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Compressive Sensing: From Theory to Applications, A
Survey

Saad Qaisar, Rana Muhammad Bilal, Wafa Iqbal, Muqaddas Naureen and Sungyoung Lee

Abstract: Compressive sensing (CS) is a novel sampling paradigm
that samples signals in a much more efficient way than the estab-
lished Nyquist Sampling Theorem. CS has recently gained a lot
of attention due to its exploitation of signal sparsity. Sparsity, an
inherent characteristic of many natural signals, enables the signal
to be stored in few samples and subsequently be recovered accu-
rately, courtesy of compressive sensing. This article gives a brief
background on the origins of this idea, reviews the basic mathemat-
ical foundation of the theory and then goes on to highlight different
areas of its application with a major emphasis on communications
and network domain. Finally, the survey concludes by identifying
new areas of research where CS could be beneficial.

Index Terms: Compressive Sensing, WSNs, Compressive Imaging,
Sparsity, Incoherence

I. INTRODUCTION

Compressive sensing has witnessed an increased interest re-
cently courtesy high demand for fast, efficient and in-expensive
signal processing algorithms, applications and devices. Con-
trary to traditional Nyquist paradigm, the compressive sensing
paradigm, banking on finding sparse solutions to underdeter-
mined linear systems, can reconstruct the signals from far fewer
samples than is possible using Nyquist sampling rate. The prob-
lem of limited number of samples can occur in multiple sce-
narios, e.g. when we have limitations on the number of data
capturing devices, measurements are very expensive or slow to
capture such as in radiology and imaging techniques via neutron
scattering. In such situations, CS provides a promising solution.
Compressive sensing exploits sparsity of signals in some trans-
form domain and the incoherency of these measurements with
the original domain. In essence, CS combines the sampling and
compression into one step by measuring minimum samples that
contain maximum information about the signal: this eliminates
the need to acquire and store large number of samples only to
drop most of them because of their minimal value. Compressive
sensing has seen major applications in diverse fields, ranging
from image processing to gathering geophysics data. Most of
this has been possible because of the inherent sparsity of many
real world signals like sound, image, video etc. These applica-
tions of CS are the main focus of our survey paper, with added
attention given to the application of this signal processing tech-
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nique in the communication and networks domain.

This article starts with presenting a brief historical back-
ground of compressive sensing during last four decades. It is
followed by a comparison of the novel technique with conven-
tional sampling technique. A succinct mathematical and the-
oretical foundation necessary for grasping the idea behind CS
is given. It then surveys major applications of CS specifically
in the communications and networks domain. In the end, open
research areas are identified and the article is concluded.

II. HISTORICAL BACKGROUND

The field of CS has existed for around four decades. It was
first used in Seismology in 1970 when Claerbout and Muir gave
attractive alternative of Least Square Solutions [1], Kashin [2]
and Gluskin [3] gave norms for random matrices. In mid eight-
ies, Santosa and Symes [4] suggested l1-norm to recover sparse
spike trains. In 1990s, Rudin, Osher and Fatemi [5] used total
variation minimization in Image Pro-cessing which is very close
to l1 minimization. Some more contributions of this era are [6],
[7], [8], [9], [10] and [11]. The idea of compressed sensing got a
new life in 2004 when David Donoho, Emmanuel Candes, Justin
Romberg and Terence Tao gave important results regarding the
mathematical foundation of compressive sensing. A series of
papers have come out in last six years and the field is witnessing
significant advancement almost on a daily basis.

A. Nyquist Sampling Theorem
In 1949, Shannon presented his famous proof that any band-

limited time-varying signal with ‘n’ Hertz highest frequency
component can be perfectly reconstructed by sampling the sig-
nal at regular intervals of at-least 1/2n seconds. In tradi-
tional signal processing techniques, we uniformly sample data
at Nyquist rate, prior to transmission, to generate ‘n’ samples.
These samples are then compressed to ‘m’ samples; discarding
n-m samples.

At the receiver end, decompression of data takes place to re-
trieve ‘n’ samples from ‘m’ samples. The paradigm of Shan-
non’s sampling theory is cumbersome when extended to the
emerging wide-band signal systems since high sampling rates
may not be viable for implementation in circuitry: high data-
rate A/D converters are computationally expensive and require
more storage space. After reviewing the conventional sampling
theorem one may wonder: why should we go through all com-
putation when we onlyneed ‘m’ samples in the end for trans-
mission? Are the real world signals always band limited? How
can we get ‘n’ samples efficiently, especially if we need a sep-
arate hardware sensor for each sample? The alternative theory
of compressive sensing [20][21] by Candes, Tao, Romberg and
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Donoho have made a significant contribution to the body of sig-
nal processing literature, by giving sampling theory a new di-
mension, as described in subsequently.

Fig. 1. Traditional Data Sampling and Compression versus Compressive
Sensing

Figure 1 represents concept of traditional data sampling and
compressive sensing. Further elaboration follows in subsequent
sections.

III. COMPRESSED SENSING PARADIGM

Compressive sensing theory asserts that we can recover
certain signals from fewer samples than required in Nyquist
paradigm. This recovery is exact if signal being sensed has a low
information rate (means it is sparse in original or some trans-
form domain). Number of samples needed for exact recovery
depends on particular reconstruction algorithm being used. If
signal is not sparse, then recovered signal is best reconstruction
obtainable from s largest coefficients of signal. CS handles noise
gracefully and reconstruction error is bounded for bounded per-
turbations in data. Underneath are some definitions that are later
used to discuss acquisition/reconstruction models and behaviour
of CS to non-sparse signals and noise.

Sparsity: Natural signals such as sound, image or seismic
data can be stored in compressed form, in terms of their projec-
tion on suitable basis. When basis is chosen properly, a large
number of projection coefficients are zero or small enough to be
ignored. If a signal has only s non-zero coefficients, it is said
to be s-Sparse. If a large number of projection coefficients are
small enough to be ignored, then signal is said to be compress-
ible. Well known compressive-type basis include 2D wavelets
for images, localized sinusoids for music, fractal-type wave-
forms for spiky reflectivity data, and curvelets for wave field
propagation [12].

