the second phase,
the packets sent by cell heads are relayed along the columns
to the vth row cells in a compressive sensing fashion. In
the third phase, the packets in the vth row cells are relayed
along the row to the sink. Fig. 3 shows an example of our
data gathering scheme. Fig. 4 gives the illustration for each
phase. The detailed explanation for each phase is given in the
following. ) -
n n

¢= o(Mt) X M
Phase 1: For each cell (i, j), we randomly choose one node
as a cell head H;;. Then, for each time slot, each node in cell
(i,7) takes turns to transmit data to the cell head H;;. Let
dfj with £k = 1,...,1 be the data collected by the cell head
including its own packet in the cell (4, j), where k is the index
of nodes and [ is the number of nodes in cell (i, 7). Thus, the
cell head H;; has [ packets including its own packet at the
end of Phase 1.

Phase 2: In this phase, each cell head processes the coming
packets from the lower cell. Let m denote the transmission
index for each cell head. After the cell head receives the
packet from the cell head in the lower cell (i,5 — 1), the cell
head generates [ random coefficients @;?k from a Gaussian

) 2

or Bernoulli matrix, computes the value 22:1 @;?kdfj and
updates the received data by computing

1
vy =yl + D ety 3)
k=1
and sends out y;7 to the next cell (4,5 + 1). The process is

repeated for M times for each cell. In this way, packets from
the nodes in the ith column cells are forwarded to the top cell
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Fig. 4. Three phases for our data gathering scheme: In Phase 1, each node
transmits its original readings to the cell head; In Phase 2, cell heads generate
M random measurements and vertically aggregate and transmit them towards
the cell heads in the vth row. In Phase 3, cell heads in the vth row horizontally
aggregate random measurements towards the sink.

(4,v). Finally, each cell head in the top cell (i,v) will receive
M random measurements from the ith column cells. Phase
3: In this phase, the packets in the vth row cells are relayed
along the row to the sink. After the second phase, each cell
head in the vth row cells has already received M packets y.
with m = 1,..., M. In this phase, the cell head in the cell
(i,v) receives the packet Z(i_1y, from the neighboring cell
head, computes zj;) = 27 ;), + yj, and transmits zi to the
next cell head. In this way, the packets generated in the second
phase are forwarded to the sink. Finally, the sink receives M
packets containing the sum of all packets from all nodes in the
network, which completes one round of data gathering. In this
phase, since each cell head in the vth row cells has M random
measurements when Phase 2 is completed, the cell heads in the
vth row cells do not need to regenerate random measurements
with new random coefficients and just aggregate these random
measurements and transmit them to the sink.

The above scheme only considers how the sink collects
data for one snapshot. To enable the sink to collect snapshots
continually, we propose a pipelining scheduling scheme. With
the pipelining scheduling scheme, it allows a node to send
data for the next snapshot before the sink collects all the
data in the previous snapshot. Therefore, the above procedures
in three phases can be performed in pipelining. This can be
achieved by allowing the next snapshot to begin the first
phase when the M measurements of the previous snapshot
have been transmitted to the cell, which is K¢, distance
away from the current cell, as illustrated in Fig. 5. Thus,
transmissions for the next snapshot will not be interfered by
the current snapshot. Recall that it takes O(K?lognt) time
for cell heads to collect data in the first phase. Therefore, the
time difference for the sink to collect two continuous snapshots
is O(K?%lognt + K2Mt). Since M > O(logn) and K is a
constant, O(K?lognt + K?Mt) = O(Mt). Thus, the lower
bound on the capacity of our data gathering scheme is

5l
[y

%,

Phase 1 Phase 2 Phase 3

Snapshot i-1

»-
Time Slot

Fig. 5. Transmission for different snapshots with pipelining.