Incoherence: Coherence measures the maximum correlation
between any two elements of two different matrices. These two
matrices might represent two different basis / representation do-
mains. If Ψ is a n × n matrix with Ψ1, . . . ,Ψn as columns
and Φ is an m × n matrix with Φ1, . . . , Φm as rows. Then
coherence µ is defined as:

µ(Φ,Ψ) =
√
n.max|Φk,Ψj | (1)

for,

1≤j≤n

1≤k≤m

It follows from linear algebra that:

1 ≤ µ(Φ,Ψ) ≤
√
n (2)

In CS, we are concerned with the incoherence of matrix used
to sample/sense signal of interest (hereafter referred as measure-
ment matrix Φ) and the matrix representing a basis, in which
signal of interest is sparse (hereafter referred as representation
matrix Ψ). Within the CS framework, low coherence between
Φ and Ψ translates to fewer samples required for reconstruction
of signal. An example of low coherence measurement / repre-
sentation basis pair is sinusoids and spikes that are incoherent in
any dimension [14], and can be used for compressively sensing
signals having sparse representation in terms of sinusoids.

Restricted Isometry Property (RIP): Restricted Isometry
Property has been the most widely used tool for analysing the
performance of CS recovery algorithms [15] as illustrated be-
low through CS acquisition and reconstruction models and il-
lustrated in figure 2.

A. Acquisition Model
Signal acquisition model of CS is quite similar to conven-

tional sensing framework. If X represents the signal to be
sensed, then sensing process may be represented as:

Y = ΦX (3)

where, X ∈ Rn, is the signal to be sensed; Φ is m-by-n
measurement matrix and Y ∈ Rm is measurement vector. Un-
der conventional sensing paradigm ‘m’ must be at least equal
to ‘n’. However CS states that ‘m’ can be far less than ‘n’,
provided signal is sparse (accurate reconstruction) or nearly
sparse/compressible (approximate reconstruction) in original or
some transform domain. Lower values for ‘m’ are allowed for
sensing matrices that are more incoherent within the domain
(original or transform) in which signal is sparse. This explains
why CS is more concerned with sensing matrices based on ran-
dom functions as opposed to Dirac delta functions under con-
ventional sensing. Although, Dirac impulses are maximally in-
coherent with sinusoids in all dimensions [14], however data of
interest might not be sparse in sinusoids and a sparse basis (orig-
inal or transform) incoherent with Dirac impulses might not ex-
ist. On the other hand, random measurements can be used for
signals s-sparse in any basis as long as Φ obeys the following
condition [17]:

m = s.log(
n

s
) (4)

As per available literature, Φ can be a Gaussian [18],
Bernoulli [19], Fourier or incoherent measurement matrix [20].
For a class of reconstruction algorithms known as Basis Pursuit
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(BP), [25] states that most s-Sparse signals can be exactly re-
covered just by ensuring:

m ≥ 4s (5)

Equations (6) (7) quantify ‘m’ with respect to incoherence
between sensing matrix and sparse basis. Other important con-
sideration for robust compressive sampling is that measurement
matrix well preserves the important information pieces in sig-
nal of interest. This is typically ensured by checking Restricted
Isometry Property (RIP) of reconstruction matrix Θ(product of
measurement matrix with representation basis) [15]. RIP is de-
fined on isometry constant δS of a matrix, which is the smallest
number such that

(1− δS)||x||2l2 ≤ ||Θx||2l2 ≤ (1 + δS)||x||2l2 (6)

holds for all s-sparse vectors ‘x’. We will loosely say that a
matrix obeys the RIP of order s if δS is not too close to one.
RIP insures that all subsets of s columns taken from matrix are
nearly orthogonal and sparse signal is not in null space of matrix
being used to sense it (as otherwise it cannot be reconstructed).
Similarly, if δ2S is sufficiently less than one, then all pair wise
distances between s-sparse signals must be well preserved in the
measurement space, as shown by:

(1−δ2S)||x1−x2||2l2 ≤ ||Θ(x1−x2)||2l2 ≤ (1+δ2S)||x1−x2||2l2
(7)

for s-Sparse vectors x1 and x2.

B. Reconstruction Model
A nonlinear algorithm is used in CS, at receiver end to recon-

struct original signal. This nonlinear reconstruction algorithm
requires knowledge of a representation basis (original or trans-
form) in which signal is sparse (exact recovery) or compressible
(approximate recovery). Signal of interest X, can be expressed
in representation basis as:

Ψx = X (8)

where x is s-sparse vector, representing projection coefficients
of X on Ψ. Measurement Vector Y, can now be rewritten in
terms of x as:

Y = Θx (9)

where Θ = ΦΨ is m × n dimensional, reconstruction matrix.
Reconstruction algorithms in CS, try to solve (9), and exploit

the fact that solution is sparse, usually by minimizing l0, l1 or l2
norm over solution space. According to classical least square so-
lution (minimization of l2 norm), reconstructed solution × may
be expressed as:

× = min
x:Θx=Y

||x||l2 = ΘT (ΘΘT )−1Y (10)

where,

||x||l2 =

√√√√(

N∑
i=1

|xi|2) (11)

Similarly, by using l1 minimization or Basis Pursuit (BP), as
it is known in CS literature, signal can be exactly recovered
from ‘m’ measurements by solving a simple convex optimiza-
tion problem [24] through linear programming.

× = min
x:Θx=Y

||x||l1 (12)

where,

||x||l1 =

√√√√(

N∑
i=1

|xi|) (13)

Some reconstruction techniques are based on l0 minimization.

× = min
x:Θx=Y

||x||l0 (14)

where,

||x||l0 =

√√√√(
N∑
i=1

|xi|0) (15)

Fig. 2. Compressive acquisition and reconstruction

l2 minimization mostly gives unsatisfactory results with non-
sparse signals. Since, real world signals are usually compress-
ible rather than sparse, l2 minimization is not an attractive option
for reconstruction. On the other hand l0 minimization though
gives accurate results; however has computational disadvantage
of being a NP hard problem. To address this issue [21], [22],
[23] use l1 norm, as it gives same results as l0 minimization un-
der certain circumstances. Specifically, [21] shows that recon-
struction error of linear programming (l1 norm minimization)



4

has an upper bound, provided Θ obeys uniform uncertainty prin-
ciple and x is sufficiently sparse. Fig 3. shows l2 and l1 mini-
mizations for 3 dimensional data. Plane is the set of all x vectors
that satisfy Y = Θx. l2 minimization is equivalent to blowing up
a hypersphere and picking point where it touches the solution
plane. Since l2 ball is spherical, usually it picks points away
from coordinate axis (non-sparse members of solution plane),
whereas l1 ball has axis aligned shape which helps to introduce
a preference for sparse members of solution set.

Though basic sense of energy minimization is common to
all solution frameworks, yet variants exist in approach to solve
norm minimization equation. Section IV summarizes categories
of various reconstruction algorithms in present literature.

Fig. 3. Geometry of CS Minimization

C. CS for Non-Sparse Signals

As shown in [21], if

δ2S ≤
√
2− 1 (16)

then solution × to l1 minimization problem (10), obeys:

|| × −x||l2 ≤ C0
||x− xS ||l1√

s
(17)

and

|| × −x||l1 ≤ C0||x− xS ||l1 (18)

for some constant C0, where x is the original signal, xS is
the signal x with all but the largest s components set to 0. If
x is s-sparse, then x = xS and, thus the recovery is exact. If x
is not s-sparse, then this asserts that quality of reconstruction is
as good as reconstruction obtainable from s largest coefficients
of x (positions of which were unknown at time of acquisition).
So, while conventional sensing paradigm needs more sensing
resources and fancy compression stage for compressible signals,
CS provides a simpler acquisition model to sense and compress
implicitly.

D. Noise Robustness in CS
Practically every sensed signal will at-least have quantization

noise owing to finite precision of sensing device. If, noisy mea-
surement signal is expressed as:

Y = Θx+ E (19)

Where E is error signal, with energy bounded as:

||E||l2 ≤ ε (20)

Where ε is a finite constant, then, solution to relaxed l1 mini-
mization problem may be expressed as:

× = min
x:||Θx−Y ||l2≤ε

||x||l1 (21)

According to [21], solution to (17) obeys:

|| × −x||l2 ≤ C0
||x− xS ||l1√

s
+ C1ε (22)

provided

δ2S ≤
√
2− 1 (23)

for some constants C0 and C1.

IV. RECONSTRUCTION ALGORITHMS

Many efficient algorithms exist in literature, which, instead
of finding ‘m’ largest coefficients at the same time, attempt to
find these coefficients iteratively [26], [27], [28]. To present an
overview of reconstruction algorithms for sparse signal recov-
ery in compressive sensing, these algorithms may be broadly
divided into six types as shown in Fig. 4 and elaborated as fol-
low:

A. Convex Relaxation
This class of algorithms solves a convex optimization prob-

lem through linear programming [29] to obtain reconstruction.
The number of measurements required for exact reconstruction
is small but the methods are computationally complex. Basis
Pursuit [30], Basis Pursuit De-Noising (BPDN) [30], modified
BPDN [31], Least Absolute Shrinkage and Selection Operator
(LASSO) [32] and Least Angle Regression (LARS) [33] are
some examples of such algorithms. Recent works show matrix
versions of signal recovery called ||M1||1 Nuclear Norm min-
imization [34]. Instead of reconstructing × from Θx, Nuclear
Norm minimization tries to recover a low rank matrix M from
Θx. Since rank determines the order, dimension and complexity
of the system, low rank matrices correspond to low order statis-
tical models.

B. Greedy Iterative Algorithm
This class of algorithms solve the reconstruction problem by

finding the answer, step by step, in an iterative fashion. The idea
is to select columns of Θ in a greedy fashion. At each iteration,
the column of Θ that correlates most with Y is selected. Con-
versely, least square error is minimized in every iteration. That
row’s contribution is subtracted from Y and iterations are done
on the residual until correct set of columns is identified. This is
usually achieved in M iterations. The stopping criterion varies
from algorithm to algorithm. Most used greedy algorithms are
Matching Pursuit [11] and its derivative Orthogonal Matching
Pursuits (OMP) [26] because of their low implementation cost
and high speed of recovery. However, when the signal is not
much sparse, recovery becomes costly.
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For such situations, improved versions of OMP have been de-
vised like Regularized OMP [35], Stagewise OMP [36],

Compressive Sampling Matching Pursuits (CoSaMP) [37],
Subspace Pursuits [38], Gradient Pursuits [39] and Orthogonal
Multiple Matching Pursuit [40].

C. Iterative Thresholding Algorithms
Iterative approaches to CS recovery problem are faster than

the convex optimization problems. For this class of algorithms,
correct measurements are recovered by soft or hard threshold-
ing [27], [41] starting from noisy measurements given the sig-
nal is sparse. The thresholding function depends upon num-
ber of iterations and problem setup at hand. Message Passing
(MP) algorithms [28] are an important modification of iterative
thresholding algorithms in which basic variables (messages) are
associated with directed graph edges. A relevant graph in case
of CS is the bipartite graph with ‘n’ nodes on one side (the vari-
able nodes) and ‘m’ nodes on the other side (the measurement
nodes). This distributed approach has many advantages like
low computational complexity and easy implementation in par-
allel or distributed manner. Expander Matching Pursuits [42],
Sparse Matching Pursuit [43] and Sequential Sparse Matching
Pursuits [44] are recently proposed algorithms in this domain
that achieve near-linear recovery time while using O(s.log(n/s))
measurements only. Recently, proposed algorithm of Belief
Propagation also falls in this category [45].

D. Combinatorial / Sublinear Algorithms
This class of algorithms recovers sparse signal through group

testing. They are extremely fast and efficient, as compared to
convex relaxation or greedy algorithms but require specific pat-
tern in the measurements; Φ needs to be sparse. Representative
algorithms are Fourier Sampling Algorithm [46], Chaining Pur-
suits [47], Heavy Hitters on Steroids (HHS) [48] etc.

E. Non Convex Minimization Algorithms

Non-convex local minimization techniques recover compres-
sive sensing signals from far less measurements by replacing
l1-norm by lp-norm where p ≤ 1 [49].

Non-convex optimization is mostly utilized in medical imag-
ing tomography, network state inference, streaming data reduc-
tion. There are many algorithms proposed in literature that
use this technique like Focal Underdetermined System Solu-
tion (FOCUSS) [50], Iterative Re-weighted Least Squares [51],
Sparse Bayesian Learning algorithms [52], Monte-Carlo based
algorithms [53] etc.