B. Upper Bound on the Capacity of Data Gathering with
Compressive Sensing

We now consider the upper bound on the capacity of our
data gathering scheme with CS. Assume that the sink can
be 100% busy receiving data from neighboring nodes at any
time slot. In order to reconstruct a snapshot, the sink should
continually receive M measurements. Hence, it takes at least
M time slots for the sink to collect M measurements. Thus,
the upper bound on the capacity of our data gathering scheme
with CS is
i =0T

(Mt) M

4)

Based on the above analysis, we can conclude the following
theorem:

Theorem 1: The proposed data gathering scheme with CS
achieves the capacity @(%) in random networks with a
single sink, which implies that the per-node capacity is @(%)

From Theorem 1, we can see that our data gathering
scheme can achieve order optimal capacity, which indicates
that our scheduling and routing schemes are optimal. Note
that although the specific scheduling and routing schemes are
used in our construction, the other deterministic schemes can
also be used in our case. However, these schemes can only
improve a constant factor of the capacity performance.

C. Delay Analysis

In this subsection, we analyze the delay of the proposed data
gathering scheme. The analysis can be done in a way similar
to [14]. We analyze the time taken for the above three phases
in our scheme, respectively. Recall that nodes with the same
color can be transmitting simultaneously and each cell has
at most O(logn) nodes. Thus, the time for collecting all the
packets for a snapshot in the first phase is T} = K20 (logn)t.
In the second phase, in order to transmit packets to the top
cells, each cell head would send out M packets to the next
cell head. Therefore, the total time for cell heads to complete
one round of transmission is Mwvt. According to K2-TDMA
scheduling scheme, the cell head with the same color in
each super cell can transmit simultaneously for each time
slot. Hence, the total time for completing transmitting the
packets of all the nodes to the top cells in the second phase is
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Ty, = KvMt < KMO( @)t. We now consider the time
needed for transmitting packets in the top cells to the sink in
the third phase. Analysis is similar to the second phase. Each
cell head in the top cells has M packets before transmission.
Therefore, each cell head only needs M time slots to transmit
its packets received in the second phase. Hence, the total

time needed for this phase is T3 = Mut < MO(, /—2)t.

logn
Recall that M > ©(logn). Therefore, the total time needed
for transmitting all the packets to the sink is

n

T.=T+To+T3 <OM t) &)

logn
We are now ready to prove that a lower bound on the delay for

our data gathering scheme achieves (M, /2-t). Consider-

ing the farthest cell head which is located in the cell (0, 0), the
minimum distance away from the sink is L = ¢,vu? + v2.
Recall that we assume that the region at the lower left corner
has the largest number of sensor nodes and the maximum
transmission range between two adjacent nodes is 7 = v/5¢,,.
The minimum length of L is g . 31:gn - Cp, 1.€., the sink is
located in the center of the network. Hence, the minimum time
taken by the farthest cell head to transmit a packet to the sink

is £t = Q(, /;2-t). Therefore, to transmit M packets to the

logn

sink the minimum time %t is needed. Thus, the minimum
time required for the sink to collect M packets is

ML
Ty= —"t=Q(M,|—
T

t 6
log n) ©
Summarizing the above analysis, we can conclude the follow-
ing theorem:

Theorem 2: The proposed data gathering with CS scheme
achieves delay ©(M , /-—2—) in random networks with a single

logn

sink.

D. Discussion

Combining theorems 1 and 2, we can conclude that the
proposed data gathering scheme with CS can achieve the
capacity ©(™) and the delay ©(M , /-2-). Specially, with

logn

the assumption that the sensor data from the entire network is
k-sparse, the number of random projections needed for data
recovery is M = Q(klogn). It is interesting to compare
our results with those of the baseline transmission scheme
for data gathering [14]. In the baseline transmission scheme,
each node just receives and forwards data to the next nodes.
As shown in [14], the authors show that the proposed data
gathering scheme can achieve the order optimal capacity and
delay, which are ©(W) and O(n), respectively. In such a
scheme, it is obvious that the data rate at which the sink
receives data cannot be faster than W and for each time the
sink can receive at most one packet. Therefore, the capacity
of the baseline transmission scheme is at most O(W) and
the delay for receiving a complete snapshot is at most O(n).
This indicates that our data gathering scheme can achieve a
capacity gain of ©(§7) over the baseline transmission scheme

and the delay can also be reduced by a factor of @(7”‘]5’%").