F. Bregman Iterative Algorithms
These algorithms provide a simple and efficient way of solv-

ing l1 minimization problem. [54] presents a new idea which
gives exact solution of constrained problems by iteratively solv-
ing a sequence of unconstrained sub-problems generated by a
Bregman iterative regularization scheme. When applied to CS
problems, the iterative approach using Bregman distance regu-
larization achieves reconstruction in four to six iterations [54].
The computational speed of these algorithms is particularly ap-
pealing compared to that available with other existing algo-
rithms.

Table 1 lists down the complexity and minimum measurement
requirements for CS reconstruction algorithms. For instance, as
shown in [38], Basis pursuit can reliably recover signals with n
= 256 and sparsity level upto 35, from only 128 measurements.
Conversely, OMP and ROMP can only be reliable up to spar-
sity level of 19 for same n and m. Performance of Basis pursuit
appears promising as compared to OMP derivatives from mini-
mum measurements perspective.
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TABLE 1

COMPLEXITY AND MINIMUM MEASUREMENT REQUIREMENT OF
CS RECONSTRUCTION ALGORITHMS

Algorithm Complexity Minimum
Measurement
(m)

Basis Pursuit
[38][30]

O(n3) O(s log n)

OMP
[38][26][35]

O(smn) O(s log n)

StOMP [36] O(n log n) O(n log n)
ROMP
[37][35]

O(smn) O(slog2 n)

CoSAMP
[37]

O(mn) O(s log n)

Subspace Pur-
suits [38]

O(smn) O(s log (n/s))

EMP [42] O(n log (n/s)) O(slog(n/s))
SMP [43] O(nlog(n/s)logR) O(slog(n/s))
Belief Propa-
gation [45]

O(n log2 n) O(s log n)

Chaining Pur-
suits [47]

O(slog2 nlog2 s) O(slog2 n)

HHS [48] O(s polylog(n)) O(poly(s,logn))

However [36] shows that for n=10000, m = 1000 and signal
sparsity of 100, Basis pursuit takes approx. 482 seconds for
recovery. For same problem, OMP takes only 8 seconds.

V. APPLICATIONS OF COMPRESSING SENSING

A. Compressive Imaging

1) CS in Cameras: Compressive sensing has far reaching
implications on compressive imaging systems and cameras.
It reduces the number of measurements, hence, power con-
sumption, computational complexity and storage space without
sacrificing the spatial resolution. With the advent of single pixel
camera (SPC) by Rice University, imaging system has trans-
formed drastically. The camera is based on a single photon de-
tector adaptable to image at wavelengths which were impossible
with conventional CCD and CMOS images [56], [57], [58].

CS allows reconstruction of sparse n x n images by fewer than
n2 measurements. In SPC, each mirror in Digital Micromirror
Device (DMD) array performs one of these two tasks: either re-
flect light towards the sensor or reflect light away from it. There-
fore, light received at sensor (photodiode) end is weighted aver-
age of many different pixels, whose combination gives a single
pixel. By taking m measurements with random selection of pix-
els, SPC acquires recognizable picture comparable to an n pixels
picture.

In combination with Bayer colour filter, single pixel camera
can be used for colour images (hyperspectral camera) [59]. Data
captured by single pixel camera can also be used for background
subtraction for automatic detection and tracking of objects [60],
[61]. The main idea is to separate foreground objects from back-
ground, in a sequence of video frames. However, it is quite ex-
pensive for wavelengths other than visible light. Compressive

sensing solves the problem by making use of the fact that in vi-
sion applications, natural images can be sparsely represented in
wavelet domains [62]. In CS, we take random projections of a
scene with incoherent set of test function and reconstruct it by
solving convex optimization problem or Orthogonal Matching
Pursuit algorithm. CS measurements also decrease packet drop
over communication channel.

Fig. 5. Block diagram of Compressive Imaging Camera [57]

Recent works have proposed the design of Tera hertz imaging
system. In this system, image acquisition time is proportional to
speed of the THz detector [63]. The proposed system eliminates
the need of Tera hertz beam and faster scanning of object.

2) Medical Imaging: CS is being actively pursued for medical
imaging, particularly in Magnetic Resonance Imaging (MRI).
MR images, like angiograms, have sparsity properties, in do-
mains such as Fourier or wavelet basis. Generally, MRI is a
costly and time consuming process because of its data collec-
tion process which is dependent upon physical and physiolog-
ical constraints. However, the introduction of CS based tech-
niques has improved the image quality through reduction in the
number of collected measurements and by taking advantage of
their implicit sparsity. MRI is an active area of research for CS
community and in recent past, a number of CS algorithms have
been specifically designed for it [64], [65], [66], [54], [67].

3) Seismic Imaging: Seismic images are neither sparse nor
compressible in strict sense but are compressible in transform
domains e.g. in curvelet basis [68]. Seismic data is usually
high-dimensional, incomplete and very large. Seismology ex-
ploration techniques depend on collection of massive data vol-
ume which is represented in five dimensions; two for sources,
two for receivers and one for time. However, because of high
measurement and computational cost, it is desirable to reduce
the number of sources and receivers which could reduce the
number of samples. Therefore, sampling technique must require
fewer number of samples while maintaining quality of image
at the same time. CS solves this problem by combining sam-
pling and encoding in one step, by its dimensionality reduction
approach. This randomized sub sampling is advantageous be-
cause linear encoding does not require access to high resolution
data. A CS based successful reconstruction theory is developed
in this sense known as ‘Curvelet-based Recovery by Sparsity-
promoting Inversion (CRSI)’ [69].
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B. Biological Applications

Compressive sensing can also be used for efficient and inex-
pensive sensing in biological applications. The idea of group
testing [70] is closely related to CS. It was used for the first
time in World War II to test soldiers for syphilis [71]. Since
the test for syphilis antigen in blood is costly, instead of testing
blood of each and every soldier, the method used to group the
soldiers and pool blood samples of whole group and test them
simultaneously. Recent works show usage of CS in comparative
DNA microarray [72]. Traditional microarray bio-sensors are
only useful for detection of limited number of micro organisms.
To detect greater number of species large expensive microarrays
are required. However, natural phenomena are sparse in nature
and easily compressible in some basis. DNA microarrays con-
sist of millions of probe spots to test a large number of targets in
a single experiment. In traditional microarrays, single spot con-
tains a huge number of copies of probes designed to capture sin-
gle target and hence collects data of a single data point. On the
contrary, in comparative microarrays test, sample is measured
relative to test sample. As a result, it is differentially expressed
- as a fraction of the total number of reference genes and test
samples. CS gives an alternative design of compressed microar-
rays [73] in which each spot contains copies of different probe
sets reducing the overall number of measurements and still effi-
ciently reconstructing from them.

C. Compressive RADAR

Compressive sensing theory contributes to RADAR system
design by eliminating the need of pulse compression matched
filter at receiver and reducing the analog to digital conversion
bandwidth from Nyquist rate to information rate, simplifying
hardware design [74]. It also offers better resolution over classi-
cal RADARs whose resolution can be limited by time-frequency
uncertainty principles [75], [76]. Resolution is improved by
transmitting incoherent deterministic signals, eliminating the
matched filter and reconstructing received signal using spar-
sity constraints. CS has successfully been demonstrated to en-
hance resolution of wide angle synthetic aperture RADAR [77].
The compressive sensing techniques can effectively be used for
monostatic, bistatic and multistatic RADAR. The information
scalability property of CS allows it to detect, classify and recog-
nize target directly from incoherent measurements without per-
forming reconstruction or approximate computation. CS imag-
ing is also applicable in sonar and ground Penetrating RADARs
(GPRs) [78][101][107]. Similarly, [117] presents an interesting
combination of compressive sensing and change detection for
human motion identification in through the wall imaging.

D. Analog-to-Information Converters

Communication systems utilizing high bandwidth RF signals
face an inherent problem in the rates required for sampling these
signals. In most applications, information content of the sig-
nal is much smaller than its bandwidth; it maybe a wastage of
precious hardware and software resources to sample the whole
signal. Compressive sampling solves the problem by replacing
‘Analog to Digital Conversion (ADC)’ by ‘Analog to Informa-
tion Conversion (AIC)’. The approach of random non-uniform

sampling used in ADC is bandwidth limited with present hard-
ware devices [79] whereas AIC utilizes random sampling for
wideband signals for which random non-uniform sampling fails.
AIC is based on three main components: demodulation, fil-
tering and uniform sampling [80], [81]. The initially devel-
oped random demodulator was limited to discrete multi-tone
signals and incurred high computational load [81]. Random fil-
tering utilized in AIC requires less storage and computation for
measurement and reconstruction [82]. Recent works propose a
modulated wideband converter whose three main components
are multiplication of analog signal with bank of periodic wave-
forms, low pass filtering and uniform sampling at low rate [83].

VI. CS IN COMMUNICATIONS AND NETWORKS

Compressive sensing is an attractive tool to acquire signals
and network features in networked and communication systems.
Below, we have sampled few interesting compressive sensing
applications in communication and networking domain.

A. Sparse Channel Estimation

Compressive sensing has been used in communications do-
main for sparse channel estimation. Adoption of multiple-
antenna in communication system design and operation at large
bandwidths, possibly in gigahertz, enables sparse representation
of channels in appropriate bases. Conventional technique of
training-based estimation using Least-Square (LS) methods may
not be an optimal choice. Various recent studies have employed
CS for sparse channel estimation. Compressed Channel Estima-
tion (CCS) gives much better reconstruction using its non-linear
reconstruction algorithm as opposed to linear reconstruction of
LS-based estimators. In addition to non-linearity, CCS frame-
work also provides scaling analysis. CCS based sparse channel
estimation has been shown to achieve much less reconstruction
error while utilizing significantly less energy and, in some cases,
less latency and bandwidth as well [84].

The estimation of underwater acoustic channels, which are in-
herently sparse, through CS technique yields results better than
the conventional ‘Least Square Estimator’. It also gives approx-
imately equal and in some cases better than the channel estima-
tion through subspace methods from array-processing literature
[85]. The use of high time resolution over-complete dictionaries
further enhances channel estimation. BP and OMP are used to
estimate multipath channels with Doppler spread ranging from
mild, like on a normal day, to severe, like on stormy days. Only
CS based estimators can handle significant Doppler spread effi-
ciently by exploiting inter-carrier interference explicitly.

Recently Taubock et al. [86] have presented a mechanism of
estimating doubly-selective channels within multicarrier (MC)
systems such as Orthogonal Frequency Division Multiplexing
(OFDM). The work builds on an earlier technique proposed by
same investigators in which sparsity of MC systems is exploited
in delay-Doppler domains through CS. Sparsity of the signals
is severely affected by inter-symbol interference (ISI) and inter-
carrier interference (ICI) in MC communications. [86] focuses
on determining and then overcoming such leakage effects. A
basic compressive channel estimator estimates ‘diagonal’ chan-
nel coefficients for mildly dispersive channels. In order to com-
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bat effects of strongly dispersive channels and to enhance spar-
sity, the transform basis that had been conventionally used until
now - discrete Fourier transform - is changed to a more suitable
sparsity-enhancing basis developed explicitly through an itera-
tive basis design algorithm. As a result, the novel compressive
channel estimator can predict off-diagonal channel coefficients
also, that are an outcome of ISI/ICI.

B. Spectrum Sensing in Cognitive Radio Networks

Compressive sensing based technique is used for speedy and
accurate spectrum sensing in cognitive radio technology based
standards and systems [87], [88]. IEEE 802.22 is the first stan-
dard to use the concept of cognitive radio, providing an air in-
terface for wireless communication in the TV spectrum band.
Although, no spectrum sensing method is explicitly defined in
the standard, nonetheless, it has to be fast and precise. Fast
Fourier Sampling (FFS) - an algorithm based on CS - is used
to detect wireless signals as proposed in [87]. According to the
algorithm only ‘m’ (where m Â« n ) most energetic frequen-
cies of the spectrum are detected and the whole spectrum is ap-
proximated from these samples using non-uniform Inverse Fast
Fourier Transform (IFFT). Using fewer samples FFS results in
faster sensing, enabling more spectrum to be sensed in the same
time window.