Furthermore, we also compare the performance of data
gathering capacity with the finding of [3], which also applies
compressive sensing to data gathering in WSNs. In [3], the
authors show that the proposed compressive data gathering
scheme can achieve a capacity gain of ©( ;) over the baseline
transmission scheme given that sensor readings are k-sparse.
In their work, they assume that there exists an appropriate rout-
ing scheme such that each subtree contains roughly the same
number of nodes and has relatively uniform characteristics
of data sparsity distribution in each subtree. Whereas in our
work, we propose a simple routing scheme with a pipelining
scheduling algorithm, which can relax this constraint and
achieve the same performance in the order sense. This is
because data gathering and data reconstruction in our work
are performed on the sink rather than on the subtree basis in

[3].

IV. DATA GATHERING WITH COMPRESSIVE SENSING IN
MULTI-SINK NETWORKS

In this section, we consider the case where multiple sinks
are present in the network. We assume that there are n nodes
in the network, among which ng nodes are randomly selected
as destination nodes (sinks) and n — ng nodes are randomly
selected as source nodes. We further assume that in each data
gathering session each sink generates a random projection by
collecting random measurements from ng randomly chosen
source nodes. Note that the choice of source nodes for each
random projection in one session may be different. We assume
that n—ng can be exactly divisible by ng, i.e., n = (ns+1)-nq.
For simplicity, we assume that n = ng - ng when ng is
far larger than 1. Thus, the number of sessions is ng. We
assume that each sink can recover the entire sensor data in
the network through collecting M random measurements for
each session. This assumption is built on the work of Wang et
al. [17], [18], where they show that the result of compressive
sensing can be obtained with sparse random projections with
the assumption that sensor data is compressible or sparse.
Different from the approach in the previous section which is
built on dense random projections, the proposed approach in
this section allows to support multiple simultaneous sessions
and reconstruct the whole sensed field by each session. This
paradigm can be employed in many application scenarios. For
example, in many cases, users distributed in different locations
are interested in gathering data to obtain a view over the
entire field. The scheme can also be extended to the case in
a multiresolution manner, where each user collects different
number of random projections to reconstruct a multiresolution
signal.

The main objective is to investigate how many simultaneous
sessions can be supported by the network and how much time
it takes for one sink to collect measurements in one session.
We observe the dataflow structure of our data gathering
scheme is similar as that of multicast. One of the differences
between these two cases lies on the transmission direction. An
example is illustrated in Fig. 6. As shown in Fig. 6(a), in the
multicast scenario, node c just relays data to child nodes a
and b. In our data gathering scheme, node c receives random
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Fig. 6. Structures for three different dataflows. (a) Dataflow for Multicast.
(b) Dataflow for data gathering with CS. (c) Dataflow for conventional data
gathering.

measurements from nodes ¢ and b, sums them and transmits a
new random measurement to the next node, as shown in Fig.
6(b). Therefore, the traffic on each link in these two cases will
not change. Unlike the conventional data gathering scheme,
as shown in Fig. 6(c), node ¢ has to forward two packets to
the next node. Hence, we can use some similar techniques for
multicast to analyze the capacity for our data gathering scheme
in multi-sink networks. In the following subsections, we first
derive an upper bound on the data gathering capacity and
then present a simple architecture for data gathering routing
to achieve the upper bound in the order sense. Finally, we
analyze the delay performance of data gathering with CS in
multi-sink networks.

A. Upper Bound on the Capacity of Data Gathering with
Compressive Sensing

In this subsection, we derive the upper bound on the capac-
ity of data gathering with CS. To derive the upper bound, we
still exploit the idea that each transmission consumes valuable
area as in [8]. Suppose the transmission radius be r(n). Under
the protocol model, when node X; transmits successfully to
node X, no other node X; within a distance Ar(n) of X,
can be simultaneously receiving another transmission due to
interference. Since each successful transmission occupies at
least a disk with radius ATT(") and the area of such a disk is
%, the number of simultaneous transmissions in a unit
square area that can be supported by the network is no more
than ﬁ%n)' Assume that there are n, sinks in the network
and each sink ¢ requires at least H;(r) transmissions to collect
a projection from n, source nodes. Recall that each sink needs
to collect M projections to form a snapshot. Define A\ as
the largest achievable rate (snapshots/slot) at which per sink
collects a snapshot. Hence, A satisfies the following condition

4
= wA2r2(n)M Y-, Hi(r)

(7

Consider a minimum spanning tree for each data gathering
flow which contains ns source nodes and one sink. Source
nodes and sink nodes are independently and uniformly dis-
tributed in the unit square area. Such a minimum spanning
tree has the same structure as that of multicast tree, which has
the average length L(n,) = €Q(,/ns) with high probability,
and the minimum number of transmissions » _, H;(r) satisfies

the following condition [16, Lemma 2]
ndg H,
P{ZM > Cry/ns} — 1 (8)
i=1 d

where C' is a constant. Thus, combining (7) and (8), A satisfies
the following condition with high probability

4
< .
~ wC1A2%r(n) Mng/ns

Recall that ¢ denotes the time duration for one time slot and per
sink collects a snapshot at a rate of A snapshots/slot. Therefore,
it takes T = ¢/\ for per sink to collect a snapshot. Also,
it has been shown that r(n) > +/logn/n is necessary to
guarantee the network connectivity with high probability in
random networks [8]. By Definition 2, hence, the capacity of
data gathering with CS for each session is upper-bounded by

(€))

nb  nbA ny/nW
C=—=—=0(————— 10
T t Mng/ng logn) (10)

B. Constructive Lower Bound on the Capacity of Data Gath-
ering with Compressive Sensing

In this section, we first present a simple architecture for data
gathering routing with CS in multi-sink networks and then
derive the lower bound of our data gathering scheme. The cell
partition method and the cell scheduling scheme adopted in
this section are the same as those described in Section II.

First, we construct a spanning tree for each data gathering
session, which is similar as the multicast structure in [16],
[21]. The structures of the constructed spanning trees for
two data gathering sessions are shown in Fig. 7. For each
session, the sink is located in the root of the spanning tree. A
vertical branch across the sink is formed, which has the same
x coordinate as the cell where the sink is located. There are
/o5 horizontal branches separated by a distance of \/CiT
in the spanning tree, among which there is only one branch
passing through the sink, where ¢y is a constant. Since ng
nodes are randomly selected as active source nodes, ns small
vertical paths which originate from source nodes to the nearest
vertical branches are formed. We now describe the proposed
routing scheme for our multi-session data gathering with CS.
Different from multicast which distributes packets from a
single source node to all the destinations along the multicast
tree, the aim of our data gathering scheme is to collect all the
measurements from randomly selected source nodes to their
corresponding sink. The process of data gathering with CS
contains three stages. In the first stage, each source node j gen-
erates ) independent random coefficients {®q;,...,Par;}
which take the values of +,/n, with probability 1/2. Then
each source node computes M random measurements @, ;x;
with its reading value x; where i =1,..., M. According
to the theory of compressive sensing using sparse random
projections, for each sparse random projection, each sink
will collect random measurements from ng randomly selected
source nodes. Thus, each source node needs to randomly
pick up one out of mg sinks as its destination, and send
each random measurement to the corresponding sink. These
measurements will be transmitted to the routers along their
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Fig. 7.  Structure of the constructed spanning trees for the proposed data
gathering scheme in a multi-sink network. Two data gathering sessions are
shown here.