In [88], a wideband spectrum sensing scheme using dis-
tributed CS is proposed for cognitive radio (CR) networks. This
work uses multiple CR receivers to sense the same wide-band
signal through AICs, produce the autocorrelation vectors of the
compressed signal and send them to a centralized fusion center
for decision on spectrum occupancy. The work exploits joint
sparsity and spatial diversity of signals to get performance gains
over a non-distributed CS system.

In past, work has also been done in which compressive sens-
ing is applied in parallel to time-windowed analog signals [89].
By using CS, load of samples on the digital signal processor
reduces but the ADC still has to digitize analog signal to digital
signal. In order to overcome this problem, CS is applied directly
on analog signals. This is done on segmented pieces of signal;
each block is compressively sensed independent of the other. At
the receiver, however, a joint reconstruction algorithm is imple-
mented to recover the signal. The sensing rate is greatly reduced
using ‘parallel’ CS while reconstruction quality improves.

[102] proposes a cyclic feature detection framework based on
CS for wideband spectrum sensing which utilizes second order
statistics to cope with high rate sampling requirement of con-
ventional cyclic spectrum sensing.

Signal sparsity level has temporal variation in Cognitive Ra-
dio Networks, and thus optimal compressive sensing rate is not
static. [103] introduces a framework to dynamically track opti-
mal sampling rate and determine unoccupied channels in a uni-
fied way.

C.Ultra Wideband Systems

In the emerging technology of Ultra Wideband (UWB) com-
munication, compressive sensing plays a vital role by reducing
the high data-rate of ADC at receiver [90]. CS moves hardware
complexity towards transmitter by exploiting the channel itself:
channel is assumed to be part of UWB communication system.

The work proposed in [90] has enabled a 3GHz-8GHz UWB
system to be implemented which otherwise, using Nyquist rate
ADCs, would have taken years to reach industry. Compressive
sensing, as used in pulse-based UWB communication utilizes
time sparsity of the signal through a filter-based CS approach
applied on continuous time signals.

Fig. 6. Baseline Data Gathering and Compressive Data Gather-
ing(adapted from [91])

D.Wireless Sensor Networks
CS finds its applications in data gathering for large wireless

sensor networks (WSNs), consisting of thousands of sensors de-
ployed for tasks like infrastructure or environment monitor-ing.
This approach of using compressive data gathering (CDG) helps
in overcoming the challenges of high communication costs and
uneven energy consumption by sending ‘m’ weighted sums of
all sensor readings to a sink which recovers data from these mea-
surements [91], as shown in Fig. 4. Although, this increases the
number of signals sent by the initial ‘m’ sensors, but the overall
reduction in transmissions and energy consumption is signifi-
cant since m Â« n (where n is the total number of sensors in
large-scale WSN). This also results in load balancing which in
turn enhances life-time of the network. Lou et.al [91] propose a
scheme that can detect abnormal readings from sensors by uti-
lizing the fact that abnormalities are sparse in time-domain.

CS is also used, in a decentralized manner, to recover sparse
signals in energy efficient large-scale WSNs [92]. Various phe-
nomena monitored by large scale WSNs usually occur at scat-
tered localized positions, hence, can be represented by sparse
signals in the spatial domain. Exploiting this sparsity through
CS results in accurate detection of the phenomenon. According
to the proposed scheme [92], most of the sensors are in sleeping
mode whereas only a few are active. The active sensors sense
their own information and also come up with optimum sensor
values for their sleeping one-hop neighbours through ‘consen-
sus optimization’ - an iterative exchange of information with
other active one-hop neighbours. Using a sleeping WSN strat-
egy not only makes the network energy efficient but also ensures
detection of a physical phenomenon with high accuracy.

The task of localization and mapping of the environment as
quickly as possible, for reliable navigation of robots in WSNs
has utilized compressive sensing technique for its benefit [93].
A mobile robot, working in an indoor WSN for event detection
application, may need to know its own position in order to locate
where an incident has happened. The conventional approach of
using navigation system to build a map requires estimation of
features of the whole surrounding. This result in data coming
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to mobile robot from all sensors in the network, most of which
is highly correlated - computational load may increase substan-
tially, especially in case of large scale sensor networks. CS en-
ables the making of high quality maps without directly sensing
large areas. The correlation amongst signals renders them com-
pressible. The nodes exploit sparse representation of parameters
of interest in order to build localized maps using compressive
cooperative mapping framework, which gives superior perfor-
mance over traditional techniques [93].

E. Erasure Coding

Compressive sensing can be utilized for inexpensive com-
pression at encoder; making every bit even more precious as
it carries more information. To enable correct recovery of the
compressed data after passing through erasure channels, CS is
again utilized as a channel coding scheme [94]. Such compres-
sive sensing erasure coding (CSEC) techniques are not a re-
placement of channel coding schemes; rather they are used at the
application layer, for added robustness to channel impairments
and in low-power systems due to their computational simplicity.
In CSEC, compressive sensing not only compresses the required
samples to m Â« n, it also disperses the information contained
in these m samples to a larger number of k samples, where still
k Â« n. The sensing matrix Φ in such schemes is augmented
with an additional number of e rows, where e is the number
of erasures. At the receiver side, if any of the e or more sam-
ples are lost, signal can still be reconstructed using CS recon-
struction techniques with high probability unlike conventional
erasure coding techniques which discard corrupt symbol com-
pletely.

F. Network Management

Network management tasks usually use ‘Traffic Matrices
(TM)’. However, these matrices have many empty spaces as di-
rect observation of TM for large networks may not be possible.
Therefore, interpolation from the available values is essential.
Internet TMs mostly do not satisfy the conditions necessary for
CS but by exploiting the spatio-temporal structure, TM can be
recovered from as less as 2percent values [95]. The interpo-
lation of missing values is achieved by using spatio-temporal
compressive sensing technique called Sparsity Regularized Ma-
trix Factorization, which finds a global low-rank approximation
of TM and then a local interpolation technique like k-Nearest
Neighbours is augmented with it to fully recover the Traffic Ma-
trix.