corresponding vertical paths. The routers belonging to the
same session will combine the received measurements with
their own random measurements while the routers belonging
to different sessions just relay the received measurements. The
choice of source nodes in each session and the generation of
random coefficients can be achieved by the following strategy,
similarly to [3]. Before transmission, one of sinks broadcasts
a globe random seed to the entire network. Then each source
node generates its own seed using the globe seed and its
address. Using its own seed, each source node can generate
a series of random coefficients {®1;,...,®a;} through a
pseudo-random number generator. Similarly, each source node
generates M random seeds using the globe seed and then
uses these seeds to generate a series of random variables
to determine its destination for each random projection. By
the similar method, each sink can reproduce these variables
using the globe seed and the addresses of the source nodes.
Thus, each sink is able to know which source nodes in its
session for each random projection and the corresponding
random coefficients for data recovery. In the second stage,
these measurements are transmitted and aggregated along the
routers in the horizontal branches. In the third stage, the
process of data gathering is carried out along the routers in the
vertical branches. Then these measurements will be aggregated
in the corresponding sinks. Finally, each sink can reconstruct
sensor data from its respective received M measurements
through recovering algorithm of compressive sensing. Since
the K2-TDMA scheduling scheme is used, the transmission
of a node can be well scheduled without interfering with each
other in any time slot.

Next, we study the upper bound on the load of each cell. The
load of a cell is defined as the total number of data gathering
sessions that a cell will be used as a router by nodes inside
this cell. We have the following lemmas about the average and
maximum number of routing flows passing through a given
cell. The proofs of these two lemmas are included in Appendix
A and B, respectively.

Lemma 1: Given ng data gathering sessions, the average
number of routing flows passing through a given cell is at

most p = cing "51%, where c; is a constant.

Lemma 2: The number of data gathering flows passing
through a given cell is at most 2p = 2cing ”Sl% with
high probability when ng./n, = Q(v/nlogn).

By using K2-TDMA scheduling scheme, each cell is sched-
uled with a periodicity of K2 slots. From Lemma 2, we know
that the number of routing flows passing through a cell is
at most 2p with high probability. Therefore, each sink can
coll.ect a projectiox.l at a.rate of \; =3 K12p =3 K%m;/jns e
projections/slot with high probability from its n, randomly
chosen source nodes. Recalling that each sink shall collect M
projections to recover a snapshot for each session. Therefore,
it takes per sink 7' = Mt/)\; to collect M projections. Thus,
the per-session capacity of our data gathering scheme with CS
is

_ib_nbAl_Q( ny/nW ) (11
T Mt Mngynslogn’

Combining (10) and (11), we have

Theorem 3: The per-session capacity of data gathering with
CS in multi-sink randorp networks is @(W) Wlt.h
nq sinks, the total capacity of data gathering with C§ in multi-

sink random networks is @(#\/%).

C. Delay Analysis

In this subsection, we analyze the delay performance of
data gathering with CS in a multi-sink network. We have the
following theorem

Theorem 4: The proposed data gathering with CS scheme
achieves per-session delay © (M , /%) in multi-sink random

networks.
Proof: See Appendix C. [ ]

D. Discussion

We have proved that our data gathering scheme can obtain
order optimal capacity with high probability through a simple
architecture, which can minimize the number of transmissions
needed for the measurements transmitting from randomly
chosen source nodes to their respective sinks. Ideally, we
would like to construct a spanning tree for multi-session data
gathering which has a length as small as possible for the
measurements to be routed along. For example, a Steiner
tree [16] can also be used in our case. On the other hand,
our scheme for multi-session data gathering is based on the
assumption that each sink can recover k-sparse data by collect-
ing a sufficient number of random projections from randomly
chosen source nodes [17]. For instance, when the number of
nodes for each sink selected as source nodes is ns, = logn,
the number of random projections needed for data recovery is
M = Q(k?log® n). When the number of source nodes for each
session is ny = log® n, then the number of random projections
needed for data recovery is M = Q(k?logn).