To obtain overlay network traffic and delay information be-
tween two hosts is important for network management, monitor-
ing, design, planning and assessment. Traffic matrix and delay
matrix represent the traffic and delay information between two
hosts, so introduce the concept of the overlay network traffic
matrix and delay matrix. Compressive sensing theory restores
traffic matrix and delay matrix but is not suitable for overlay net-
work. In [109], authors propose a framework which improves
compressive sensing algorithm to make it more applicable to
overlay network traffic matrix and delay matrix restoration. Af-
ter calculating the traffic matrix and delay matrix this paper
quantifies overlay network congestion, which reflect the current
network security situation. The experimental results show the

restoration effect of traffic matrix and delay matrix is well and
the congestion degree reflects the actual network state.

In [109], authors estimate the missing round trip time (RTT)
measurements in computer networks using doubly non-negative
(DN) matrix completion and compressed sensing. The major
contribution of this work is systematic and detailed experimental
comparison of DN matrix completion and compressed sensing
for estimating missing RTT estimation in computer networks.
Results indicate that compressed sensing provides better esti-
mation in networks with sporadic missing values.

G. Multimedia Coding and Communication

Compressive sensing has great potential to be used in mul-
timedia communication in applications such as Wireless Mul-
timedia Sensor Networks (WMSNs). In recent years, various
studies have focused on WMSNs and novel techniques for video
transmission are under investigation. Compressive sensing pro-
vides an attractive solution as CS encoded images provide an
inherent resilience to random channel errors. Since the samples
transmitted have no proper structure, as a result, every sample
is equally important and the quality of reconstruction depends
on the number of correctly received samples only [96]. Further-
more, video quality can be improved by using a low complex-
ity ‘Adaptive Parity-based Channel Coding’ [96] which drops
the samples that have error as opposed to using conventional
Forward Error Correction which entails additional overhead.
A compressive sampling based video encoder as discussed by
Pudlewski and Melodia, exploits redundancy in video frames
by transmitting the encoded difference frame and recreating it,
using correlation between the difference frame and a reference
frame.

To enhance the error resilience of images, Joint Source Chan-
nel Coding (JSCC) using CS is also an active area of research.
Inflation of CS measurements in order to add error robustness
is proposed by Mohseni et al. [97]. The authors propose a real
time error-correction coding step in analog domain. This makes
the image resilient to spiky noise such as salt and pepper noise
in images. The samples are precoded using a suitable encoding
matrix on the hardware side. An additional coding step follows
on the digital side. This approach inherently corrects the errors
that arise due to faulty pixel sensors. The novelty of performing
this JSCC technique is that it is done in analog hardware.

Recent work by Deng et al. propose a compressive sensing
based codec that enhances error resilience of images [98] as il-
lustrated in Figure 7. The codec makes non-sparse image signal
sparse by applying multi-level 2D Discrete Wavelet Transform
(DWT). The advantage of applying CS on DWT coefficients is
its ability to spread energy of measurements over all samples.
Hence, every sample carries equal information. Novelty intro-
duced in this work over previous works utilizing wavelet based
compressive sensing [99] is the proposed ‘multi-scale CS’ al-
locating more measurements to coarser level as coefficients of
low frequency sub-band containing maximum information. This
scheme increases error robustness at high packet loss rates with-
out any explicit error resilience method i.e. better performance
with reduced complexity than contemporary JSCC schemes.

Compressive sensing has been in use for acquisition, sam-
pling, encoding and analysis of multimedia data for quite some
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time now and works have been done to optimize the efficiencies
of these systems. A recent work combines a number of these
systems to get an overall optimized ‘Joint CS Video Coding and
Analysis’ setup [100].

Fig. 7. Robust Image Compression and Transmission using CS [98]

Instead of performing compressive sampling and encoding of
input video signal and then decoding the complete length of sig-
nal, to be passed on to an analysis block, the proposed setup
performs joint encoding and analysis. This eliminates the need
for decoder to decode the whole video sequence. It in effect
reduces much of the complexity of CS based decoder. The pa-
per takes ‘Object Tracking’ as a specific example of analysis.
Object tracking through joint CS coding and analysis is done in
two ways. Firstly, only the foreground objects are decoded and
the background is subtracted in the projected domain. Secondly,
predicted position and sizes of the boxes bounding the object,
determined by tracking algorithm, are known a priori to the de-
coder. The scheme greatly reduces the number of measurements
required as compared to traditional techniques.

H. Compressive Sensing based Localization

Device Localization is an important requirement in wireless
environments. It is chief component in context-aware services
and geometric routing schemes. Feng et al., in [104] describe
a compressive sensing based localization solution implemented
on a mobile device with 20% and 25% localization error im-
provement over kNN and kernel based methods respectively. In
order to mitigate received signal strength variation effects due to
channel impediments, the scheme utilizes CS theory to fine lo-
calize and enhance access point selection accuracy. Similarly,
[105] demonstrates application of compressive sensing to re-
cover wireless node position in an n-reference point grid, from
only m («n) available measurements from other devices.

I. Compressive Sensing based Video Scrambling

Privacy protection is an imperative aspect in context of video
surveillance, especially when streaming such data over shared

communication medium. [106] discusses application of block
based compressive sensing to scramble privacy regions in video
data. The scheme uses block based CS sampling on quantized
coefficients during compression to protect privacy. In order to
ensure security, key controlled chaotic sequence is used to con-
struct measurement matrix. The approach provides significant
coding efficiency and security improvements over conventional
alternatives.

J. Network Traffic Monitoring and Anomaly Detection

Many basic network engineering tasks (e.g., traffic engineer-
ing, capacity planning, and anomaly detection) rely heavily on
the availability and accuracy of traffic matrices. However, in
practice it is challenging to reliably measure traffic matrices.
Missing values are common. This observation brings us into the
realm of compressive sensing, a generic technique for dealing
with missing values that exploits the presence of structure and
redundancy in many real-world systems. Despite much recent
progress made in compressive sensing, existing compressive-
sensing solutions often perform poorly for traffic matrix inter-
polation, because real traffic matrices rarely satisfy the technical
conditions required for these solutions [111].

To address the problem of traffic metrics, authors in [111]
propose a spatio-temporal compressive sensing framework with
two key components: (i) a new technique called Sparsity Regu-
larized Matrix Factorization (SRMF) that leverages the sparse or
low-rank nature of real-world traffic matrices and their spatio-
temporal properties, and (ii) a mechanism for combining low-
rank approximations with local interpolation procedures. Au-
thors claim to have superior performance in problems involving
interpolation with real traffic matrices where we can success-
fully replace upto 98% of the values. The proposed framework
is evaluated in applications such as network tomography, traffic
prediction, and anomaly detection to confirm the flexibility and
effectiveness [111].