We would like to point out that compressive sensing can be
used to perform distributed source coding with linear network
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Fig. 8. Capacities of CSDG and BLDG with different number of source
nodes n in single-sink networks.

coding for correlated and sparse data transmission [23], [24].
Therefore, it is also interesting to compare our scheme with
a joint source-channel-network coding scheme based on com-
pressive sensing proposed in [24]. The objective of the scheme
is to reconstruct all sources within an allowed distortion level
at each receiver for multicast networks under AWGN channels.
Both temporal and spatial correlations among source samples
are considered in this scheme, while only spatial dependencies
among source data are considered in our paper. Actually, in
[24], by ignoring temporal precoding, we note that performing
spatial precoding and analog random linear network coding
among nodes over the network corresponds to using a sparse
random matrix for compressive sensing in our scheme, which
means only a fraction of sources are transmitting for each
measurement. From [24], it can be seen that klogn source
nodes are randomly selected to transmit samples to each
receiver for each measurement and the number of random
projections needed for data recovery is M = Q(klogn).
While from the above discussion, we can see that in our
scheme the number of randomly selected source nodes n, for
each session and the number of random projections M needed
for data recovery are dependent on the number of sinks ng,
ie., ng =n/ng.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the capacity performance of the
proposed data gathering schemes using MATLAB simulations
for both single-sink and multi-sink wireless sensor networks.
We generate connected networks by uniformly and randomly
placing n nodes in a unit square area, which is divided into
cells with side length of 4/3logn/n. We assume that TDMA
is used at the network MAC layer and each cell is scheduled
by using K2-TDMA scheme, where K = 5 is adopted
in the simulations. Furthermore, we assume that a packet
(measurement) with size length b bits can be transmitted over
a channel within the duration ¢ of one time slot. The channel
bandwidth W is normalized to one. We assume the sensor data
is k-sparse signal with £ = 10. For the recovery algorithm,
we use ¢1-magic algorithm.

T
—— ng=2Sim.
ng =2, Ana.
b —¢— n4 = 8,Sim.
cedr- ng =8, Ana.
ng = 18,Sim.
L ---Ac--ng =18, Ana

o
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Fig. 9. Per-session capacities of data gathering with different number of
nodes n and sessions ng in multi-sink networks.

A. Capacity of Data Gathering with CS in Single-Sink Net-
works

We first compare the capacity performance of our data
gathering scheme (CSDG) with the baseline data gathering
scheme (BLDG) in a single-sink network. In this simulation,
we use M = 80,100, 100,120, 120 measurements to recover
k = 10 sparse data for different number of source nodes
n when n varies from 1000 to 5000 with a step size of
1000, respectively. Fig.8 shows the capacities of these two
schemes. From the figure, we observe that the capacity of
CSDG increases with the number of sensor nodes, whereas the
capacity of BLDG is constant although the number of source
nodes increases. This confirms our analytical results derived
in Section III. The simulation results also indicate that CSDG
can achieve more gains on the capacity over BLDG when n
is large. We also plot a(nW/M) with o = 0.03 in Fig.8 to
verify the scaling law of capacity for CSDG. The simulation
result shows that the capacity of CSDG scales as nW/M,
which also confirms our theoretical analysis.

B. Capacity of Data Gathering with CS in Multi-Sink Net-
works

In this simulation, we verify the theoretical result for the
capacity of data gathering with CS in a multi-sink network.
We simulate the cases where there are ngy = 2,8, 18 sessions
in the network, respectively. We select the number of sessions
ng = 2, 8,18 so as to make the number of cells separated by t-
wo adjacent horizontal branches in the same session as close as
possible to be an integer. We use M = 80, 100, 100, 120, 120
measurements to recover k = 10 sparse data of each session
for ng = 2, and additional 20 and 40 measurements to recover
the data of each session for ng = 8 and ny = 18, respectively.
Fig.9 shows the per-session capacities with different number
of nodes n in the simulation (solid line). From the figure,
we observe that the per-session capacity decreases with the
number of sessions n,4. This is due to the reason that the load
of a cell will increase when more sessions pass the cell, which
results in the degradation of the per-session capacity. The
simulation results also indicate that the per-session capacity is
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a increasing function of the number of nodes n. Meanwhile,
we plot o Mn:%) with a = 0.07 for different number
of sessions 14 to verlf’y the analytical results (dotted line). The
simulation results confirm that the per-session capacity of our