Another application domain for compressive sensing is traf-
fic volume anomaly detection. In the backbone of large-scale
networks, origin-to-destination (OD) traffic flows experience
abrupt unusual changes known as traffic volume anomalies,
which can result in congestion and limit the extent to which end-
user quality of service requirements are met [112]. Given link
traffic measurements periodically acquired by backbone routers,
the goal is to construct an estimated map of anomalies in real
time, and thus summarize the network ‘health state’ along both
the flow and time dimensions. Leveraging the low intrinsic-
dimensionality of OD flows and the sparse nature of anomalies,
a novel online estimator is proposed based on an exponentially-
weighted least-squares criterion regularized with the sparsity-
promoting norm of the anomalies, and the nuclear norm of the
nominal traffic matrix. After recasting the non-separable nuclear
norm into a form amenable to online optimization, a real-time
algorithm for dynamic anomalography is developed and its con-
vergence established under simplifying technical assumptions.
Comprehensive numerical tests with both synthetic and real net-
work data corroborate the effectiveness of the proposed online
algorithms and their tracking capabilities, and demonstrate that
they outperform state-of-the-art approaches developed to diag-
nose traffic anomalies.
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K. Network Data Mining

A major challenge in network data mining applications is
when the full information about the underlying processes, such
as sensor networks or large online database, cannot be practi-
cally obtained due to physical limitations such as low band-
width or memory, storage, or computing power. In [113], au-
thors propose a framework for detecting anomalies from these
large-scale data mining applications where the full information
is not practically possible to obtain. Exploiting the fact that the
intrinsic dimension of the data in these applications are typically
small relative to the raw dimension and the fact that compressed
sensing is capable of capturing most information with few mea-
surements, authors show that spectral methods used for volume
anomaly detection can be directly applied to the CS data with
guarantee on performance.

L. Distributed Compression in WSNs

Distributed Source Coding is a compression technique in
WSNs in which one signal is transmitted fully and rest of the
signals are compressed based on their spatial correlation with
main signal. DSC performs poorly when sudden changes occur
in sensor readings, as these changes reflect in correlation param-
eters and main signal fails to provide requisite base information
for correct recovery of side signals. Only spatial correlation is
exploited in DSC, while under no-event conditions, sensor read-
ings usually have a high temporal correlation as well.

[116] presents a distributed compression framework which
exploits spatial as well as temporal correlation within WSN.
Compressive sensing is used for spatial compression among sen-
sor nodes. Temporal compression is obtained by adjusting num-
ber of measurements as per the temporal correlation among sen-
sors. When sensor readings are changing slowly, few measure-
ments are generated. In case, significant changes are detected
in sensor readings measurements are generated more rapidly.
To allow traction of changing compression rate at receiving sta-
tion, recently developed Rateless codes are used for encoding.
Rateless codes are based on the idea that every receiving sta-
tion continues collecting encoded data until decoding can be fin-
ished successfully. Proposed framework features low complex-
ity single stage encoding and decoding schemes as compared
to two stage encoding and decoding in previous state-of-the-art,
while keeping the compression rate same. Compression rate of∑m

i=1H(Xi) is achievable, where Xi is the reading from sen-
sor i and H(.) represents the entropy of signal.

M. Network Security

CS can be used as an effective tool for provision of network
security with vast potential to contribute. As one example appli-
cation, clone detection, aiming to detect the illegal copies with
all of the credentials of legitimate sensor nodes, is of great im-
portance for sensor networks because of the substantial impact
of clones on network operations like routing, data collection,
and key distribution, etc [114]. Authors in [114] propose a novel
clone detection method based on compressive sensing claim-
ing to have the lowest communication cost among all detection
methods. They exploit a key insight in designing their technique
that the number of clones in a network is usually very limited.
Based on the sparsity of clone appearance in the network, they

propose a Compressed Sensing-based clone Identification (CSI)
scheme for static sensor networks.

VII. PROSPECT OF CS IN FUTURE

The idea of compressive sensing application to real-time sys-
tems is still in its infancy but one can fairly expect to see CS
applied in many communication and networking systems in fu-
ture, as the demand for cheaper, faster and efficient devices is
on the rise. A prospective field of application of CS can be the
broadband systems where there is a need to bring innovations in
the physical layer technologies to achieve capacity increase and
improved network security through resilient architectures and
security mechanism that are proactive to threats. These demands
make CS a prospective candidate as it increases capacity by re-
ducing the number of samples required to be stored and adds
error resilience. The delivery of video over mobile broadband
systems is currently an active area of research. The use of CS
to exploit spatio-temporal sparsity in 3D video frames can lead
to efficient 3D video coding and transmission on mobile hand-
held devices. With the use of CS as a joint source channel cod-
ing scheme, complexity of the system can be greatly reduced.
Next phase of wireless networks is expected to experience an
increase in video demand. WSNs can benefit from the knowl-
edge and application of CS. Another flourishing field of interest
for researchers is wearable computing with one application be-
ing wireless body sensor networks. For example, wearable body
sensors used to transmit vital signals for monitoring can make
use of CS in order to reduce size and complexity of wearable de-
vices. Compressive sensing has the potential to be a paradigm
shifter in RF architecture. Work is under way by researchers at
University of Michigan [115], to develop a novel RF architec-
ture employing concepts of CS in order to get lower power alter-
natives to existing devices. Basic premise behind their contribu-
tion is a significant power saving achieved courtesy sub-Nyquist
sampling of RF signals.

VIII. CONCLUSIONS

In this review article, we have provided a comprehensive sur-
vey of the novel compressive sensing paradigm and its applica-
tions. We have traced origins of this technology and presented
mathematical and theoretical foundations of the key concepts.
Numerous reconstruction algorithms aiming to achieve compu-
tational efficiency and high speeds are surveyed. The applica-
tions of CS in diverse fields such as imaging, RADARs, biolog-
ical applications and analog to information converters are dis-
cussed. There has been a surge recently to apply CS to commu-
nications and networks domain. We have captured this interest
through a set of sample applications and have identified few po-
tential research areas where CS can act as a paradigm shifter.
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