data gathering scheme scales as EPNORTTIR

VI. CONCLUSION

In this paper, we studied the capacity and delay of data
gathering with CS in both single-sink and multi-sink ran-
dom networks. For the single-sink network, we constructed a
routing scheme with pipelining scheduling algorithm for data
gathering. We derived the bounds of capacity, and analyzed
the delay performance of the proposed data gathering scheme
with CS. We showed that the proposed scheme can achieve a
capacity gain of ©(§7) over the baseline transmission scheme
and the delay can also be reduced by a factor of @(7”"11\‘4%").
For the multi-sink case, we constructed a simple architecture
for multi-session data gathering routing, and derived the ca-
pacity and delay performance of the proposed scheme. Finally,
we verified our theoretical results for the scaling laws of the
capacity through simulations in both single-sink and multi-sink
random networks.

APPENDIX A
PROOF OF LEMMA 1

Proof: We first consider the probability of a given cell
c that is used by the three stages of data gathering process.
Recall that the length of path for each source node to transmit
packets to the router in the horizontal branch is no more
than — \/ﬁ Thus, in the first stage, the number of cells
that ns; source nodes will pass through is no more than

2_ — D In the second stage,

1 T
2./cons ’ 3logn 12¢o logn*®
the total number of horizontal branches is ,/cons with each
branch containing

Ng -

—=— cells. Hence, there are no more
3logn

consn
3logn

the third stage, there is only one vertical branch in the spanning
tree and thus the number of cells is Notice that
there are total N, = ﬁ cells in the unit square area.
We denote p;, ps and ps as the probabilities of the given
cell c that is used in the three stages, respectively. Therefore,

than

cells acting as routers in the second stage. In

310 n'

nsn _ 3nslogn
b < \/ IQCologn/Nc - 4con b2 < 3cologn/
3nglogn . n _ 3 log n
et and py < Japies 1ogn/Nc = . Thus, the

probability that a given cell ¢ is used by a data gathering

1 9 .
_1 pi < c1y/ =287, where ¢, is a constant.

session is p = Z

APPENDIX B
PROOF OF LEMMA 2

Proof: Let I; be an independent variable. Considering a
given cell ¢, if the cell c is used by the flow ¢ then I; = 1,
and I; = 0 otherwise. For all the sessions, the number of
routing flows N passing through the cell ¢ is Ny = Y ¢ I;.
Recall that the probability that the cell ¢ is used by a flow

isp<c "1% Using Binomial Distribution [20, Lemma
3], we have
2p(1 — 2(1 —
PN, > 29) < p(l-p) _2(1-p) cay/n
(2p —nq-p)? P ngv/nslogn

(12)

where c; is a constant. When ng,/ns > cav/nlogn, ]P’(Nf >
2p) < loén — 0 as n — oco. This implies that the number of
routing flows passing through a cell is at most 2p with high
probability when n — co. [ ]

APPENDIX C
PROOF OF THEOREM 4

Proof: Following a similar method for analyzing delay
performance in single-sink networks, we calculate the average
time taken by the three stages as mentioned previously for
each data gathering session in multi-sink networks. In the
first stage, each source node should send M measurements
to the corresponding horizontal branch and need ﬁ .

) hops for each measurement to reach

n —
3logn _9( ns logn
the branch. Also, each cell contains ©(logn) nodes. Hence,
the average time it requires for each session in the first stage is

OMK? . | [-r 81 — (M, [ - \}%Zd).Further-

more, due to random deployment of source nodes and sink in a
session, the number of hops for the farthest node to transmit a
measurement to the sink in the second and third stages is still
bounded by ©( ). Therefore, the average delay for each

log n

logn _ n
session is ©(M , /2 - Jnng TM oan) = O(M, /2)
logn -
where Tnong 18 smaller than 1. |
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